| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] |
| */ |
| /* ==================================================================== |
| * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| * |
| */ |
| /* ==================================================================== |
| * Copyright 2005 Nokia. All rights reserved. |
| * |
| * The portions of the attached software ("Contribution") is developed by |
| * Nokia Corporation and is licensed pursuant to the OpenSSL open source |
| * license. |
| * |
| * The Contribution, originally written by Mika Kousa and Pasi Eronen of |
| * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites |
| * support (see RFC 4279) to OpenSSL. |
| * |
| * No patent licenses or other rights except those expressly stated in |
| * the OpenSSL open source license shall be deemed granted or received |
| * expressly, by implication, estoppel, or otherwise. |
| * |
| * No assurances are provided by Nokia that the Contribution does not |
| * infringe the patent or other intellectual property rights of any third |
| * party or that the license provides you with all the necessary rights |
| * to make use of the Contribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN |
| * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA |
| * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY |
| * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR |
| * OTHERWISE. */ |
| |
| #include <assert.h> |
| #include <stdio.h> |
| #include <string.h> |
| |
| #include <openssl/err.h> |
| #include <openssl/evp.h> |
| #include <openssl/hmac.h> |
| #include <openssl/md5.h> |
| #include <openssl/mem.h> |
| #include <openssl/obj.h> |
| #include <openssl/rand.h> |
| |
| #include "internal.h" |
| |
| |
| /* tls1_P_hash computes the TLS P_<hash> function as described in RFC 5246, |
| * section 5. It writes |out_len| bytes to |out|, using |md| as the hash and |
| * |secret| as the secret. |seed1| through |seed3| are concatenated to form the |
| * seed parameter. It returns one on success and zero on failure. */ |
| static int tls1_P_hash(uint8_t *out, size_t out_len, const EVP_MD *md, |
| const uint8_t *secret, size_t secret_len, |
| const uint8_t *seed1, size_t seed1_len, |
| const uint8_t *seed2, size_t seed2_len, |
| const uint8_t *seed3, size_t seed3_len) { |
| size_t chunk; |
| HMAC_CTX ctx, ctx_tmp, ctx_init; |
| uint8_t A1[EVP_MAX_MD_SIZE]; |
| unsigned A1_len; |
| int ret = 0; |
| |
| chunk = EVP_MD_size(md); |
| |
| HMAC_CTX_init(&ctx); |
| HMAC_CTX_init(&ctx_tmp); |
| HMAC_CTX_init(&ctx_init); |
| if (!HMAC_Init_ex(&ctx_init, secret, secret_len, md, NULL) || |
| !HMAC_CTX_copy_ex(&ctx, &ctx_init) || |
| (seed1_len && !HMAC_Update(&ctx, seed1, seed1_len)) || |
| (seed2_len && !HMAC_Update(&ctx, seed2, seed2_len)) || |
| (seed3_len && !HMAC_Update(&ctx, seed3, seed3_len)) || |
| !HMAC_Final(&ctx, A1, &A1_len)) { |
| goto err; |
| } |
| |
| for (;;) { |
| /* Reinit mac contexts. */ |
| if (!HMAC_CTX_copy_ex(&ctx, &ctx_init) || |
| !HMAC_Update(&ctx, A1, A1_len) || |
| (out_len > chunk && !HMAC_CTX_copy_ex(&ctx_tmp, &ctx)) || |
| (seed1_len && !HMAC_Update(&ctx, seed1, seed1_len)) || |
| (seed2_len && !HMAC_Update(&ctx, seed2, seed2_len)) || |
| (seed3_len && !HMAC_Update(&ctx, seed3, seed3_len))) { |
| goto err; |
| } |
| |
| if (out_len > chunk) { |
| unsigned len; |
