| /* | 
 |  * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. | 
 |  * | 
 |  * Licensed under the OpenSSL license (the "License").  You may not use | 
 |  * this file except in compliance with the License.  You can obtain a copy | 
 |  * in the file LICENSE in the source distribution or at | 
 |  * https://www.openssl.org/source/license.html | 
 |  */ | 
 |  | 
 | #include <openssl/ssl.h> | 
 |  | 
 | #include <assert.h> | 
 | #include <limits.h> | 
 |  | 
 | #include <algorithm> | 
 |  | 
 | #include <openssl/ec.h> | 
 | #include <openssl/ec_key.h> | 
 | #include <openssl/err.h> | 
 | #include <openssl/evp.h> | 
 | #include <openssl/mem.h> | 
 | #include <openssl/span.h> | 
 |  | 
 | #include "../crypto/internal.h" | 
 | #include "internal.h" | 
 |  | 
 |  | 
 | BSSL_NAMESPACE_BEGIN | 
 |  | 
 | bool ssl_is_key_type_supported(int key_type) { | 
 |   return key_type == EVP_PKEY_RSA || key_type == EVP_PKEY_EC || | 
 |          key_type == EVP_PKEY_ED25519; | 
 | } | 
 |  | 
 | typedef struct { | 
 |   uint16_t sigalg; | 
 |   int pkey_type; | 
 |   int curve; | 
 |   const EVP_MD *(*digest_func)(void); | 
 |   bool is_rsa_pss; | 
 |   bool tls12_ok; | 
 |   bool tls13_ok; | 
 |   bool client_only; | 
 | } SSL_SIGNATURE_ALGORITHM; | 
 |  | 
 | static const SSL_SIGNATURE_ALGORITHM kSignatureAlgorithms[] = { | 
 |     // PKCS#1 v1.5 code points are only allowed in TLS 1.2. | 
 |     {SSL_SIGN_RSA_PKCS1_MD5_SHA1, EVP_PKEY_RSA, NID_undef, &EVP_md5_sha1, | 
 |      /*is_rsa_pss=*/false, /*tls12_ok=*/true, /*tls13_ok=*/false, | 
 |      /*client_only=*/false}, | 
 |     {SSL_SIGN_RSA_PKCS1_SHA1, EVP_PKEY_RSA, NID_undef, &EVP_sha1, | 
 |      /*is_rsa_pss=*/false, /*tls12_ok=*/true, /*tls13_ok=*/false, | 
 |      /*client_only=*/false}, | 
 |     {SSL_SIGN_RSA_PKCS1_SHA256, EVP_PKEY_RSA, NID_undef, &EVP_sha256, | 
 |      /*is_rsa_pss=*/false, /*tls12_ok=*/true, /*tls13_ok=*/false, | 
 |      /*client_only=*/false}, | 
 |     {SSL_SIGN_RSA_PKCS1_SHA384, EVP_PKEY_RSA, NID_undef, &EVP_sha384, | 
 |      /*is_rsa_pss=*/false, /*tls12_ok=*/true, /*tls13_ok=*/false, | 
 |      /*client_only=*/false}, | 
 |     {SSL_SIGN_RSA_PKCS1_SHA512, EVP_PKEY_RSA, NID_undef, &EVP_sha512, | 
 |      /*is_rsa_pss=*/false, /*tls12_ok=*/true, /*tls13_ok=*/false, | 
 |      /*client_only=*/false}, | 
 |  | 
 |     // Legacy PKCS#1 v1.5 code points are only allowed in TLS 1.3 and | 
 |     // client-only. See draft-ietf-tls-tls13-pkcs1-00. | 
 |     {SSL_SIGN_RSA_PKCS1_SHA256_LEGACY, EVP_PKEY_RSA, NID_undef, &EVP_sha256, | 
 |      /*is_rsa_pss=*/false, /*tls12_ok=*/false, /*tls13_ok=*/true, | 
 |      /*client_only=*/true}, | 
 |  | 
 |     {SSL_SIGN_RSA_PSS_RSAE_SHA256, EVP_PKEY_RSA, NID_undef, &EVP_sha256, | 
 |      /*is_rsa_pss=*/true, /*tls12_ok=*/true, /*tls13_ok=*/true, | 
 |      /*client_only=*/false}, | 
 |     {SSL_SIGN_RSA_PSS_RSAE_SHA384, EVP_PKEY_RSA, NID_undef, &EVP_sha384, | 
 |      /*is_rsa_pss=*/true, /*tls12_ok=*/true, /*tls13_ok=*/true, | 
 |      /*client_only=*/false}, | 
 |     {SSL_SIGN_RSA_PSS_RSAE_SHA512, EVP_PKEY_RSA, NID_undef, &EVP_sha512, | 
 |      /*is_rsa_pss=*/true, /*tls12_ok=*/true, /*tls13_ok=*/true, | 
 |      /*client_only=*/false}, | 
 |  | 
 |     {SSL_SIGN_ECDSA_SHA1, EVP_PKEY_EC, NID_undef, &EVP_sha1, | 
 |      /*is_rsa_pss=*/false, /*tls12_ok=*/true, /*tls13_ok=*/false, | 
 |      /*client_only=*/false}, | 
 |     {SSL_SIGN_ECDSA_SECP256R1_SHA256, EVP_PKEY_EC, NID_X9_62_prime256v1, | 
 |      &EVP_sha256, /*is_rsa_pss=*/false, /*tls12_ok=*/true, /*tls13_ok=*/true, | 
 |      /*client_only=*/false}, | 
 |     {SSL_SIGN_ECDSA_SECP384R1_SHA384, EVP_PKEY_EC, NID_secp384r1, &EVP_sha384, | 
 |      /*is_rsa_pss=*/false, /*tls12_ok=*/true, /*tls13_ok=*/true, | 
 |      /*client_only=*/false}, | 
 |     {SSL_SIGN_ECDSA_SECP521R1_SHA512, EVP_PKEY_EC, NID_secp521r1, &EVP_sha512, | 
 |      /*is_rsa_pss=*/false, /*tls12_ok=*/true, /*tls13_ok=*/true, | 
 |      /*client_only=*/false}, | 
 |  | 
 |     {SSL_SIGN_ED25519, EVP_PKEY_ED25519, NID_undef, nullptr, | 
 |      /*is_rsa_pss=*/false, /*tls12_ok=*/true, /*tls13_ok=*/true, | 
 |      /*client_only=*/false}, | 
 | }; | 
 |  | 
 | static const SSL_SIGNATURE_ALGORITHM *get_signature_algorithm(uint16_t sigalg) { | 
