|  | // Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include <openssl/stack.h> | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <limits.h> | 
|  |  | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/mem.h> | 
|  |  | 
|  | #include "../internal.h" | 
|  |  | 
|  |  | 
|  | struct stack_st { | 
|  | // num contains the number of valid pointers in |data|. | 
|  | size_t num; | 
|  | void **data; | 
|  | // sorted is non-zero if the values pointed to by |data| are in ascending | 
|  | // order, based on |comp|. | 
|  | int sorted; | 
|  | // num_alloc contains the number of pointers allocated in the buffer pointed | 
|  | // to by |data|, which may be larger than |num|. | 
|  | size_t num_alloc; | 
|  | // comp is an optional comparison function. | 
|  | OPENSSL_sk_cmp_func comp; | 
|  | }; | 
|  |  | 
|  | // kMinSize is the number of pointers that will be initially allocated in a new | 
|  | // stack. | 
|  | static const size_t kMinSize = 4; | 
|  |  | 
|  | OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_cmp_func comp) { | 
|  | OPENSSL_STACK *ret = | 
|  | reinterpret_cast<OPENSSL_STACK *>(OPENSSL_zalloc(sizeof(OPENSSL_STACK))); | 
|  | if (ret == NULL) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | ret->data = | 
|  | reinterpret_cast<void **>(OPENSSL_calloc(kMinSize, sizeof(void *))); | 
|  | if (ret->data == NULL) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ret->comp = comp; | 
|  | ret->num_alloc = kMinSize; | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | err: | 
|  | OPENSSL_free(ret); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | OPENSSL_STACK *OPENSSL_sk_new_null(void) { return OPENSSL_sk_new(NULL); } | 
|  |  | 
|  | size_t OPENSSL_sk_num(const OPENSSL_STACK *sk) { | 
|  | if (sk == NULL) { | 
|  | return 0; | 
|  | } | 
|  | return sk->num; | 
|  | } | 
|  |  | 
|  | void OPENSSL_sk_zero(OPENSSL_STACK *sk) { | 
|  | if (sk == NULL || sk->num == 0) { | 
|  | return; | 
|  | } | 
|  | OPENSSL_memset(sk->data, 0, sizeof(void *) * sk->num); | 
|  | sk->num = 0; | 
|  | sk->sorted = 0; | 
|  | } | 
|  |  | 
|  | void *OPENSSL_sk_value(const OPENSSL_STACK *sk, size_t i) { | 
|  | if (!sk || i >= sk->num) { | 
|  | return NULL; | 
|  | } | 
|  | return sk->data[i]; | 
|  | } | 
|  |  | 
|  | void *OPENSSL_sk_set(OPENSSL_STACK *sk, size_t i, void *value) { | 
|  | if (!sk || i >= sk->num) { | 
|  | return NULL; | 
|  | } | 
|  | return sk->data[i] = value; | 
|  | } | 
|  |  | 
|  | void OPENSSL_sk_free(OPENSSL_STACK *sk) { | 
|  | if (sk == NULL) { | 
|  | return; | 
|  | } | 
|  | OPENSSL_free(sk->data); | 
|  | OPENSSL_free(sk); | 
|  | } | 
|  |  | 
|  | void OPENSSL_sk_pop_free_ex(OPENSSL_STACK *sk, | 
|  | OPENSSL_sk_call_free_func call_free_func, | 
|  | OPENSSL_sk_free_func free_func) { | 
|  | if (sk == NULL) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < sk->num; i++) { | 
|  | if (sk->data[i] != NULL) { | 
|  | call_free_func(free_func, sk->data[i]); | 
|  | } | 
|  | } | 
|  | OPENSSL_sk_free(sk); | 
|  | } | 
|  |  | 
|  | // Historically, |sk_pop_free| called the function as |OPENSSL_sk_free_func| | 
|  | // directly. This is undefined in C. Some callers called |sk_pop_free| directly, | 
|  | // so we must maintain a compatibility version for now. | 
|  | static void call_free_func_legacy(OPENSSL_sk_free_func func, void *ptr) { | 
|  | func(ptr); | 
|  | } | 
|  |  | 
|  | void sk_pop_free(OPENSSL_STACK *sk, OPENSSL_sk_free_func free_func) { | 
|  | OPENSSL_sk_pop_free_ex(sk, call_free_func_legacy, free_func); | 
|  | } | 
|  |  | 
|  | size_t OPENSSL_sk_insert(OPENSSL_STACK *sk, void *p, size_t where) { | 