| if (!HMAC_Final(&ctx, out, &len)) { |
| goto err; |
| } |
| assert(len == chunk); |
| out += len; |
| out_len -= len; |
| /* Calculate the next A1 value. */ |
| if (!HMAC_Final(&ctx_tmp, A1, &A1_len)) { |
| goto err; |
| } |
| } else { |
| /* Last chunk. */ |
| if (!HMAC_Final(&ctx, A1, &A1_len)) { |
| goto err; |
| } |
| memcpy(out, A1, out_len); |
| break; |
| } |
| } |
| |
| ret = 1; |
| |
| err: |
| HMAC_CTX_cleanup(&ctx); |
| HMAC_CTX_cleanup(&ctx_tmp); |
| HMAC_CTX_cleanup(&ctx_init); |
| OPENSSL_cleanse(A1, sizeof(A1)); |
| return ret; |
| } |
| |
| int tls1_prf(SSL *s, uint8_t *out, size_t out_len, const uint8_t *secret, |
| size_t secret_len, const char *label, size_t label_len, |
| const uint8_t *seed1, size_t seed1_len, |
| const uint8_t *seed2, size_t seed2_len) { |
| size_t idx, len, count, i; |
| const uint8_t *S1; |
| uint32_t m; |
| const EVP_MD *md; |
| int ret = 0; |
| uint8_t *tmp; |
| |
| if (out_len == 0) { |
| return 1; |
| } |
| |
| /* Allocate a temporary buffer. */ |
| tmp = OPENSSL_malloc(out_len); |
| if (tmp == NULL) { |
| OPENSSL_PUT_ERROR(SSL, tls1_prf, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| |
| /* Count number of digests and partition |secret| evenly. */ |
| count = 0; |
| for (idx = 0; ssl_get_handshake_digest(&m, &md, idx); idx++) { |
| if ((m << TLS1_PRF_DGST_SHIFT) & ssl_get_algorithm2(s)) { |
| count++; |
| } |
| } |
| /* TODO(davidben): The only case where count isn't 1 is the old MD5/SHA-1 |
| * combination. The logic around multiple handshake digests can probably be |
| * simplified. */ |
| assert(count == 1 || count == 2); |
| len = secret_len / count; |
| if (count == 1) { |
| secret_len = 0; |
| } |
| S1 = secret; |
| memset(out, 0, out_len); |
| for (idx = 0; ssl_get_handshake_digest(&m, &md, idx); idx++) { |
| if ((m << TLS1_PRF_DGST_SHIFT) & ssl_get_algorithm2(s)) { |
| /* If |count| is 2 and |secret_len| is odd, |secret| is partitioned into |
| * two halves with an overlapping byte. */ |
| if (!tls1_P_hash(tmp, out_len, md, S1, len + (secret_len & 1), |
| (const uint8_t *)label, label_len, seed1, seed1_len, |
| seed2, seed2_len)) { |
| goto err; |
| } |
| S1 += len; |
| for (i = 0; i < out_len; i++) { |
| out[i] ^= tmp[i]; |
| } |
| } |
| } |
| ret = 1; |
| |
| err: |
| OPENSSL_cleanse(tmp, out_len); |
| OPENSSL_free(tmp); |
| return ret; |
| } |
| |
| static int tls1_generate_key_block(SSL *s, uint8_t *out, size_t out_len) { |
| return s->enc_method->prf(s, out, out_len, s->session->master_key, |
| s->session->master_key_length, |
| TLS_MD_KEY_EXPANSION_CONST, |
| TLS_MD_KEY_EXPANSION_CONST_SIZE, |
| s->s3->server_random, SSL3_RANDOM_SIZE, |
| s->s3->client_random, |
| SSL3_RANDOM_SIZE); |
| } |
| |
| /* tls1_aead_ctx_init allocates |*aead_ctx|, if needed and returns 1. It |
| * returns 0 on malloc error. */ |
| static int tls1_aead_ctx_init(SSL_AEAD_CTX **aead_ctx) { |
| if (*aead_ctx != NULL) { |
| EVP_AEAD_CTX_cleanup(&(*aead_ctx)->ctx); |
| } else { |
| *aead_ctx = (SSL_AEAD_CTX *)OPENSSL_malloc(sizeof(SSL_AEAD_CTX)); |
| if (*aead_ctx == NULL) { |
| OPENSSL_PUT_ERROR(SSL, tls1_aead_ctx_init, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| static int tls1_change_cipher_state_aead(SSL *s, char is_read, |
| const uint8_t *key, unsigned key_len, |
| const uint8_t *iv, unsigned iv_len, |
| const uint8_t *mac_secret, |
