| /* ==================================================================== |
| * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@OpenSSL.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). */ |
| |
| #include <openssl/ecdsa.h> |
| |
| #include <vector> |
| |
| #include <gtest/gtest.h> |
| |
| #include <openssl/bn.h> |
| #include <openssl/crypto.h> |
| #include <openssl/ec.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| #include <openssl/nid.h> |
| #include <openssl/rand.h> |
| |
| #include "../../test/file_test.h" |
| |
| |
| enum API { |
| kEncodedAPI, |
| kRawAPI, |
| }; |
| |
| // VerifyECDSASig checks that verifying |ecdsa_sig| gives |expected_result|. |
| static void VerifyECDSASig(API api, const uint8_t *digest, size_t digest_len, |
| const ECDSA_SIG *ecdsa_sig, EC_KEY *eckey, |
| int expected_result) { |
| switch (api) { |
| case kEncodedAPI: { |
| uint8_t *der; |
| size_t der_len; |
| ASSERT_TRUE(ECDSA_SIG_to_bytes(&der, &der_len, ecdsa_sig)); |
| bssl::UniquePtr<uint8_t> delete_der(der); |
| EXPECT_EQ(expected_result, |
| ECDSA_verify(0, digest, digest_len, der, der_len, eckey)); |
| break; |
| } |
| |
| case kRawAPI: |
| EXPECT_EQ(expected_result, |
| ECDSA_do_verify(digest, digest_len, ecdsa_sig, eckey)); |
| break; |
| |
| default: |
| FAIL() << "Unknown API type."; |
| } |
| } |
| |
| // TestTamperedSig verifies that signature verification fails when a valid |
| // signature is tampered with. |ecdsa_sig| must be a valid signature, which will |
| // be modified. |
| static void TestTamperedSig(API api, const uint8_t *digest, |
| size_t digest_len, ECDSA_SIG *ecdsa_sig, |
| EC_KEY *eckey, const BIGNUM *order) { |
| SCOPED_TRACE(api); |
| // Modify a single byte of the signature: to ensure we don't |
| // garble the ASN1 structure, we read the raw signature and |
| // modify a byte in one of the bignums directly. |
| |
| // Store the two BIGNUMs in raw_buf. |
| size_t r_len = BN_num_bytes(ecdsa_sig->r); |
| size_t s_len = BN_num_bytes(ecdsa_sig->s); |
| size_t bn_len = BN_num_bytes(order); |
| ASSERT_LE(r_len, bn_len); |
| ASSERT_LE(s_len, bn_len); |
| size_t buf_len = 2 * bn_len; |
| std::vector<uint8_t> raw_buf(buf_len); |
| // Pad the bignums with leading zeroes. |
| ASSERT_TRUE(BN_bn2bin_padded(raw_buf.data(), bn_len, ecdsa_sig->r)); |
| ASSERT_TRUE(BN_bn2bin_padded(raw_buf.data() + bn_len, bn_len, ecdsa_sig->s)); |
| |
| // Modify a single byte in the buffer. |
| size_t offset = raw_buf[10] % buf_len; |
| uint8_t dirt = raw_buf[11] ? raw_buf[11] : 1; |
| raw_buf[offset] ^= dirt; |
| // Now read the BIGNUMs back in from raw_buf. |
| ASSERT_TRUE(BN_bin2bn(raw_buf.data(), bn_len, ecdsa_sig->r)); |
| ASSERT_TRUE(BN_bin2bn(raw_buf.data() + bn_len, bn_len, ecdsa_sig->s)); |
| VerifyECDSASig(api, digest, digest_len, ecdsa_sig, eckey, 0); |
| |