|  | if (sk == NULL) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (sk->num >= INT_MAX) { | 
|  | OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (sk->num_alloc <= sk->num + 1) { | 
|  | // Attempt to double the size of the array. | 
|  | size_t new_alloc = sk->num_alloc << 1; | 
|  | size_t alloc_size = new_alloc * sizeof(void *); | 
|  | void **data; | 
|  |  | 
|  | // If the doubling overflowed, try to increment. | 
|  | if (new_alloc < sk->num_alloc || alloc_size / sizeof(void *) != new_alloc) { | 
|  | new_alloc = sk->num_alloc + 1; | 
|  | alloc_size = new_alloc * sizeof(void *); | 
|  | } | 
|  |  | 
|  | // If the increment also overflowed, fail. | 
|  | if (new_alloc < sk->num_alloc || alloc_size / sizeof(void *) != new_alloc) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | data = reinterpret_cast<void **>(OPENSSL_realloc(sk->data, alloc_size)); | 
|  | if (data == NULL) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | sk->data = data; | 
|  | sk->num_alloc = new_alloc; | 
|  | } | 
|  |  | 
|  | if (where >= sk->num) { | 
|  | sk->data[sk->num] = p; | 
|  | } else { | 
|  | OPENSSL_memmove(&sk->data[where + 1], &sk->data[where], | 
|  | sizeof(void *) * (sk->num - where)); | 
|  | sk->data[where] = p; | 
|  | } | 
|  |  | 
|  | sk->num++; | 
|  | sk->sorted = 0; | 
|  |  | 
|  | return sk->num; | 
|  | } | 
|  |  | 
|  | void *OPENSSL_sk_delete(OPENSSL_STACK *sk, size_t where) { | 
|  | void *ret; | 
|  |  | 
|  | if (!sk || where >= sk->num) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | ret = sk->data[where]; | 
|  |  | 
|  | if (where != sk->num - 1) { | 
|  | OPENSSL_memmove(&sk->data[where], &sk->data[where + 1], | 
|  | sizeof(void *) * (sk->num - where - 1)); | 
|  | } | 
|  |  | 
|  | sk->num--; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *sk, const void *p) { | 
|  | if (sk == NULL) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < sk->num; i++) { | 
|  | if (sk->data[i] == p) { | 
|  | return OPENSSL_sk_delete(sk, i); | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void OPENSSL_sk_delete_if(OPENSSL_STACK *sk, | 
|  | OPENSSL_sk_call_delete_if_func call_func, | 
|  | OPENSSL_sk_delete_if_func func, void *data) { | 
|  | if (sk == NULL) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | size_t new_num = 0; | 
|  | for (size_t i = 0; i < sk->num; i++) { | 
|  | if (!call_func(func, sk->data[i], data)) { | 
|  | sk->data[new_num] = sk->data[i]; | 
|  | new_num++; | 
|  | } | 
|  | } | 
|  | sk->num = new_num; | 
|  | } | 
|  |  | 
|  | int OPENSSL_sk_find(const OPENSSL_STACK *sk, size_t *out_index, const void *p, | 
|  | OPENSSL_sk_call_cmp_func call_cmp_func) { | 
|  | if (sk == NULL) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (sk->comp == NULL) { | 
|  | // Use pointer equality when no comparison function has been set. | 
|  | for (size_t i = 0; i < sk->num; i++) { | 
|  | if (sk->data[i] == p) { | 
|  | if (out_index) { | 
|  | *out_index = i; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (p == NULL) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!OPENSSL_sk_is_sorted(sk)) { | 
|  | for (size_t i = 0; i < sk->num; i++) { | 
|  | if (call_cmp_func(sk->comp, p, sk->data[i]) == 0) { | 
|  | if (out_index) { | 
|  | *out_index = i; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // The stack is sorted, so binary search to find the element. | 
|  | // | 
|  | // |lo| and |hi| maintain a half-open interval of where the answer may be. All | 
|  | // indices such that |lo <= idx < hi| are candidates. | 
|  | size_t lo = 0, hi = sk->num; | 
|  | while (lo < hi) { | 