| unsigned mac_secret_len) { |
| const EVP_AEAD *aead = s->s3->tmp.new_aead; |
| SSL_AEAD_CTX *aead_ctx; |
| /* merged_key is used to merge the MAC, cipher, and IV keys for an AEAD which |
| * simulates pre-AEAD cipher suites. */ |
| uint8_t merged_key[EVP_AEAD_MAX_KEY_LENGTH]; |
| |
| if (mac_secret_len > 0) { |
| /* This is a "stateful" AEAD (for compatibility with pre-AEAD cipher |
| * suites). */ |
| if (mac_secret_len + key_len + iv_len > sizeof(merged_key)) { |
| OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state_aead, |
| ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| memcpy(merged_key, mac_secret, mac_secret_len); |
| memcpy(merged_key + mac_secret_len, key, key_len); |
| memcpy(merged_key + mac_secret_len + key_len, iv, iv_len); |
| key = merged_key; |
| key_len += mac_secret_len; |
| key_len += iv_len; |
| } |
| |
| if (is_read) { |
| if (!tls1_aead_ctx_init(&s->aead_read_ctx)) { |
| return 0; |
| } |
| aead_ctx = s->aead_read_ctx; |
| } else { |
| if (SSL_IS_DTLS(s) && s->aead_write_ctx != NULL) { |
| /* DTLS renegotiation is unsupported, so a CCS can only switch away from |
| * the NULL cipher. This simplifies renegotiation. */ |
| OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state_aead, |
| ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| if (!tls1_aead_ctx_init(&s->aead_write_ctx)) { |
| return 0; |
| } |
| aead_ctx = s->aead_write_ctx; |
| } |
| |
| if (!EVP_AEAD_CTX_init_with_direction( |
| &aead_ctx->ctx, aead, key, key_len, EVP_AEAD_DEFAULT_TAG_LENGTH, |
| is_read ? evp_aead_open : evp_aead_seal)) { |
| OPENSSL_free(aead_ctx); |
| if (is_read) { |
| s->aead_read_ctx = NULL; |
| } else { |
| s->aead_write_ctx = NULL; |
| } |
| |
| return 0; |
| } |
| |
| if (mac_secret_len == 0) { |
| /* For a real AEAD, the IV is the fixed part of the nonce. */ |
| if (iv_len > sizeof(aead_ctx->fixed_nonce)) { |
| OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state_aead, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| |
| memcpy(aead_ctx->fixed_nonce, iv, iv_len); |
| aead_ctx->fixed_nonce_len = iv_len; |
| aead_ctx->variable_nonce_included_in_record = |
| (s->s3->tmp.new_cipher->algorithm2 & |
| SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD) != 0; |
| aead_ctx->random_variable_nonce = 0; |
| aead_ctx->omit_length_in_ad = 0; |
| } else { |
| aead_ctx->fixed_nonce_len = 0; |
| aead_ctx->variable_nonce_included_in_record = 1; |
| aead_ctx->random_variable_nonce = 1; |
| aead_ctx->omit_length_in_ad = 1; |
| } |
| aead_ctx->variable_nonce_len = s->s3->tmp.new_variable_iv_len; |
| aead_ctx->omit_version_in_ad = (s->version == SSL3_VERSION); |
| |
| if (aead_ctx->variable_nonce_len + aead_ctx->fixed_nonce_len != |
| EVP_AEAD_nonce_length(aead)) { |
| OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state_aead, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| aead_ctx->tag_len = EVP_AEAD_max_overhead(aead); |
| |
| return 1; |
| } |
| |
| int tls1_change_cipher_state(SSL *s, int which) { |
| /* is_read is true if we have just read a ChangeCipherSpec message - i.e. we |
| * need to update the read cipherspec. Otherwise we have just written one. */ |
| const char is_read = (which & SSL3_CC_READ) != 0; |
| /* use_client_keys is true if we wish to use the keys for the "client write" |