| // Sanity check: Undo the modification and verify signature. |
| raw_buf[offset] ^= dirt; |
| ASSERT_TRUE(BN_bin2bn(raw_buf.data(), bn_len, ecdsa_sig->r)); |
| ASSERT_TRUE(BN_bin2bn(raw_buf.data() + bn_len, bn_len, ecdsa_sig->s)); |
| VerifyECDSASig(api, digest, digest_len, ecdsa_sig, eckey, 1); |
| } |
| |
| TEST(ECDSATest, BuiltinCurves) { |
| // Fill digest values with some random data. |
| uint8_t digest[20], wrong_digest[20]; |
| ASSERT_TRUE(RAND_bytes(digest, 20)); |
| ASSERT_TRUE(RAND_bytes(wrong_digest, 20)); |
| |
| static const struct { |
| int nid; |
| const char *name; |
| } kCurves[] = { |
| { NID_secp224r1, "secp224r1" }, |
| { NID_X9_62_prime256v1, "secp256r1" }, |
| { NID_secp384r1, "secp384r1" }, |
| { NID_secp521r1, "secp521r1" }, |
| }; |
| |
| for (const auto &curve : kCurves) { |
| SCOPED_TRACE(curve.name); |
| |
| int nid = curve.nid; |
| bssl::UniquePtr<EC_GROUP> group(EC_GROUP_new_by_curve_name(nid)); |
| ASSERT_TRUE(group); |
| const BIGNUM *order = EC_GROUP_get0_order(group.get()); |
| |
| // Create a new ECDSA key. |
| bssl::UniquePtr<EC_KEY> eckey(EC_KEY_new()); |
| ASSERT_TRUE(eckey); |
| ASSERT_TRUE(EC_KEY_set_group(eckey.get(), group.get())); |
| ASSERT_TRUE(EC_KEY_generate_key(eckey.get())); |
| |
| // Create a second key. |
| bssl::UniquePtr<EC_KEY> wrong_eckey(EC_KEY_new()); |
| ASSERT_TRUE(wrong_eckey); |
| ASSERT_TRUE(EC_KEY_set_group(wrong_eckey.get(), group.get())); |
| ASSERT_TRUE(EC_KEY_generate_key(wrong_eckey.get())); |
| |
| // Check the key. |
| EXPECT_TRUE(EC_KEY_check_key(eckey.get())); |
| |
| // Test ASN.1-encoded signatures. |
| // Create a signature. |
| unsigned sig_len = ECDSA_size(eckey.get()); |
| std::vector<uint8_t> signature(sig_len); |
| ASSERT_TRUE( |
| ECDSA_sign(0, digest, 20, signature.data(), &sig_len, eckey.get())); |
| signature.resize(sig_len); |
| |
| // Verify the signature. |
| EXPECT_TRUE(ECDSA_verify(0, digest, 20, signature.data(), signature.size(), |
| eckey.get())); |
| |
| // Verify the signature with the wrong key. |
| EXPECT_FALSE(ECDSA_verify(0, digest, 20, signature.data(), signature.size(), |
| wrong_eckey.get())); |
| ERR_clear_error(); |
| |
| // Verify the signature using the wrong digest. |
| EXPECT_FALSE(ECDSA_verify(0, wrong_digest, 20, signature.data(), |
| signature.size(), eckey.get())); |
| ERR_clear_error(); |
| |
| // Verify a truncated signature. |
| EXPECT_FALSE(ECDSA_verify(0, digest, 20, signature.data(), |
| signature.size() - 1, eckey.get())); |
| ERR_clear_error(); |
| |
| // Verify a tampered signature. |
| bssl::UniquePtr<ECDSA_SIG> ecdsa_sig( |
| ECDSA_SIG_from_bytes(signature.data(), signature.size())); |
| ASSERT_TRUE(ecdsa_sig); |
| TestTamperedSig(kEncodedAPI, digest, 20, ecdsa_sig.get(), eckey.get(), |
| order); |
| |
| // Test ECDSA_SIG signing and verification. |