 |   for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kSignatureAlgorithms); i++) { | 
 |     if (kSignatureAlgorithms[i].sigalg == sigalg) { | 
 |       return &kSignatureAlgorithms[i]; | 
 |     } | 
 |   } | 
 |   return NULL; | 
 | } | 
 |  | 
 | bool ssl_pkey_supports_algorithm(const SSL *ssl, EVP_PKEY *pkey, | 
 |                                  uint16_t sigalg, bool is_verify) { | 
 |   const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg); | 
 |   if (alg == NULL || EVP_PKEY_id(pkey) != alg->pkey_type) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Ensure the RSA key is large enough for the hash. RSASSA-PSS requires that | 
 |   // emLen be at least hLen + sLen + 2. Both hLen and sLen are the size of the | 
 |   // hash in TLS. Reasonable RSA key sizes are large enough for the largest | 
 |   // defined RSASSA-PSS algorithm, but 1024-bit RSA is slightly too small for | 
 |   // SHA-512. 1024-bit RSA is sometimes used for test credentials, so check the | 
 |   // size so that we can fall back to another algorithm in that case. | 
 |   if (alg->is_rsa_pss && | 
 |       (size_t)EVP_PKEY_size(pkey) < 2 * EVP_MD_size(alg->digest_func()) + 2) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (ssl_protocol_version(ssl) < TLS1_2_VERSION) { | 
 |     // TLS 1.0 and 1.1 do not negotiate algorithms and always sign one of two | 
 |     // hardcoded algorithms. | 
 |     return sigalg == SSL_SIGN_RSA_PKCS1_MD5_SHA1 || | 
 |            sigalg == SSL_SIGN_ECDSA_SHA1; | 
 |   } | 
 |  | 
 |   // |SSL_SIGN_RSA_PKCS1_MD5_SHA1| is not a real SignatureScheme for TLS 1.2 and | 
 |   // higher. It is an internal value we use to represent TLS 1.0/1.1's MD5/SHA1 | 
 |   // concatenation. | 
 |   if (sigalg == SSL_SIGN_RSA_PKCS1_MD5_SHA1) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) { | 
 |     if (!alg->tls13_ok) { | 
 |       return false; | 
 |     } | 
 |  | 
 |     bool is_client_sign = ssl->server == is_verify; | 
 |     if (alg->client_only && !is_client_sign) { | 
 |       return false; | 
 |     } | 
 |  | 
 |     // EC keys have a curve requirement. | 
 |     if (alg->pkey_type == EVP_PKEY_EC && | 
 |         (alg->curve == NID_undef || | 
 |          EC_GROUP_get_curve_name( | 
 |              EC_KEY_get0_group(EVP_PKEY_get0_EC_KEY(pkey))) != alg->curve)) { | 
 |       return false; | 
 |     } | 
 |   } else if (!alg->tls12_ok) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | static bool setup_ctx(SSL *ssl, EVP_MD_CTX *ctx, EVP_PKEY *pkey, | 
 |                       uint16_t sigalg, bool is_verify) { | 
 |   if (!ssl_pkey_supports_algorithm(ssl, pkey, sigalg, is_verify)) { | 
 |     OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE); | 
 |     return false; | 
 |   } | 
 |  | 
 |   const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg); | 
 |   const EVP_MD *digest = alg->digest_func != NULL ? alg->digest_func() : NULL; | 
 |   EVP_PKEY_CTX *pctx; | 
 |   if (is_verify) { | 
 |     if (!EVP_DigestVerifyInit(ctx, &pctx, digest, NULL, pkey)) { | 
 |       return false; | 
 |     } | 
 |   } else if (!EVP_DigestSignInit(ctx, &pctx, digest, NULL, pkey)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (alg->is_rsa_pss) { | 
 |     if (!EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) || | 
 |         !EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, -1 /* salt len = hash len */)) { | 
 |       return false; | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | enum ssl_private_key_result_t ssl_private_key_sign( | 
 |     SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, size_t max_out, | 
 |     uint16_t sigalg, Span<const uint8_t> in) { | 
 |   SSL *const ssl = hs->ssl; | 
 |   const SSL_CREDENTIAL *const cred = hs->credential.get(); | 
 |   SSL_HANDSHAKE_HINTS *const hints = hs->hints.get(); | 
 |   Array<uint8_t> spki; | 
 |   if (hints) { | 
 |     ScopedCBB spki_cbb; | 
 |     if (!CBB_init(spki_cbb.get(), 64) || | 
 |         !EVP_marshal_public_key(spki_cbb.get(), cred->pubkey.get()) || | 
 |         !CBBFinishArray(spki_cbb.get(), &spki)) { | 
 |       ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); | 
 |       return ssl_private_key_failure; | 
 |     } | 
 |   } | 
 |  | 
