|  | // Copyright 2014 The BoringSSL Authors | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <string> | 
|  | #include <utility> | 
|  |  | 
|  | #include <gtest/gtest.h> | 
|  |  | 
|  | #include <openssl/bio.h> | 
|  | #include <openssl/crypto.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/mem.h> | 
|  |  | 
|  | #include "../internal.h" | 
|  | #include "../test/file_util.h" | 
|  | #include "../test/test_util.h" | 
|  |  | 
|  | #if !defined(OPENSSL_WINDOWS) | 
|  | #include <arpa/inet.h> | 
|  | #include <errno.h> | 
|  | #include <fcntl.h> | 
|  | #include <netinet/in.h> | 
|  | #include <poll.h> | 
|  | #include <string.h> | 
|  | #include <sys/socket.h> | 
|  | #include <unistd.h> | 
|  | #else | 
|  | #include <fcntl.h> | 
|  | #include <io.h> | 
|  | #include <winsock2.h> | 
|  | #include <ws2tcpip.h> | 
|  | #endif | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | #if !defined(OPENSSL_WINDOWS) | 
|  | using Socket = int; | 
|  | #define INVALID_SOCKET (-1) | 
|  | static int closesocket(int sock) { return close(sock); } | 
|  | static std::string LastSocketError() { return strerror(errno); } | 
|  | static const int kOpenReadOnlyBinary = O_RDONLY; | 
|  | static const int kOpenReadOnlyText = O_RDONLY; | 
|  | #else | 
|  | using Socket = SOCKET; | 
|  | static std::string LastSocketError() { | 
|  | char buf[DECIMAL_SIZE(int) + 1]; | 
|  | snprintf(buf, sizeof(buf), "%d", WSAGetLastError()); | 
|  | return buf; | 
|  | } | 
|  | static const int kOpenReadOnlyBinary = _O_RDONLY | _O_BINARY; | 
|  | static const int kOpenReadOnlyText = O_RDONLY | _O_TEXT; | 
|  | #endif | 
|  |  | 
|  | class OwnedSocket { | 
|  | public: | 
|  | OwnedSocket() = default; | 
|  | explicit OwnedSocket(Socket sock) : sock_(sock) {} | 
|  | OwnedSocket(OwnedSocket &&other) { *this = std::move(other); } | 
|  | ~OwnedSocket() { reset(); } | 
|  | OwnedSocket &operator=(OwnedSocket &&other) { | 
|  | reset(other.release()); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | bool is_valid() const { return sock_ != INVALID_SOCKET; } | 
|  | Socket get() const { return sock_; } | 
|  | Socket release() { return std::exchange(sock_, INVALID_SOCKET); } | 
|  |  | 
|  | void reset(Socket sock = INVALID_SOCKET) { | 
|  | if (is_valid()) { | 
|  | closesocket(sock_); | 
|  | } | 
|  |  | 
|  | sock_ = sock; | 
|  | } | 
|  |  | 
|  | private: | 
|  | Socket sock_ = INVALID_SOCKET; | 
|  | }; | 
|  |  | 
|  | struct SockaddrStorage { | 
|  | int family() const { return storage.ss_family; } | 
|  |  | 
|  | sockaddr *addr_mut() { return reinterpret_cast<sockaddr *>(&storage); } | 
|  | const sockaddr *addr() const { | 
|  | return reinterpret_cast<const sockaddr *>(&storage); | 
|  | } | 
|  |  | 
|  | sockaddr_in ToIPv4() const { | 
|  | if (family() != AF_INET || len != sizeof(sockaddr_in)) { | 
|  | abort(); | 
|  | } | 
|  | // These APIs were seemingly designed before C's strict aliasing rule, and | 
|  | // C++'s strict union handling. Make a copy so the compiler does not read | 
|  | // this as an aliasing violation. | 
|  | sockaddr_in ret; | 