| // Create a signature. |
| ecdsa_sig.reset(ECDSA_do_sign(digest, 20, eckey.get())); |
| ASSERT_TRUE(ecdsa_sig); |
| |
| // Verify the signature using the correct key. |
| EXPECT_TRUE(ECDSA_do_verify(digest, 20, ecdsa_sig.get(), eckey.get())); |
| |
| // Verify the signature with the wrong key. |
| EXPECT_FALSE( |
| ECDSA_do_verify(digest, 20, ecdsa_sig.get(), wrong_eckey.get())); |
| ERR_clear_error(); |
| |
| // Verify the signature using the wrong digest. |
| EXPECT_FALSE( |
| ECDSA_do_verify(wrong_digest, 20, ecdsa_sig.get(), eckey.get())); |
| ERR_clear_error(); |
| |
| // Verify a tampered signature. |
| TestTamperedSig(kRawAPI, digest, 20, ecdsa_sig.get(), eckey.get(), order); |
| } |
| } |
| |
| static size_t BitsToBytes(size_t bits) { |
| return (bits / 8) + (7 + (bits % 8)) / 8; |
| } |
| |
| TEST(ECDSATest, MaxSigLen) { |
| static const size_t kBits[] = {224, 256, 384, 521, 10000}; |
| for (size_t bits : kBits) { |
| SCOPED_TRACE(bits); |
| size_t order_len = BitsToBytes(bits); |
| |
| // Create the largest possible |ECDSA_SIG| of the given constraints. |
| bssl::UniquePtr<ECDSA_SIG> sig(ECDSA_SIG_new()); |
| ASSERT_TRUE(sig); |
| std::vector<uint8_t> bytes(order_len, 0xff); |
| ASSERT_TRUE(BN_bin2bn(bytes.data(), bytes.size(), sig->r)); |
| ASSERT_TRUE(BN_bin2bn(bytes.data(), bytes.size(), sig->s)); |
| // Serialize it. |
| uint8_t *der; |
| size_t der_len; |
| ASSERT_TRUE(ECDSA_SIG_to_bytes(&der, &der_len, sig.get())); |
| OPENSSL_free(der); |
| |
| EXPECT_EQ(der_len, ECDSA_SIG_max_len(order_len)); |
| } |
| } |
| |
| static bssl::UniquePtr<EC_GROUP> GetCurve(FileTest *t, const char *key) { |
| std::string curve_name; |
| if (!t->GetAttribute(&curve_name, key)) { |
| return nullptr; |
| } |
| |
| if (curve_name == "P-224") { |
| return bssl::UniquePtr<EC_GROUP>(EC_GROUP_new_by_curve_name(NID_secp224r1)); |
| } |
| if (curve_name == "P-256") { |
| return bssl::UniquePtr<EC_GROUP>( |
| EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1)); |
| } |
| if (curve_name == "P-384") { |
| return bssl::UniquePtr<EC_GROUP>(EC_GROUP_new_by_curve_name(NID_secp384r1)); |
| } |
| if (curve_name == "P-521") { |
| return bssl::UniquePtr<EC_GROUP>(EC_GROUP_new_by_curve_name(NID_secp521r1)); |
| } |
| |
| ADD_FAILURE() << "Unknown curve: " << curve_name; |
| return nullptr; |
| } |
| |
| static bssl::UniquePtr<BIGNUM> GetBIGNUM(FileTest *t, const char *key) { |
| std::vector<uint8_t> bytes; |
| if (!t->GetBytes(&bytes, key)) { |
| return nullptr; |
| } |
| |
| return bssl::UniquePtr<BIGNUM>(BN_bin2bn(bytes.data(), bytes.size(), nullptr)); |
| } |
| |
| TEST(ECDSATest, VerifyTestVectors) { |
| FileTestGTest("crypto/fipsmodule/ecdsa/ecdsa_verify_tests.txt", |
| [](FileTest *t) { |
| bssl::UniquePtr<EC_GROUP> group = GetCurve(t, "Curve"); |
| ASSERT_TRUE(group); |