 |   // Replay the signature from handshake hints if available. | 
 |   if (hints && !hs->hints_requested &&         // | 
 |       sigalg == hints->signature_algorithm &&  // | 
 |       in == hints->signature_input &&          // | 
 |       Span(spki) == hints->signature_spki &&   // | 
 |       !hints->signature.empty() &&             // | 
 |       hints->signature.size() <= max_out) { | 
 |     // Signature algorithm and input both match. Reuse the signature from hints. | 
 |     *out_len = hints->signature.size(); | 
 |     OPENSSL_memcpy(out, hints->signature.data(), hints->signature.size()); | 
 |     return ssl_private_key_success; | 
 |   } | 
 |  | 
 |   const SSL_PRIVATE_KEY_METHOD *key_method = cred->key_method; | 
 |   EVP_PKEY *privkey = cred->privkey.get(); | 
 |   assert(!hs->can_release_private_key); | 
 |  | 
 |   if (key_method != NULL) { | 
 |     enum ssl_private_key_result_t ret; | 
 |     if (hs->pending_private_key_op) { | 
 |       ret = key_method->complete(ssl, out, out_len, max_out); | 
 |     } else { | 
 |       ret = key_method->sign(ssl, out, out_len, max_out, sigalg, in.data(), | 
 |                              in.size()); | 
 |     } | 
 |     if (ret == ssl_private_key_failure) { | 
 |       OPENSSL_PUT_ERROR(SSL, SSL_R_PRIVATE_KEY_OPERATION_FAILED); | 
 |     } | 
 |     hs->pending_private_key_op = ret == ssl_private_key_retry; | 
 |     if (ret != ssl_private_key_success) { | 
 |       return ret; | 
 |     } | 
 |   } else { | 
 |     *out_len = max_out; | 
 |     ScopedEVP_MD_CTX ctx; | 
 |     if (!setup_ctx(ssl, ctx.get(), privkey, sigalg, false /* sign */) || | 
 |         !EVP_DigestSign(ctx.get(), out, out_len, in.data(), in.size())) { | 
 |       return ssl_private_key_failure; | 
 |     } | 
 |   } | 
 |  | 
 |   // Save the hint if applicable. | 
 |   if (hints && hs->hints_requested) { | 
 |     hints->signature_algorithm = sigalg; | 
 |     hints->signature_spki = std::move(spki); | 
 |     if (!hints->signature_input.CopyFrom(in) || | 
 |         !hints->signature.CopyFrom(Span(out, *out_len))) { | 
 |       return ssl_private_key_failure; | 
 |     } | 
 |   } | 
 |   return ssl_private_key_success; | 
 | } | 
 |  | 
 | bool ssl_public_key_verify(SSL *ssl, Span<const uint8_t> signature, | 
 |                            uint16_t sigalg, EVP_PKEY *pkey, | 
 |                            Span<const uint8_t> in) { | 
 |   ScopedEVP_MD_CTX ctx; | 
 |   if (!setup_ctx(ssl, ctx.get(), pkey, sigalg, true /* verify */)) { | 
 |     return false; | 
 |   } | 
 |   bool ok = EVP_DigestVerify(ctx.get(), signature.data(), signature.size(), | 
 |                              in.data(), in.size()); | 
 | #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) | 
 |   ok = true; | 
 |   ERR_clear_error(); | 
 | #endif | 
 |   return ok; | 
 | } | 
 |  | 
 | enum ssl_private_key_result_t ssl_private_key_decrypt(SSL_HANDSHAKE *hs, | 
 |                                                       uint8_t *out, | 
 |                                                       size_t *out_len, | 
 |                                                       size_t max_out, | 
 |                                                       Span<const uint8_t> in) { | 
 |   SSL *const ssl = hs->ssl; | 
 |   const SSL_CREDENTIAL *const cred = hs->credential.get(); | 
 |   assert(!hs->can_release_private_key); | 
 |   if (cred->key_method != NULL) { | 
 |     enum ssl_private_key_result_t ret; | 
 |     if (hs->pending_private_key_op) { | 
 |       ret = cred->key_method->complete(ssl, out, out_len, max_out); | 
 |     } else { | 
 |       ret = cred->key_method->decrypt(ssl, out, out_len, max_out, in.data(), | 
 |                                       in.size()); | 
 |     } | 
 |     if (ret == ssl_private_key_failure) { | 
 |       OPENSSL_PUT_ERROR(SSL, SSL_R_PRIVATE_KEY_OPERATION_FAILED); | 
 |     } | 
 |     hs->pending_private_key_op = ret == ssl_private_key_retry; | 
 |     return ret; | 
 |   } | 
 |  | 
 |   RSA *rsa = EVP_PKEY_get0_RSA(cred->privkey.get()); | 
 |   if (rsa == NULL) { | 
 |     // Decrypt operations are only supported for RSA keys. | 
 |     OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
 |     return ssl_private_key_failure; | 
 |   } | 
 |  | 