| * direction. This is the case if we're a client sending a ChangeCipherSpec, |
| * or a server reading a client's ChangeCipherSpec. */ |
| const char use_client_keys = which == SSL3_CHANGE_CIPHER_CLIENT_WRITE || |
| which == SSL3_CHANGE_CIPHER_SERVER_READ; |
| const uint8_t *client_write_mac_secret, *server_write_mac_secret, *mac_secret; |
| const uint8_t *client_write_key, *server_write_key, *key; |
| const uint8_t *client_write_iv, *server_write_iv, *iv; |
| const EVP_AEAD *aead = s->s3->tmp.new_aead; |
| size_t key_len, iv_len, mac_secret_len; |
| const uint8_t *key_data; |
| |
| /* Reset sequence number to zero. */ |
| if (!SSL_IS_DTLS(s)) { |
| memset(is_read ? s->s3->read_sequence : s->s3->write_sequence, 0, 8); |
| } |
| |
| mac_secret_len = s->s3->tmp.new_mac_secret_len; |
| iv_len = s->s3->tmp.new_fixed_iv_len; |
| |
| if (aead == NULL) { |
| OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| |
| key_len = EVP_AEAD_key_length(aead); |
| if (mac_secret_len > 0) { |
| /* For "stateful" AEADs (i.e. compatibility with pre-AEAD cipher |
| * suites) the key length reported by |EVP_AEAD_key_length| will |
| * include the MAC and IV key bytes. */ |
| if (key_len < mac_secret_len + iv_len) { |
| OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| key_len -= mac_secret_len + iv_len; |
| } |
| |
| key_data = s->s3->tmp.key_block; |
| client_write_mac_secret = key_data; |
| key_data += mac_secret_len; |
| server_write_mac_secret = key_data; |
| key_data += mac_secret_len; |
| client_write_key = key_data; |
| key_data += key_len; |
| server_write_key = key_data; |
| key_data += key_len; |
| client_write_iv = key_data; |
| key_data += iv_len; |
| server_write_iv = key_data; |
| key_data += iv_len; |
| |
| if (use_client_keys) { |
| mac_secret = client_write_mac_secret; |
| key = client_write_key; |
| iv = client_write_iv; |
| } else { |
| mac_secret = server_write_mac_secret; |
| key = server_write_key; |
| iv = server_write_iv; |
| } |
| |
| if (key_data - s->s3->tmp.key_block != s->s3->tmp.key_block_length) { |
| OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| |
| return tls1_change_cipher_state_aead(s, is_read, key, key_len, iv, iv_len, |
| mac_secret, mac_secret_len); |
| } |
| |
| int tls1_setup_key_block(SSL *s) { |
| uint8_t *p; |
| const EVP_AEAD *aead = NULL; |
| int ret = 0; |
| size_t mac_secret_len, fixed_iv_len, variable_iv_len, key_len; |
| size_t key_block_len; |
| |
| if (s->s3->tmp.key_block_length != 0) { |
| return 1; |
| } |
| |
| if (s->session->cipher == NULL) { |
| goto cipher_unavailable_err; |
| } |
| |
| if (!ssl_cipher_get_evp_aead(&aead, &mac_secret_len, &fixed_iv_len, |
| s->session->cipher, |
| ssl3_version_from_wire(s, s->version))) { |
| goto cipher_unavailable_err; |
| } |
| key_len = EVP_AEAD_key_length(aead); |
| variable_iv_len = EVP_AEAD_nonce_length(aead); |
| if (mac_secret_len > 0) { |
| /* For "stateful" AEADs (i.e. compatibility with pre-AEAD cipher suites) the |
| * key length reported by |EVP_AEAD_key_length| will include the MAC key |
| * bytes and initial implicit IV. */ |
| if (key_len < mac_secret_len + fixed_iv_len) { |
| OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| key_len -= mac_secret_len + fixed_iv_len; |
| } else { |
| /* The nonce is split into a fixed portion and a variable portion. */ |
| if (variable_iv_len < fixed_iv_len) { |
| OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| variable_iv_len -= fixed_iv_len; |
| } |
| |
| assert(mac_secret_len < 256); |
| assert(fixed_iv_len < 256); |
| assert(variable_iv_len < 256); |
| |
| s->s3->tmp.new_aead = aead; |
| s->s3->tmp.new_mac_secret_len = (uint8_t)mac_secret_len; |
| s->s3->tmp.new_fixed_iv_len = (uint8_t)fixed_iv_len; |
| s->s3->tmp.new_variable_iv_len = (uint8_t)variable_iv_len; |
| |
| key_block_len = key_len + mac_secret_len + fixed_iv_len; |
| key_block_len *= 2; |
| |
| ssl3_cleanup_key_block(s); |
| |
| p = (uint8_t *)OPENSSL_malloc(key_block_len); |
| if (p == NULL) { |
| OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| s->s3->tmp.key_block_length = key_block_len; |
| s->s3->tmp.key_block = p; |
| |
| if (!tls1_generate_key_block(s, p, key_block_len)) { |
| goto err; |
| } |
| |
| if (!SSL_USE_EXPLICIT_IV(s) && |
| (s->mode & SSL_MODE_CBC_RECORD_SPLITTING) != 0) { |
| /* enable vulnerability countermeasure for CBC ciphers with known-IV |
| * problem (http://www.openssl.org/~bodo/tls-cbc.txt). */ |
| s->s3->need_record_splitting = 1; |
| |
| if (s->session->cipher != NULL && |
| s->session->cipher->algorithm_enc == SSL_RC4) { |
| s->s3->need_record_splitting = 0; |
| } |
| } |
| |
| ret = 1; |
| |
| err: |
| return ret; |
| |
| cipher_unavailable_err: |
| OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block, |
| SSL_R_CIPHER_OR_HASH_UNAVAILABLE); |
| return 0; |
| } |
| |
| /* tls1_enc encrypts/decrypts the record in |s->wrec| / |s->rrec|, |
| * respectively. It returns one on success and zero on failure. */ |
| int tls1_enc(SSL *s, int send) { |
| SSL3_RECORD *rec; |
| const SSL_AEAD_CTX *aead; |
| |
| if (send) { |
| rec = &s->s3->wrec; |
| aead = s->aead_write_ctx; |
| } else { |
| rec = &s->s3->rrec; |
| aead = s->aead_read_ctx; |
| } |
| |
| if (aead == NULL) { |
| /* Handle the initial NULL cipher. */ |
| memmove(rec->data, rec->input, rec->length); |
| rec->input = rec->data; |
| return 1; |
| } |
| |
| uint8_t ad[13], *seq, *in, *out, nonce[EVP_AEAD_MAX_NONCE_LENGTH]; |
| unsigned nonce_used; |
| size_t n, ad_len; |
| |
| seq = send ? s->s3->write_sequence : s->s3->read_sequence; |
| |
| if (SSL_IS_DTLS(s)) { |
| uint8_t dtlsseq[9], *p = dtlsseq; |
| |
| s2n(send ? s->d1->w_epoch : s->d1->r_epoch, p); |
| memcpy(p, &seq[2], 6); |
| memcpy(ad, dtlsseq, 8); |
| } else { |
| memcpy(ad, seq, 8); |
| if (!ssl3_record_sequence_update(seq, 8)) { |
| return 0; |
| } |
| } |
| |
| ad[8] = rec->type; |
| ad_len = 9; |
| if (!aead->omit_version_in_ad) { |
| ad[ad_len++] = (uint8_t)(s->version >> 8); |
| ad[ad_len++] = (uint8_t)(s->version); |
| } |
| |
| if (aead->fixed_nonce_len + aead->variable_nonce_len > sizeof(nonce)) { |
| OPENSSL_PUT_ERROR(SSL, tls1_enc, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| |
| memcpy(nonce, aead->fixed_nonce, aead->fixed_nonce_len); |
| nonce_used = aead->fixed_nonce_len; |
| |
| if (send) { |
| size_t len = rec->length; |
| size_t eivlen = 0; |
| in = rec->input; |
| out = rec->data; |
| |
| uint8_t *variable_nonce = nonce + nonce_used; |
| if (aead->random_variable_nonce) { |
| assert(aead->variable_nonce_included_in_record); |
| if (!RAND_bytes(nonce + nonce_used, aead->variable_nonce_len)) { |
| return 0; |
| } |
| } else { |
| /* When sending we use the sequence number as the variable part of the |