|  | // Bias |mid| towards |lo|. See the |r == 0| case below. | 
|  | size_t mid = lo + (hi - lo - 1) / 2; | 
|  | assert(lo <= mid && mid < hi); | 
|  | int r = call_cmp_func(sk->comp, p, sk->data[mid]); | 
|  | if (r > 0) { | 
|  | lo = mid + 1;  // |mid| is too low. | 
|  | } else if (r < 0) { | 
|  | hi = mid;  // |mid| is too high. | 
|  | } else { | 
|  | // |mid| matches. However, this function returns the earliest match, so we | 
|  | // can only return if the range has size one. | 
|  | if (hi - lo == 1) { | 
|  | if (out_index != NULL) { | 
|  | *out_index = mid; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | // The sample is biased towards |lo|. |mid| can only be |hi - 1| if | 
|  | // |hi - lo| was one, so this makes forward progress. | 
|  | assert(mid + 1 < hi); | 
|  | hi = mid + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(lo == hi); | 
|  | return 0;  // Not found. | 
|  | } | 
|  |  | 
|  | void *OPENSSL_sk_shift(OPENSSL_STACK *sk) { | 
|  | if (sk == NULL) { | 
|  | return NULL; | 
|  | } | 
|  | if (sk->num == 0) { | 
|  | return NULL; | 
|  | } | 
|  | return OPENSSL_sk_delete(sk, 0); | 
|  | } | 
|  |  | 
|  | size_t OPENSSL_sk_push(OPENSSL_STACK *sk, void *p) { | 
|  | return OPENSSL_sk_insert(sk, p, sk->num); | 
|  | } | 
|  |  | 
|  | void *OPENSSL_sk_pop(OPENSSL_STACK *sk) { | 
|  | if (sk == NULL) { | 
|  | return NULL; | 
|  | } | 
|  | if (sk->num == 0) { | 
|  | return NULL; | 
|  | } | 
|  | return OPENSSL_sk_delete(sk, sk->num - 1); | 
|  | } | 
|  |  | 
|  | OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk) { | 
|  | if (sk == NULL) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | OPENSSL_STACK *ret = | 
|  | reinterpret_cast<OPENSSL_STACK *>(OPENSSL_zalloc(sizeof(OPENSSL_STACK))); | 
|  | if (ret == NULL) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | ret->data = reinterpret_cast<void **>( | 
|  | OPENSSL_memdup(sk->data, sizeof(void *) * sk->num_alloc)); | 
|  | if (ret->data == NULL) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ret->num = sk->num; | 
|  | ret->sorted = sk->sorted; | 
|  | ret->num_alloc = sk->num_alloc; | 
|  | ret->comp = sk->comp; | 
|  | return ret; | 
|  |  | 
|  | err: | 
|  | OPENSSL_sk_free(ret); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static size_t parent_idx(size_t idx) { | 
|  | assert(idx > 0); | 
|  | return (idx - 1) / 2; | 
|  | } | 
|  |  | 
|  | static size_t left_idx(size_t idx) { | 
|  | // The largest possible index is |PTRDIFF_MAX|, not |SIZE_MAX|. If | 
|  | // |ptrdiff_t|, a signed type, is the same size as |size_t|, this cannot | 
|  | // overflow. | 
|  | assert(idx <= PTRDIFF_MAX); | 
|  | static_assert(PTRDIFF_MAX <= (SIZE_MAX - 1) / 2, "2 * idx + 1 may oveflow"); | 
|  | return 2 * idx + 1; | 
|  | } | 
|  |  | 
|  | // down_heap fixes the subtree rooted at |i|. |i|'s children must each satisfy | 
|  | // the heap property. Only the first |num| elements of |sk| are considered. | 
|  | static void down_heap(OPENSSL_STACK *sk, OPENSSL_sk_call_cmp_func call_cmp_func, | 
|  | size_t i, size_t num) { | 
|  | assert(i < num && num <= sk->num); | 
|  | for (;;) { | 
|  | size_t left = left_idx(i); | 
|  | if (left >= num) { | 
|  | break;  // No left child. | 
|  | } | 
|  |  | 
|  | // Swap |i| with the largest of its children. | 
|  | size_t next = i; | 
|  | if (call_cmp_func(sk->comp, sk->data[next], sk->data[left]) < 0) { | 
|  | next = left; | 
|  | } | 
|  | size_t right = left + 1;  // Cannot overflow because |left < num|. | 
|  | if (right < num && | 
|  | call_cmp_func(sk->comp, sk->data[next], sk->data[right]) < 0) { | 