 |   // Decrypt with no padding. PKCS#1 padding will be removed as part of the | 
 |   // timing-sensitive code by the caller. | 
 |   if (!RSA_decrypt(rsa, out_len, out, max_out, in.data(), in.size(), | 
 |                    RSA_NO_PADDING)) { | 
 |     return ssl_private_key_failure; | 
 |   } | 
 |   return ssl_private_key_success; | 
 | } | 
 |  | 
 | BSSL_NAMESPACE_END | 
 |  | 
 | using namespace bssl; | 
 |  | 
 | int SSL_use_RSAPrivateKey(SSL *ssl, RSA *rsa) { | 
 |   if (rsa == NULL || ssl->config == NULL) { | 
 |     OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new()); | 
 |   if (!pkey ||  // | 
 |       !EVP_PKEY_set1_RSA(pkey.get(), rsa)) { | 
 |     OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return SSL_use_PrivateKey(ssl, pkey.get()); | 
 | } | 
 |  | 
 | int SSL_use_RSAPrivateKey_ASN1(SSL *ssl, const uint8_t *der, size_t der_len) { | 
 |   UniquePtr<RSA> rsa(RSA_private_key_from_bytes(der, der_len)); | 
 |   if (!rsa) { | 
 |     OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return SSL_use_RSAPrivateKey(ssl, rsa.get()); | 
 | } | 
 |  | 
 | int SSL_use_PrivateKey(SSL *ssl, EVP_PKEY *pkey) { | 
 |   if (pkey == NULL || ssl->config == NULL) { | 
 |     OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return SSL_CREDENTIAL_set1_private_key( | 
 |       ssl->config->cert->legacy_credential.get(), pkey); | 
 | } | 
 |  | 
 | int SSL_use_PrivateKey_ASN1(int type, SSL *ssl, const uint8_t *der, | 
 |                             size_t der_len) { | 
 |   if (der_len > LONG_MAX) { | 
 |     OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   const uint8_t *p = der; | 
 |   UniquePtr<EVP_PKEY> pkey(d2i_PrivateKey(type, NULL, &p, (long)der_len)); | 
 |   if (!pkey || p != der + der_len) { | 
 |     OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return SSL_use_PrivateKey(ssl, pkey.get()); | 
 | } | 
 |  | 
 | int SSL_CTX_use_RSAPrivateKey(SSL_CTX *ctx, RSA *rsa) { | 
 |   if (rsa == NULL) { | 
 |     OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new()); | 
 |   if (!pkey || !EVP_PKEY_set1_RSA(pkey.get(), rsa)) { | 
 |     OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return SSL_CTX_use_PrivateKey(ctx, pkey.get()); | 
 | } | 
 |  | 
 | int SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX *ctx, const uint8_t *der, | 
 |                                    size_t der_len) { | 
 |   UniquePtr<RSA> rsa(RSA_private_key_from_bytes(der, der_len)); | 
 |   if (!rsa) { | 
 |     OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return SSL_CTX_use_RSAPrivateKey(ctx, rsa.get()); | 
 | } | 
 |  | 
 | int SSL_CTX_use_PrivateKey(SSL_CTX *ctx, EVP_PKEY *pkey) { | 
 |   if (pkey == NULL) { | 
 |     OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return SSL_CREDENTIAL_set1_private_key(ctx->cert->legacy_credential.get(), | 
 |                                          pkey); | 
 | } | 
 |  | 
 | int SSL_CTX_use_PrivateKey_ASN1(int type, SSL_CTX *ctx, const uint8_t *der, | 
 |                                 size_t der_len) { | 
 |   if (der_len > LONG_MAX) { | 
 |     OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   const uint8_t *p = der; | 
 |   UniquePtr<EVP_PKEY> pkey(d2i_PrivateKey(type, NULL, &p, (long)der_len)); | 
 |   if (!pkey || p != der + der_len) { | 
 |     OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return SSL_CTX_use_PrivateKey(ctx, pkey.get()); | 
 | } | 
 |  | 
 | void SSL_set_private_key_method(SSL *ssl, | 
 |                                 const SSL_PRIVATE_KEY_METHOD *key_method) { | 
 |   if (!ssl->config) { | 
 |     return; | 
 |   } | 
 |   BSSL_CHECK(SSL_CREDENTIAL_set_private_key_method( | 
 |       ssl->config->cert->legacy_credential.get(), key_method)); | 
 | } | 
 |  | 
 | void SSL_CTX_set_private_key_method(SSL_CTX *ctx, | 
 |                                     const SSL_PRIVATE_KEY_METHOD *key_method) { | 
 |   BSSL_CHECK(SSL_CREDENTIAL_set_private_key_method( | 
 |       ctx->cert->legacy_credential.get(), key_method)); | 
 | } | 
 |  | 
 | static constexpr size_t kMaxSignatureAlgorithmNameLen = 24; | 
 |  | 
 | struct SignatureAlgorithmName { | 
 |   uint16_t signature_algorithm; | 
 |   const char name[kMaxSignatureAlgorithmNameLen]; | 
 | }; | 
 |  | 