| * nonce. */ |
| if (aead->variable_nonce_len != 8) { |
| OPENSSL_PUT_ERROR(SSL, tls1_enc, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| memcpy(nonce + nonce_used, ad, aead->variable_nonce_len); |
| } |
| nonce_used += aead->variable_nonce_len; |
| |
| /* in do_ssl3_write, rec->input is moved forward by variable_nonce_len in |
| * order to leave space for the variable nonce. Thus we can copy the |
| * sequence number bytes into place without overwriting any of the |
| * plaintext. */ |
| if (aead->variable_nonce_included_in_record) { |
| memcpy(out, variable_nonce, aead->variable_nonce_len); |
| len -= aead->variable_nonce_len; |
| eivlen = aead->variable_nonce_len; |
| } |
| |
| if (!aead->omit_length_in_ad) { |
| ad[ad_len++] = len >> 8; |
| ad[ad_len++] = len & 0xff; |
| } |
| |
| if (!EVP_AEAD_CTX_seal(&aead->ctx, out + eivlen, &n, len + aead->tag_len, |
| nonce, nonce_used, in + eivlen, len, ad, ad_len)) { |
| return 0; |
| } |
| |
| if (aead->variable_nonce_included_in_record) { |
| n += aead->variable_nonce_len; |
| } |
| } else { |
| /* receive */ |
| size_t len = rec->length; |
| |
| if (rec->data != rec->input) { |
| OPENSSL_PUT_ERROR(SSL, tls1_enc, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| out = in = rec->input; |
| |
| if (len < aead->variable_nonce_len) { |
| return 0; |
| } |
| memcpy(nonce + nonce_used, |
| aead->variable_nonce_included_in_record ? in : ad, |
| aead->variable_nonce_len); |
| nonce_used += aead->variable_nonce_len; |
| |
| if (aead->variable_nonce_included_in_record) { |
| in += aead->variable_nonce_len; |
| len -= aead->variable_nonce_len; |
| out += aead->variable_nonce_len; |
| } |
| |
| if (!aead->omit_length_in_ad) { |
| if (len < aead->tag_len) { |
| return 0; |
| } |
| size_t plaintext_len = len - aead->tag_len; |
| |
| ad[ad_len++] = plaintext_len >> 8; |
| ad[ad_len++] = plaintext_len & 0xff; |
| } |
| |
| if (!EVP_AEAD_CTX_open(&aead->ctx, out, &n, rec->length, nonce, nonce_used, in, |
| len, ad, ad_len)) { |
| return 0; |
| } |
| |
| rec->data = rec->input = out; |
| } |
| |
| rec->length = n; |
| return 1; |
| } |
| |
| int tls1_cert_verify_mac(SSL *s, int md_nid, uint8_t *out) { |
| unsigned int ret; |
| EVP_MD_CTX ctx, *d = NULL; |
| int i; |
| |
| if (s->s3->handshake_buffer && |
| !ssl3_digest_cached_records(s, free_handshake_buffer)) { |
| return 0; |
| } |
| |
| for (i = 0; i < SSL_MAX_DIGEST; i++) { |
| if (s->s3->handshake_dgst[i] && |
| EVP_MD_CTX_type(s->s3->handshake_dgst[i]) == md_nid) { |
| d = s->s3->handshake_dgst[i]; |
| break; |
| } |
| } |
| |
| if (!d) { |
| OPENSSL_PUT_ERROR(SSL, tls1_cert_verify_mac, SSL_R_NO_REQUIRED_DIGEST); |
| return 0; |
| } |
| |
| EVP_MD_CTX_init(&ctx); |
| if (!EVP_MD_CTX_copy_ex(&ctx, d)) { |
| EVP_MD_CTX_cleanup(&ctx); |
| return 0; |
| } |
| EVP_DigestFinal_ex(&ctx, out, &ret); |
| EVP_MD_CTX_cleanup(&ctx); |
| |
| return ret; |
| } |
| |
| /* tls1_handshake_digest calculates the current handshake hash and writes it to |
| * |out|, which has space for |out_len| bytes. It returns the number of bytes |
| * written or -1 in the event of an error. This function works on a copy of the |
| * underlying digests so can be called multiple times and prior to the final |
| * update etc. */ |
| int tls1_handshake_digest(SSL *s, uint8_t *out, size_t out_len) { |