|  | next = right; | 
|  | } | 
|  |  | 
|  | if (i == next) { | 
|  | break;  // |i| is already larger than its children. | 
|  | } | 
|  |  | 
|  | void *tmp = sk->data[i]; | 
|  | sk->data[i] = sk->data[next]; | 
|  | sk->data[next] = tmp; | 
|  | i = next; | 
|  | } | 
|  | } | 
|  |  | 
|  | void OPENSSL_sk_sort(OPENSSL_STACK *sk, | 
|  | OPENSSL_sk_call_cmp_func call_cmp_func) { | 
|  | if (sk == NULL || sk->comp == NULL || sk->sorted) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (sk->num >= 2) { | 
|  | // |qsort| lacks a context parameter in the comparison function for us to | 
|  | // pass in |call_cmp_func| and |sk->comp|. While we could cast |sk->comp| to | 
|  | // the expected type, it is undefined behavior in C can trip sanitizers. | 
|  | // |qsort_r| and |qsort_s| avoid this, but using them is impractical. See | 
|  | // https://stackoverflow.com/a/39561369 | 
|  | // | 
|  | // Use our own heap sort instead. This is not performance-sensitive, so we | 
|  | // optimize for simplicity and size. First, build a max-heap in place. | 
|  | for (size_t i = parent_idx(sk->num - 1); i < sk->num; i--) { | 
|  | down_heap(sk, call_cmp_func, i, sk->num); | 
|  | } | 
|  |  | 
|  | // Iteratively remove the maximum element to populate the result in reverse. | 
|  | for (size_t i = sk->num - 1; i > 0; i--) { | 
|  | void *tmp = sk->data[0]; | 
|  | sk->data[0] = sk->data[i]; | 
|  | sk->data[i] = tmp; | 
|  | down_heap(sk, call_cmp_func, 0, i); | 
|  | } | 
|  | } | 
|  | sk->sorted = 1; | 
|  | } | 
|  |  | 
|  | int OPENSSL_sk_is_sorted(const OPENSSL_STACK *sk) { | 
|  | if (!sk) { | 
|  | return 1; | 
|  | } | 
|  | // Zero- and one-element lists are always sorted. | 
|  | return sk->sorted || (sk->comp != NULL && sk->num < 2); | 
|  | } | 
|  |  | 
|  | OPENSSL_sk_cmp_func OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk, | 
|  | OPENSSL_sk_cmp_func comp) { | 
|  | OPENSSL_sk_cmp_func old = sk->comp; | 
|  |  | 
|  | if (sk->comp != comp) { | 
|  | sk->sorted = 0; | 
|  | } | 
|  | sk->comp = comp; | 
|  |  | 
|  | return old; | 
|  | } | 
|  |  | 
|  | OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk, | 
|  | OPENSSL_sk_call_copy_func call_copy_func, | 
|  | OPENSSL_sk_copy_func copy_func, | 
|  | OPENSSL_sk_call_free_func call_free_func, | 
|  | OPENSSL_sk_free_func free_func) { | 
|  | OPENSSL_STACK *ret = OPENSSL_sk_dup(sk); | 
|  | if (ret == NULL) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < ret->num; i++) { | 
|  | if (ret->data[i] == NULL) { | 
|  | continue; | 
|  | } | 
|  | ret->data[i] = call_copy_func(copy_func, ret->data[i]); | 
|  | if (ret->data[i] == NULL) { | 
|  | for (size_t j = 0; j < i; j++) { | 
|  | if (ret->data[j] != NULL) { | 
|  | call_free_func(free_func, ret->data[j]); | 
|  | } | 
|  | } | 
|  | OPENSSL_sk_free(ret); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | OPENSSL_STACK *sk_new_null(void) { return OPENSSL_sk_new_null(); } | 
|  |  | 
|  | size_t sk_num(const OPENSSL_STACK *sk) { return OPENSSL_sk_num(sk); } | 
|  |  | 
|  | void *sk_value(const OPENSSL_STACK *sk, size_t i) { | 
|  | return OPENSSL_sk_value(sk, i); | 
|  | } | 
|  |  | 
|  | void sk_free(OPENSSL_STACK *sk) { OPENSSL_sk_free(sk); } | 
|  |  | 
|  | size_t sk_push(OPENSSL_STACK *sk, void *p) { return OPENSSL_sk_push(sk, p); } | 
|  |  | 
|  | void *sk_pop(OPENSSL_STACK *sk) { return OPENSSL_sk_pop(sk); } | 
|  |  | 
|  | void sk_pop_free_ex(OPENSSL_STACK *sk, OPENSSL_sk_call_free_func call_free_func, | 
|  | OPENSSL_sk_free_func free_func) { | 
|  | OPENSSL_sk_pop_free_ex(sk, call_free_func, free_func); | 
|  | } |