 | // This was "constexpr" rather than "const", but that triggered a bug in MSVC | 
 | // where it didn't pad the strings to the correct length. | 
 | static const SignatureAlgorithmName kSignatureAlgorithmNames[] = { | 
 |     {SSL_SIGN_RSA_PKCS1_MD5_SHA1, "rsa_pkcs1_md5_sha1"}, | 
 |     {SSL_SIGN_RSA_PKCS1_SHA1, "rsa_pkcs1_sha1"}, | 
 |     {SSL_SIGN_RSA_PKCS1_SHA256, "rsa_pkcs1_sha256"}, | 
 |     {SSL_SIGN_RSA_PKCS1_SHA256_LEGACY, "rsa_pkcs1_sha256_legacy"}, | 
 |     {SSL_SIGN_RSA_PKCS1_SHA384, "rsa_pkcs1_sha384"}, | 
 |     {SSL_SIGN_RSA_PKCS1_SHA512, "rsa_pkcs1_sha512"}, | 
 |     {SSL_SIGN_ECDSA_SHA1, "ecdsa_sha1"}, | 
 |     {SSL_SIGN_ECDSA_SECP256R1_SHA256, "ecdsa_secp256r1_sha256"}, | 
 |     {SSL_SIGN_ECDSA_SECP384R1_SHA384, "ecdsa_secp384r1_sha384"}, | 
 |     {SSL_SIGN_ECDSA_SECP521R1_SHA512, "ecdsa_secp521r1_sha512"}, | 
 |     {SSL_SIGN_RSA_PSS_RSAE_SHA256, "rsa_pss_rsae_sha256"}, | 
 |     {SSL_SIGN_RSA_PSS_RSAE_SHA384, "rsa_pss_rsae_sha384"}, | 
 |     {SSL_SIGN_RSA_PSS_RSAE_SHA512, "rsa_pss_rsae_sha512"}, | 
 |     {SSL_SIGN_ED25519, "ed25519"}, | 
 | }; | 
 |  | 
 | const char *SSL_get_signature_algorithm_name(uint16_t sigalg, | 
 |                                              int include_curve) { | 
 |   if (!include_curve) { | 
 |     switch (sigalg) { | 
 |       case SSL_SIGN_ECDSA_SECP256R1_SHA256: | 
 |         return "ecdsa_sha256"; | 
 |       case SSL_SIGN_ECDSA_SECP384R1_SHA384: | 
 |         return "ecdsa_sha384"; | 
 |       case SSL_SIGN_ECDSA_SECP521R1_SHA512: | 
 |         return "ecdsa_sha512"; | 
 |         // If adding more here, also update | 
 |         // |SSL_get_all_signature_algorithm_names|. | 
 |     } | 
 |   } | 
 |  | 
 |   for (const auto &candidate : kSignatureAlgorithmNames) { | 
 |     if (candidate.signature_algorithm == sigalg) { | 
 |       return candidate.name; | 
 |     } | 
 |   } | 
 |  | 
 |   return NULL; | 
 | } | 
 |  | 
 | size_t SSL_get_all_signature_algorithm_names(const char **out, size_t max_out) { | 
 |   const char *kPredefinedNames[] = {"ecdsa_sha256", "ecdsa_sha384", | 
 |                                     "ecdsa_sha512"}; | 
 |   return GetAllNames(out, max_out, kPredefinedNames, | 
 |                      &SignatureAlgorithmName::name, | 
 |                      Span(kSignatureAlgorithmNames)); | 
 | } | 
 |  | 
 | int SSL_get_signature_algorithm_key_type(uint16_t sigalg) { | 
 |   const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg); | 
 |   return alg != nullptr ? alg->pkey_type : EVP_PKEY_NONE; | 
 | } | 
 |  | 
 | const EVP_MD *SSL_get_signature_algorithm_digest(uint16_t sigalg) { | 
 |   const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg); | 
 |   if (alg == nullptr || alg->digest_func == nullptr) { | 
 |     return nullptr; | 
 |   } | 
 |   return alg->digest_func(); | 
 | } | 
 |  | 
 | int SSL_is_signature_algorithm_rsa_pss(uint16_t sigalg) { | 
 |   const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg); | 
 |   return alg != nullptr && alg->is_rsa_pss; | 
 | } | 
 |  | 
 | static int compare_uint16_t(const void *p1, const void *p2) { | 
 |   uint16_t u1 = *((const uint16_t *)p1); | 
 |   uint16_t u2 = *((const uint16_t *)p2); | 
 |   if (u1 < u2) { | 
 |     return -1; | 
 |   } else if (u1 > u2) { | 
 |     return 1; | 
 |   } else { | 
 |     return 0; | 
 |   } | 
 | } | 
 |  | 
 | static bool sigalgs_unique(Span<const uint16_t> in_sigalgs) { | 
 |   if (in_sigalgs.size() < 2) { | 
 |     return true; | 
 |   } | 
 |  | 
 |   Array<uint16_t> sigalgs; | 
 |   if (!sigalgs.CopyFrom(in_sigalgs)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   qsort(sigalgs.data(), sigalgs.size(), sizeof(uint16_t), compare_uint16_t); | 
 |  | 
 |   for (size_t i = 1; i < sigalgs.size(); i++) { | 
 |     if (sigalgs[i - 1] == sigalgs[i]) { | 
 |       OPENSSL_PUT_ERROR(SSL, SSL_R_DUPLICATE_SIGNATURE_ALGORITHM); | 
 |       return false; | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | static bool set_sigalg_prefs(Array<uint16_t> *out, Span<const uint16_t> prefs) { | 
 |   if (!sigalgs_unique(prefs)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Check for invalid algorithms, and filter out |SSL_SIGN_RSA_PKCS1_MD5_SHA1|. | 
 |   Array<uint16_t> filtered; | 