| bssl::UniquePtr<BIGNUM> x = GetBIGNUM(t, "X"); |
| ASSERT_TRUE(x); |
| bssl::UniquePtr<BIGNUM> y = GetBIGNUM(t, "Y"); |
| ASSERT_TRUE(y); |
| bssl::UniquePtr<BIGNUM> r = GetBIGNUM(t, "R"); |
| ASSERT_TRUE(r); |
| bssl::UniquePtr<BIGNUM> s = GetBIGNUM(t, "S"); |
| ASSERT_TRUE(s); |
| std::vector<uint8_t> digest; |
| ASSERT_TRUE(t->GetBytes(&digest, "Digest")); |
| |
| bssl::UniquePtr<EC_KEY> key(EC_KEY_new()); |
| ASSERT_TRUE(key); |
| bssl::UniquePtr<EC_POINT> pub_key(EC_POINT_new(group.get())); |
| ASSERT_TRUE(pub_key); |
| bssl::UniquePtr<ECDSA_SIG> sig(ECDSA_SIG_new()); |
| ASSERT_TRUE(sig); |
| ASSERT_TRUE(EC_KEY_set_group(key.get(), group.get())); |
| ASSERT_TRUE(EC_POINT_set_affine_coordinates_GFp(group.get(), pub_key.get(), |
| x.get(), y.get(), nullptr)); |
| ASSERT_TRUE(EC_KEY_set_public_key(key.get(), pub_key.get())); |
| ASSERT_TRUE(BN_copy(sig->r, r.get())); |
| ASSERT_TRUE(BN_copy(sig->s, s.get())); |
| |
| EXPECT_EQ( |
| t->HasAttribute("Invalid") ? 0 : 1, |
| ECDSA_do_verify(digest.data(), digest.size(), sig.get(), key.get())); |
| }); |
| } |
| |
| TEST(ECDSATest, SignTestVectors) { |
| FileTestGTest("crypto/fipsmodule/ecdsa/ecdsa_sign_tests.txt", |
| [](FileTest *t) { |
| bssl::UniquePtr<EC_GROUP> group = GetCurve(t, "Curve"); |
| ASSERT_TRUE(group); |
| bssl::UniquePtr<BIGNUM> priv_key = GetBIGNUM(t, "Private"); |
| ASSERT_TRUE(priv_key); |
| bssl::UniquePtr<BIGNUM> x = GetBIGNUM(t, "X"); |
| ASSERT_TRUE(x); |
| bssl::UniquePtr<BIGNUM> y = GetBIGNUM(t, "Y"); |
| ASSERT_TRUE(y); |
| bssl::UniquePtr<BIGNUM> k = GetBIGNUM(t, "K"); |
| ASSERT_TRUE(k); |
| bssl::UniquePtr<BIGNUM> r = GetBIGNUM(t, "R"); |
| ASSERT_TRUE(r); |
| bssl::UniquePtr<BIGNUM> s = GetBIGNUM(t, "S"); |
| ASSERT_TRUE(s); |
| std::vector<uint8_t> digest; |
| ASSERT_TRUE(t->GetBytes(&digest, "Digest")); |
| |
| bssl::UniquePtr<EC_KEY> key(EC_KEY_new()); |
| ASSERT_TRUE(key); |
| bssl::UniquePtr<EC_POINT> pub_key(EC_POINT_new(group.get())); |
| ASSERT_TRUE(pub_key); |
| ASSERT_TRUE(EC_KEY_set_group(key.get(), group.get())); |
| ASSERT_TRUE(EC_KEY_set_private_key(key.get(), priv_key.get())); |
| ASSERT_TRUE(EC_POINT_set_affine_coordinates_GFp(group.get(), pub_key.get(), |
| x.get(), y.get(), nullptr)); |
| ASSERT_TRUE(EC_KEY_set_public_key(key.get(), pub_key.get())); |
| ASSERT_TRUE(EC_KEY_check_key(key.get())); |
| |
| // |ECDSA_do_sign_ex| expects |k| to already be inverted. |
| bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new()); |
| ASSERT_TRUE(ctx); |
| ASSERT_TRUE(BN_mod_inverse(k.get(), k.get(), |
| EC_GROUP_get0_order(group.get()), ctx.get())); |
| |
| bssl::UniquePtr<ECDSA_SIG> sig(ECDSA_do_sign_ex( |
| digest.data(), digest.size(), k.get(), r.get(), key.get())); |
| ASSERT_TRUE(sig); |
| |
| EXPECT_EQ(0, BN_cmp(r.get(), sig->r)); |
| EXPECT_EQ(0, BN_cmp(s.get(), sig->s)); |
| }); |
| } |