| const EVP_MD *md; |
| EVP_MD_CTX ctx; |
| int err = 0, len = 0; |
| size_t i; |
| uint32_t mask; |
| |
| EVP_MD_CTX_init(&ctx); |
| |
| for (i = 0; ssl_get_handshake_digest(&mask, &md, i); i++) { |
| size_t hash_size; |
| unsigned int digest_len; |
| EVP_MD_CTX *hdgst = s->s3->handshake_dgst[i]; |
| |
| if ((mask & ssl_get_algorithm2(s)) == 0) { |
| continue; |
| } |
| |
| hash_size = EVP_MD_size(md); |
| if (!hdgst || |
| hash_size > out_len || |
| !EVP_MD_CTX_copy_ex(&ctx, hdgst) || |
| !EVP_DigestFinal_ex(&ctx, out, &digest_len) || |
| digest_len != hash_size /* internal error */) { |
| err = 1; |
| break; |
| } |
| |
| out += digest_len; |
| out_len -= digest_len; |
| len += digest_len; |
| } |
| |
| EVP_MD_CTX_cleanup(&ctx); |
| |
| if (err != 0) { |
| return -1; |
| } |
| return len; |
| } |
| |
| int tls1_final_finish_mac(SSL *s, const char *str, int slen, uint8_t *out) { |
| uint8_t buf[2 * EVP_MAX_MD_SIZE]; |
| int err = 0; |
| int digests_len; |
| |
| if (s->s3->handshake_buffer && |
| !ssl3_digest_cached_records(s, free_handshake_buffer)) { |
| return 0; |
| } |
| |
| digests_len = tls1_handshake_digest(s, buf, sizeof(buf)); |
| if (digests_len < 0) { |
| err = 1; |
| digests_len = 0; |
| } |
| |
| if (!s->enc_method->prf(s, out, 12, s->session->master_key, |
| s->session->master_key_length, str, slen, buf, |
| digests_len, NULL, 0)) { |
| err = 1; |
| } |
| |
| if (err) { |
| return 0; |
| } else { |
| return 12; |
| } |
| } |
| |
| int tls1_generate_master_secret(SSL *s, uint8_t *out, const uint8_t *premaster, |
| size_t premaster_len) { |
| if (s->s3->tmp.extended_master_secret) { |
| uint8_t digests[2 * EVP_MAX_MD_SIZE]; |
| int digests_len; |
| |
| /* The master secret is based on the handshake hash just after sending the |
| * ClientKeyExchange. However, we might have a client certificate to send, |
| * in which case we might need different hashes for the verification and |
| * thus still need the handshake buffer around. Keeping both a handshake |
| * buffer *and* running hashes isn't yet supported so, when it comes to |
| * calculating the Finished hash, we'll have to hash the handshake buffer |
| * again. */ |
| if (s->s3->handshake_buffer && |
| !ssl3_digest_cached_records(s, dont_free_handshake_buffer)) { |
| return 0; |
| } |
| |
| digests_len = tls1_handshake_digest(s, digests, sizeof(digests)); |
| if (digests_len == -1) { |
| return 0; |
| } |
| |
| if (!s->enc_method->prf(s, out, SSL3_MASTER_SECRET_SIZE, premaster, |
| premaster_len, TLS_MD_EXTENDED_MASTER_SECRET_CONST, |
| TLS_MD_EXTENDED_MASTER_SECRET_CONST_SIZE, digests, |
| digests_len, NULL, 0)) { |
| return 0; |
| } |
| } else { |
| if (!s->enc_method->prf(s, out, SSL3_MASTER_SECRET_SIZE, premaster, |
| premaster_len, TLS_MD_MASTER_SECRET_CONST, |
| TLS_MD_MASTER_SECRET_CONST_SIZE, |
| s->s3->client_random, SSL3_RANDOM_SIZE, |
| s->s3->server_random, SSL3_RANDOM_SIZE)) { |
| return 0; |
| } |
| } |
| |
| return SSL3_MASTER_SECRET_SIZE; |
| } |
| |
| int tls1_export_keying_material(SSL *s, uint8_t *out, size_t out_len, |
| const char *label, size_t label_len, |
| const uint8_t *context, size_t context_len, |
| int use_context) { |
| size_t seed_len = 2 * SSL3_RANDOM_SIZE; |
| if (use_context) { |
| if (context_len >= 1u << 16) { |
| OPENSSL_PUT_ERROR(SSL, tls1_export_keying_material, ERR_R_OVERFLOW); |