 |   if (!filtered.InitForOverwrite(prefs.size())) { | 
 |     return false; | 
 |   } | 
 |   size_t added = 0; | 
 |   for (uint16_t pref : prefs) { | 
 |     if (pref == SSL_SIGN_RSA_PKCS1_MD5_SHA1) { | 
 |       // Though not intended to be used with this API, we treat | 
 |       // |SSL_SIGN_RSA_PKCS1_MD5_SHA1| as a real signature algorithm in | 
 |       // |SSL_PRIVATE_KEY_METHOD|. Not accepting it here makes for a confusing | 
 |       // abstraction. | 
 |       continue; | 
 |     } | 
 |     if (get_signature_algorithm(pref) == nullptr) { | 
 |       OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); | 
 |       return false; | 
 |     } | 
 |     filtered[added] = pref; | 
 |     added++; | 
 |   } | 
 |   filtered.Shrink(added); | 
 |  | 
 |   // This can happen if |prefs| contained only |SSL_SIGN_RSA_PKCS1_MD5_SHA1|. | 
 |   // Leaving it empty would revert to the default, so treat this as an error | 
 |   // condition. | 
 |   if (!prefs.empty() && filtered.empty()) { | 
 |     OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); | 
 |     return false; | 
 |   } | 
 |  | 
 |   *out = std::move(filtered); | 
 |   return true; | 
 | } | 
 |  | 
 | int SSL_CREDENTIAL_set1_signing_algorithm_prefs(SSL_CREDENTIAL *cred, | 
 |                                                 const uint16_t *prefs, | 
 |                                                 size_t num_prefs) { | 
 |   if (!cred->UsesPrivateKey()) { | 
 |     OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // Delegated credentials are constrained to a single algorithm, so there is no | 
 |   // need to configure this. | 
 |   if (cred->type == SSLCredentialType::kDelegated) { | 
 |     OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return set_sigalg_prefs(&cred->sigalgs, Span(prefs, num_prefs)); | 
 | } | 
 |  | 
 | int SSL_CTX_set_signing_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs, | 
 |                                         size_t num_prefs) { | 
 |   return SSL_CREDENTIAL_set1_signing_algorithm_prefs( | 
 |       ctx->cert->legacy_credential.get(), prefs, num_prefs); | 
 | } | 
 |  | 
 | int SSL_set_signing_algorithm_prefs(SSL *ssl, const uint16_t *prefs, | 
 |                                     size_t num_prefs) { | 
 |   if (!ssl->config) { | 
 |     return 0; | 
 |   } | 
 |   return SSL_CREDENTIAL_set1_signing_algorithm_prefs( | 
 |       ssl->config->cert->legacy_credential.get(), prefs, num_prefs); | 
 | } | 
 |  | 
 | static constexpr struct { | 
 |   int pkey_type; | 
 |   int hash_nid; | 
 |   uint16_t signature_algorithm; | 
 | } kSignatureAlgorithmsMapping[] = { | 
 |     {EVP_PKEY_RSA, NID_sha1, SSL_SIGN_RSA_PKCS1_SHA1}, | 
 |     {EVP_PKEY_RSA, NID_sha256, SSL_SIGN_RSA_PKCS1_SHA256}, | 
 |     {EVP_PKEY_RSA, NID_sha384, SSL_SIGN_RSA_PKCS1_SHA384}, | 
 |     {EVP_PKEY_RSA, NID_sha512, SSL_SIGN_RSA_PKCS1_SHA512}, | 
 |     {EVP_PKEY_RSA_PSS, NID_sha256, SSL_SIGN_RSA_PSS_RSAE_SHA256}, | 
 |     {EVP_PKEY_RSA_PSS, NID_sha384, SSL_SIGN_RSA_PSS_RSAE_SHA384}, | 
 |     {EVP_PKEY_RSA_PSS, NID_sha512, SSL_SIGN_RSA_PSS_RSAE_SHA512}, | 
 |     {EVP_PKEY_EC, NID_sha1, SSL_SIGN_ECDSA_SHA1}, | 
 |     {EVP_PKEY_EC, NID_sha256, SSL_SIGN_ECDSA_SECP256R1_SHA256}, | 
 |     {EVP_PKEY_EC, NID_sha384, SSL_SIGN_ECDSA_SECP384R1_SHA384}, | 
 |     {EVP_PKEY_EC, NID_sha512, SSL_SIGN_ECDSA_SECP521R1_SHA512}, | 
 |     {EVP_PKEY_ED25519, NID_undef, SSL_SIGN_ED25519}, | 
 | }; | 
 |  | 
 | static bool parse_sigalg_pairs(Array<uint16_t> *out, const int *values, | 
 |                                size_t num_values) { | 
 |   if ((num_values & 1) == 1) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   const size_t num_pairs = num_values / 2; | 
 |   if (!out->InitForOverwrite(num_pairs)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   for (size_t i = 0; i < num_values; i += 2) { | 
 |     const int hash_nid = values[i]; | 
 |     const int pkey_type = values[i + 1]; | 
 |  | 
 |     bool found = false; | 
 |     for (const auto &candidate : kSignatureAlgorithmsMapping) { | 
 |       if (candidate.pkey_type == pkey_type && candidate.hash_nid == hash_nid) { | 
 |         (*out)[i / 2] = candidate.signature_algorithm; | 
 |         found = true; | 
 |         break; | 
 |       } | 
 |     } | 
