| /* ==================================================================== |
| * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@OpenSSL.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). */ |
| |
| #include <openssl/ecdsa.h> |
| |
| #include <assert.h> |
| #include <string.h> |
| |
| #include <openssl/bn.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| #include <openssl/sha.h> |
| #include <openssl/type_check.h> |
| |
| #include "../bn/internal.h" |
| #include "../ec/internal.h" |
| #include "../../internal.h" |
| |
| |
| // digest_to_scalar interprets |digest_len| bytes from |digest| as a scalar for |
| // ECDSA. Note this value is not fully reduced modulo the order, only the |
| // correct number of bits. |
| static void digest_to_scalar(const EC_GROUP *group, EC_SCALAR *out, |
| const uint8_t *digest, size_t digest_len) { |
| const BIGNUM *order = &group->order; |
| size_t num_bits = BN_num_bits(order); |
| // Need to truncate digest if it is too long: first truncate whole bytes. |
| size_t num_bytes = (num_bits + 7) / 8; |
| if (digest_len > num_bytes) { |
| digest_len = num_bytes; |
| } |
| OPENSSL_memset(out, 0, sizeof(EC_SCALAR)); |
| for (size_t i = 0; i < digest_len; i++) { |
| out->bytes[i] = digest[digest_len - 1 - i]; |
| } |
| |
| // If it is still too long, truncate remaining bits with a shift. |
| if (8 * digest_len > num_bits) { |
| bn_rshift_words(out->words, out->words, 8 - (num_bits & 0x7), order->width); |
| } |
| |
| // |out| now has the same bit width as |order|, but this only bounds by |
| // 2*|order|. Subtract the order if out of range. |
| // |
| // Montgomery multiplication accepts the looser bounds, so this isn't strictly |
| // necessary, but it is a cleaner abstraction and has no performance impact. |
| BN_ULONG tmp[EC_MAX_WORDS]; |
| bn_reduce_once_in_place(out->words, 0 /* no carry */, order->d, tmp, |
| order->width); |
| } |
| |
| ECDSA_SIG *ECDSA_SIG_new(void) { |
| ECDSA_SIG *sig = OPENSSL_malloc(sizeof(ECDSA_SIG)); |
| if (sig == NULL) { |
| return NULL; |
| } |
| sig->r = BN_new(); |
| sig->s = BN_new(); |
| if (sig->r == NULL || sig->s == NULL) { |
| ECDSA_SIG_free(sig); |
| return NULL; |
| } |
| return sig; |
| } |
| |
| void ECDSA_SIG_free(ECDSA_SIG *sig) { |
| if (sig == NULL) { |
| return; |
| } |
| |
| BN_free(sig->r); |
| BN_free(sig->s); |
| OPENSSL_free(sig); |
| } |
| |
| const BIGNUM *ECDSA_SIG_get0_r(const ECDSA_SIG *sig) { |
| return sig->r; |
| } |
| |
| const BIGNUM *ECDSA_SIG_get0_s(const ECDSA_SIG *sig) { |
| return sig->s; |
| } |
| |
| void ECDSA_SIG_get0(const ECDSA_SIG *sig, const BIGNUM **out_r, |
| const BIGNUM **out_s) { |
| if (out_r != NULL) { |
| *out_r = sig->r; |
| } |
| if (out_s != NULL) { |
| *out_s = sig->s; |
| } |
| } |
| |
| int ECDSA_SIG_set0(ECDSA_SIG *sig, BIGNUM *r, BIGNUM *s) { |
| if (r == NULL || s == NULL) { |
| return 0; |
| } |
| BN_free(sig->r); |
| BN_free(sig->s); |
| sig->r = r; |
| sig->s = s; |
| return 1; |
| } |
| |
| int ECDSA_do_verify(const uint8_t *digest, size_t digest_len, |
| const ECDSA_SIG *sig, const EC_KEY *eckey) { |
| const EC_GROUP *group = EC_KEY_get0_group(eckey); |
| const EC_POINT *pub_key = EC_KEY_get0_public_key(eckey); |
| if (group == NULL || pub_key == NULL || sig == NULL) { |
| OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_MISSING_PARAMETERS); |
| return 0; |
| } |
| |
| EC_SCALAR r, s, u1, u2, s_inv_mont, m; |
| if (BN_is_zero(sig->r) || |
| !ec_bignum_to_scalar(group, &r, sig->r) || |
| BN_is_zero(sig->s) || |
| !ec_bignum_to_scalar(group, &s, sig->s)) { |
| OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE); |
| return 0; |
| } |
| |
| // s_inv_mont = s^-1 in the Montgomery domain. |
| if (!ec_scalar_to_montgomery_inv_vartime(group, &s_inv_mont, &s)) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| |
| // u1 = m * s^-1 mod order |
| // u2 = r * s^-1 mod order |
| // |
| // |s_inv_mont| is in Montgomery form while |m| and |r| are not, so |u1| and |
| // |u2| will be taken out of Montgomery form, as desired. |
| digest_to_scalar(group, &m, digest, digest_len); |
| ec_scalar_mul_montgomery(group, &u1, &m, &s_inv_mont); |
| ec_scalar_mul_montgomery(group, &u2, &r, &s_inv_mont); |
| |
| EC_RAW_POINT point; |
| if (!ec_point_mul_scalar_public(group, &point, &u1, &pub_key->raw, &u2)) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB); |
| return 0; |
| } |
| |