| return 0; |
| } |
| seed_len += 2 + context_len; |
| } |
| uint8_t *seed = OPENSSL_malloc(seed_len); |
| if (seed == NULL) { |
| OPENSSL_PUT_ERROR(SSL, tls1_export_keying_material, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| |
| memcpy(seed, s->s3->client_random, SSL3_RANDOM_SIZE); |
| memcpy(seed + SSL3_RANDOM_SIZE, s->s3->server_random, SSL3_RANDOM_SIZE); |
| if (use_context) { |
| seed[2 * SSL3_RANDOM_SIZE] = (uint8_t)(context_len >> 8); |
| seed[2 * SSL3_RANDOM_SIZE + 1] = (uint8_t)context_len; |
| memcpy(seed + 2 * SSL3_RANDOM_SIZE + 2, context, context_len); |
| } |
| |
| int ret = s->enc_method->prf(s, out, out_len, s->session->master_key, |
| s->session->master_key_length, label, label_len, |
| seed, seed_len, NULL, 0); |
| OPENSSL_free(seed); |
| return ret; |
| } |
| |
| int tls1_alert_code(int code) { |
| switch (code) { |
| case SSL_AD_CLOSE_NOTIFY: |
| return SSL3_AD_CLOSE_NOTIFY; |
| |
| case SSL_AD_UNEXPECTED_MESSAGE: |
| return SSL3_AD_UNEXPECTED_MESSAGE; |
| |
| case SSL_AD_BAD_RECORD_MAC: |
| return SSL3_AD_BAD_RECORD_MAC; |
| |
| case SSL_AD_DECRYPTION_FAILED: |
| return TLS1_AD_DECRYPTION_FAILED; |
| |
| case SSL_AD_RECORD_OVERFLOW: |
| return TLS1_AD_RECORD_OVERFLOW; |
| |
| case SSL_AD_DECOMPRESSION_FAILURE: |
| return SSL3_AD_DECOMPRESSION_FAILURE; |
| |
| case SSL_AD_HANDSHAKE_FAILURE: |
| return SSL3_AD_HANDSHAKE_FAILURE; |
| |
| case SSL_AD_NO_CERTIFICATE: |
| return -1; |
| |
| case SSL_AD_BAD_CERTIFICATE: |
| return SSL3_AD_BAD_CERTIFICATE; |
| |
| case SSL_AD_UNSUPPORTED_CERTIFICATE: |
| return SSL3_AD_UNSUPPORTED_CERTIFICATE; |
| |
| case SSL_AD_CERTIFICATE_REVOKED: |
| return SSL3_AD_CERTIFICATE_REVOKED; |
| |
| case SSL_AD_CERTIFICATE_EXPIRED: |
| return SSL3_AD_CERTIFICATE_EXPIRED; |
| |
| case SSL_AD_CERTIFICATE_UNKNOWN: |
| return SSL3_AD_CERTIFICATE_UNKNOWN; |
| |
| case SSL_AD_ILLEGAL_PARAMETER: |
| return SSL3_AD_ILLEGAL_PARAMETER; |
| |
| case SSL_AD_UNKNOWN_CA: |
| return TLS1_AD_UNKNOWN_CA; |
| |
| case SSL_AD_ACCESS_DENIED: |
| return TLS1_AD_ACCESS_DENIED; |
| |
| case SSL_AD_DECODE_ERROR: |
| return TLS1_AD_DECODE_ERROR; |
| |
| case SSL_AD_DECRYPT_ERROR: |
| return TLS1_AD_DECRYPT_ERROR; |
| case SSL_AD_EXPORT_RESTRICTION: |
| return TLS1_AD_EXPORT_RESTRICTION; |
| |
| case SSL_AD_PROTOCOL_VERSION: |
| return TLS1_AD_PROTOCOL_VERSION; |
| |
| case SSL_AD_INSUFFICIENT_SECURITY: |
| return TLS1_AD_INSUFFICIENT_SECURITY; |
| |
| case SSL_AD_INTERNAL_ERROR: |
| return TLS1_AD_INTERNAL_ERROR; |
| |
| case SSL_AD_USER_CANCELLED: |
| return TLS1_AD_USER_CANCELLED; |
| |
| case SSL_AD_NO_RENEGOTIATION: |
| return TLS1_AD_NO_RENEGOTIATION; |
| |
| case SSL_AD_UNSUPPORTED_EXTENSION: |
| return TLS1_AD_UNSUPPORTED_EXTENSION; |
| |
| case SSL_AD_CERTIFICATE_UNOBTAINABLE: |
| return TLS1_AD_CERTIFICATE_UNOBTAINABLE; |
| |
| case SSL_AD_UNRECOGNIZED_NAME: |
| return TLS1_AD_UNRECOGNIZED_NAME; |
| |
| case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE: |
| return TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE; |
| |
| case SSL_AD_BAD_CERTIFICATE_HASH_VALUE: |
| return TLS1_AD_BAD_CERTIFICATE_HASH_VALUE; |
| |
| case SSL_AD_UNKNOWN_PSK_IDENTITY: |
| return TLS1_AD_UNKNOWN_PSK_IDENTITY; |
| |
| case SSL_AD_INAPPROPRIATE_FALLBACK: |
| return SSL3_AD_INAPPROPRIATE_FALLBACK; |
| |
| default: |
| return -1; |
| } |
| } |