 |  | 
 |     if (!found) { | 
 |       OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); | 
 |       ERR_add_error_dataf("unknown hash:%d pkey:%d", hash_nid, pkey_type); | 
 |       return false; | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | int SSL_CTX_set1_sigalgs(SSL_CTX *ctx, const int *values, size_t num_values) { | 
 |   Array<uint16_t> sigalgs; | 
 |   if (!parse_sigalg_pairs(&sigalgs, values, num_values)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (!SSL_CTX_set_signing_algorithm_prefs(ctx, sigalgs.data(), | 
 |                                            sigalgs.size()) || | 
 |       !SSL_CTX_set_verify_algorithm_prefs(ctx, sigalgs.data(), | 
 |                                           sigalgs.size())) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | int SSL_set1_sigalgs(SSL *ssl, const int *values, size_t num_values) { | 
 |   if (!ssl->config) { | 
 |     OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   Array<uint16_t> sigalgs; | 
 |   if (!parse_sigalg_pairs(&sigalgs, values, num_values)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (!SSL_set_signing_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size()) || | 
 |       !SSL_set_verify_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size())) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | static bool parse_sigalgs_list(Array<uint16_t> *out, const char *str) { | 
 |   // str looks like "RSA+SHA1:ECDSA+SHA256:ecdsa_secp256r1_sha256". | 
 |  | 
 |   // Count colons to give the number of output elements from any successful | 
 |   // parse. | 
 |   size_t num_elements = 1; | 
 |   size_t len = 0; | 
 |   for (const char *p = str; *p; p++) { | 
 |     len++; | 
 |     if (*p == ':') { | 
 |       num_elements++; | 
 |     } | 
 |   } | 
 |  | 
 |   if (!out->InitForOverwrite(num_elements)) { | 
 |     return false; | 
 |   } | 
 |   size_t out_i = 0; | 
 |  | 
 |   enum { | 
 |     pkey_or_name, | 
 |     hash_name, | 
 |   } state = pkey_or_name; | 
 |  | 
 |   char buf[kMaxSignatureAlgorithmNameLen]; | 
 |   // buf_used is always < sizeof(buf). I.e. it's always safe to write | 
 |   // buf[buf_used] = 0. | 
 |   size_t buf_used = 0; | 
 |  | 
 |   int pkey_type = 0, hash_nid = 0; | 
 |  | 
 |   // Note that the loop runs to len+1, i.e. it'll process the terminating NUL. | 
 |   for (size_t offset = 0; offset < len + 1; offset++) { | 
 |     const unsigned char c = str[offset]; | 
 |  | 
 |     switch (c) { | 
 |       case '+': | 
 |         if (state == hash_name) { | 
 |           OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); | 
 |           ERR_add_error_dataf("+ found in hash name at offset %zu", offset); | 
 |           return false; | 
 |         } | 
 |         if (buf_used == 0) { | 
 |           OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); | 
 |           ERR_add_error_dataf("empty public key type at offset %zu", offset); | 
 |           return false; | 
 |         } | 
 |         buf[buf_used] = 0; | 
 |  | 
 |         if (strcmp(buf, "RSA") == 0) { | 
 |           pkey_type = EVP_PKEY_RSA; | 
 |         } else if (strcmp(buf, "RSA-PSS") == 0 ||  // | 
 |                    strcmp(buf, "PSS") == 0) { | 
 |           pkey_type = EVP_PKEY_RSA_PSS; | 
 |         } else if (strcmp(buf, "ECDSA") == 0) { | 
 |           pkey_type = EVP_PKEY_EC; | 
 |         } else { | 
 |           OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); | 
 |           ERR_add_error_dataf("unknown public key type '%s'", buf); | 
 |           return false; | 
 |         } | 
 |  | 
 |         state = hash_name; | 
 |         buf_used = 0; | 
 |         break; | 
 |  | 
 |       case ':': | 
 |         [[fallthrough]]; | 
 |       case 0: | 
 |         if (buf_used == 0) { | 
 |           OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); | 
 |           ERR_add_error_dataf("empty element at offset %zu", offset); | 
 |           return false; | 
 |         } | 
 |  | 
 |         buf[buf_used] = 0; | 
 |  | 
 |         if (state == pkey_or_name) { | 
 |           // No '+' was seen thus this is a TLS 1.3-style name. | 
 |           bool found = false; | 
 |           for (const auto &candidate : kSignatureAlgorithmNames) { | 