| if (!ec_cmp_x_coordinate(group, &point, &r)) { |
| OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static int ecdsa_sign_setup(const EC_KEY *eckey, EC_SCALAR *out_kinv_mont, |
| EC_SCALAR *out_r, const uint8_t *digest, |
| size_t digest_len, const EC_SCALAR *priv_key) { |
| // Check that the size of the group order is FIPS compliant (FIPS 186-4 |
| // B.5.2). |
| const EC_GROUP *group = EC_KEY_get0_group(eckey); |
| const BIGNUM *order = EC_GROUP_get0_order(group); |
| if (BN_num_bits(order) < 160) { |
| OPENSSL_PUT_ERROR(ECDSA, EC_R_INVALID_GROUP_ORDER); |
| return 0; |
| } |
| |
| int ret = 0; |
| EC_SCALAR k; |
| EC_RAW_POINT tmp_point; |
| do { |
| // Include the private key and message digest in the k generation. |
| if (eckey->fixed_k != NULL) { |
| if (!ec_bignum_to_scalar(group, &k, eckey->fixed_k)) { |
| goto err; |
| } |
| if (ec_scalar_is_zero(group, &k)) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| } else { |
| // Pass a SHA512 hash of the private key and digest as additional data |
| // into the RBG. This is a hardening measure against entropy failure. |
| OPENSSL_STATIC_ASSERT(SHA512_DIGEST_LENGTH >= 32, |
| "additional_data is too large for SHA-512"); |
| SHA512_CTX sha; |
| uint8_t additional_data[SHA512_DIGEST_LENGTH]; |
| SHA512_Init(&sha); |
| SHA512_Update(&sha, priv_key->words, order->width * sizeof(BN_ULONG)); |
| SHA512_Update(&sha, digest, digest_len); |
| SHA512_Final(additional_data, &sha); |
| if (!ec_random_nonzero_scalar(group, &k, additional_data)) { |
| goto err; |
| } |
| } |
| |
| // Compute k^-1 in the Montgomery domain. This is |ec_scalar_to_montgomery| |
| // followed by |ec_scalar_inv0_montgomery|, but |ec_scalar_inv0_montgomery| |
| // followed by |ec_scalar_from_montgomery| is equivalent and slightly more |
| // efficient. Note k is non-zero, so the inverse must exist. |
| ec_scalar_inv0_montgomery(group, out_kinv_mont, &k); |
| ec_scalar_from_montgomery(group, out_kinv_mont, out_kinv_mont); |
| |
| // Compute r, the x-coordinate of generator * k. |
| if (!ec_point_mul_scalar_base(group, &tmp_point, &k) || |
| !ec_get_x_coordinate_as_scalar(group, out_r, &tmp_point)) { |
| goto err; |
| } |
| } while (ec_scalar_is_zero(group, out_r)); |
| |
| ret = 1; |
| |
| err: |
| OPENSSL_cleanse(&k, sizeof(k)); |
| return ret; |
| } |
| |
| ECDSA_SIG *ECDSA_do_sign(const uint8_t *digest, size_t digest_len, |
| const EC_KEY *eckey) { |
| if (eckey->ecdsa_meth && eckey->ecdsa_meth->sign) { |
| OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_NOT_IMPLEMENTED); |
| return NULL; |
| } |
| |
| const EC_GROUP *group = EC_KEY_get0_group(eckey); |
| if (group == NULL || eckey->priv_key == NULL) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_PASSED_NULL_PARAMETER); |
| return NULL; |
| } |
| const BIGNUM *order = EC_GROUP_get0_order(group); |
| const EC_SCALAR *priv_key = &eckey->priv_key->scalar; |
| |
| int ok = 0; |
| ECDSA_SIG *ret = ECDSA_SIG_new(); |
| EC_SCALAR kinv_mont, r_mont, s, m, tmp; |
| if (ret == NULL) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE); |
| return NULL; |
| } |
| |
| digest_to_scalar(group, &m, digest, digest_len); |
| for (;;) { |
| if (!ecdsa_sign_setup(eckey, &kinv_mont, &r_mont, digest, digest_len, |
| priv_key) || |
| !bn_set_words(ret->r, r_mont.words, order->width)) { |
| goto err; |
| } |
| |
| // Compute priv_key * r (mod order). Note if only one parameter is in the |
| // Montgomery domain, |ec_scalar_mod_mul_montgomery| will compute the answer |
| // in the normal domain. |
| ec_scalar_to_montgomery(group, &r_mont, &r_mont); |
| ec_scalar_mul_montgomery(group, &s, priv_key, &r_mont); |
| |
| // Compute tmp = m + priv_key * r. |
| ec_scalar_add(group, &tmp, &m, &s); |
| |
| // Finally, multiply s by k^-1. That was retained in Montgomery form, so the |
| // same technique as the previous multiplication works. |
| ec_scalar_mul_montgomery(group, &s, &tmp, &kinv_mont); |
| if (!bn_set_words(ret->s, s.words, order->width)) { |
| goto err; |
| } |
| if (!BN_is_zero(ret->s)) { |
| // s != 0 => we have a valid signature |
| break; |
| } |
| } |
| |
| ok = 1; |
| |
| err: |
| if (!ok) { |
| ECDSA_SIG_free(ret); |
| ret = NULL; |
| } |
| OPENSSL_cleanse(&kinv_mont, sizeof(kinv_mont)); |
| OPENSSL_cleanse(&r_mont, sizeof(r_mont)); |
| OPENSSL_cleanse(&s, sizeof(s)); |
| OPENSSL_cleanse(&tmp, sizeof(tmp)); |
| OPENSSL_cleanse(&m, sizeof(m)); |
| return ret; |
| } |