 |             if (strcmp(candidate.name, buf) == 0) { | 
 |               assert(out_i < num_elements); | 
 |               (*out)[out_i++] = candidate.signature_algorithm; | 
 |               found = true; | 
 |               break; | 
 |             } | 
 |           } | 
 |  | 
 |           if (!found) { | 
 |             OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); | 
 |             ERR_add_error_dataf("unknown signature algorithm '%s'", buf); | 
 |             return false; | 
 |           } | 
 |         } else { | 
 |           if (strcmp(buf, "SHA1") == 0) { | 
 |             hash_nid = NID_sha1; | 
 |           } else if (strcmp(buf, "SHA256") == 0) { | 
 |             hash_nid = NID_sha256; | 
 |           } else if (strcmp(buf, "SHA384") == 0) { | 
 |             hash_nid = NID_sha384; | 
 |           } else if (strcmp(buf, "SHA512") == 0) { | 
 |             hash_nid = NID_sha512; | 
 |           } else { | 
 |             OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); | 
 |             ERR_add_error_dataf("unknown hash function '%s'", buf); | 
 |             return false; | 
 |           } | 
 |  | 
 |           bool found = false; | 
 |           for (const auto &candidate : kSignatureAlgorithmsMapping) { | 
 |             if (candidate.pkey_type == pkey_type && | 
 |                 candidate.hash_nid == hash_nid) { | 
 |               assert(out_i < num_elements); | 
 |               (*out)[out_i++] = candidate.signature_algorithm; | 
 |               found = true; | 
 |               break; | 
 |             } | 
 |           } | 
 |  | 
 |           if (!found) { | 
 |             OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); | 
 |             ERR_add_error_dataf("unknown pkey:%d hash:%s", pkey_type, buf); | 
 |             return false; | 
 |           } | 
 |         } | 
 |  | 
 |         state = pkey_or_name; | 
 |         buf_used = 0; | 
 |         break; | 
 |  | 
 |       default: | 
 |         if (buf_used == sizeof(buf) - 1) { | 
 |           OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); | 
 |           ERR_add_error_dataf("substring too long at offset %zu", offset); | 
 |           return false; | 
 |         } | 
 |  | 
 |         if (OPENSSL_isalnum(c) || c == '-' || c == '_') { | 
 |           buf[buf_used++] = c; | 
 |         } else { | 
 |           OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); | 
 |           ERR_add_error_dataf("invalid character 0x%02x at offest %zu", c, | 
 |                               offset); | 
 |           return false; | 
 |         } | 
 |     } | 
 |   } | 
 |  | 
 |   assert(out_i == out->size()); | 
 |   return true; | 
 | } | 
 |  | 
 | int SSL_CTX_set1_sigalgs_list(SSL_CTX *ctx, const char *str) { | 
 |   Array<uint16_t> sigalgs; | 
 |   if (!parse_sigalgs_list(&sigalgs, str)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (!SSL_CTX_set_signing_algorithm_prefs(ctx, sigalgs.data(), | 
 |                                            sigalgs.size()) || | 
 |       !SSL_CTX_set_verify_algorithm_prefs(ctx, sigalgs.data(), | 
 |                                           sigalgs.size())) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | int SSL_set1_sigalgs_list(SSL *ssl, const char *str) { | 
 |   if (!ssl->config) { | 
 |     OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   Array<uint16_t> sigalgs; | 
 |   if (!parse_sigalgs_list(&sigalgs, str)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (!SSL_set_signing_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size()) || | 
 |       !SSL_set_verify_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size())) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | int SSL_CTX_set_verify_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs, | 
 |                                        size_t num_prefs) { | 
 |   return set_sigalg_prefs(&ctx->verify_sigalgs, Span(prefs, num_prefs)); | 
 | } | 
 |  | 
 | int SSL_set_verify_algorithm_prefs(SSL *ssl, const uint16_t *prefs, | 
 |                                    size_t num_prefs) { | 
 |   if (!ssl->config) { | 
 |     OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return set_sigalg_prefs(&ssl->config->verify_sigalgs, Span(prefs, num_prefs)); | 
 | } |