|  | OPENSSL_memcpy(&ret, &storage, sizeof(ret)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | sockaddr_in6 ToIPv6() const { | 
|  | if (family() != AF_INET6 || len != sizeof(sockaddr_in6)) { | 
|  | abort(); | 
|  | } | 
|  | // These APIs were seemingly designed before C's strict aliasing rule, and | 
|  | // C++'s strict union handling. Make a copy so the compiler does not read | 
|  | // this as an aliasing violation. | 
|  | sockaddr_in6 ret; | 
|  | OPENSSL_memcpy(&ret, &storage, sizeof(ret)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | sockaddr_storage storage = {}; | 
|  | socklen_t len = sizeof(storage); | 
|  | }; | 
|  |  | 
|  | static OwnedSocket Bind(int family, const sockaddr *addr, socklen_t addr_len) { | 
|  | OwnedSocket sock(socket(family, SOCK_STREAM, 0)); | 
|  | if (!sock.is_valid()) { | 
|  | return OwnedSocket(); | 
|  | } | 
|  |  | 
|  | if (bind(sock.get(), addr, addr_len) != 0) { | 
|  | return OwnedSocket(); | 
|  | } | 
|  |  | 
|  | return sock; | 
|  | } | 
|  |  | 
|  | static OwnedSocket ListenLoopback(int backlog) { | 
|  | // Try binding to IPv6. | 
|  | sockaddr_in6 sin6; | 
|  | OPENSSL_memset(&sin6, 0, sizeof(sin6)); | 
|  | sin6.sin6_family = AF_INET6; | 
|  | if (inet_pton(AF_INET6, "::1", &sin6.sin6_addr) != 1) { | 
|  | return OwnedSocket(); | 
|  | } | 
|  | OwnedSocket sock = | 
|  | Bind(AF_INET6, reinterpret_cast<const sockaddr *>(&sin6), sizeof(sin6)); | 
|  | if (!sock.is_valid()) { | 
|  | // Try binding to IPv4. | 
|  | sockaddr_in sin; | 
|  | OPENSSL_memset(&sin, 0, sizeof(sin)); | 
|  | sin.sin_family = AF_INET; | 
|  | if (inet_pton(AF_INET, "127.0.0.1", &sin.sin_addr) != 1) { | 
|  | return OwnedSocket(); | 
|  | } | 
|  | sock = Bind(AF_INET, reinterpret_cast<const sockaddr *>(&sin), sizeof(sin)); | 
|  | } | 
|  | if (!sock.is_valid()) { | 
|  | return OwnedSocket(); | 
|  | } | 
|  |  | 
|  | if (listen(sock.get(), backlog) != 0) { | 
|  | return OwnedSocket(); | 
|  | } | 
|  |  | 
|  | return sock; | 
|  | } | 
|  |  | 
|  | static bool SocketSetNonBlocking(Socket sock) { | 
|  | #if defined(OPENSSL_WINDOWS) | 
|  | u_long arg = 1; | 
|  | return ioctlsocket(sock, FIONBIO, &arg) == 0; | 
|  | #else | 
|  | int flags = fcntl(sock, F_GETFL, 0); | 
|  | if (flags < 0) { | 
|  | return false; | 
|  | } | 
|  | flags |= O_NONBLOCK; | 
|  | return fcntl(sock, F_SETFL, flags) == 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | enum class WaitType { kRead, kWrite }; | 
|  |  | 
|  | static bool WaitForSocket(Socket sock, WaitType wait_type) { | 
|  | // Use an arbitrary 5 second timeout, so the test doesn't hang indefinitely if | 
|  | // there's an issue. | 
|  | static const int kTimeoutSeconds = 5; | 
|  | #if defined(OPENSSL_WINDOWS) | 
|  | fd_set read_set, write_set; | 
|  | FD_ZERO(&read_set); | 
|  | FD_ZERO(&write_set); | 
|  | fd_set *wait_set = wait_type == WaitType::kRead ? &read_set : &write_set; | 
|  | FD_SET(sock, wait_set); | 
|  | timeval timeout; | 
|  | timeout.tv_sec = kTimeoutSeconds; | 
|  | timeout.tv_usec = 0; | 
|  | if (select(0 /* unused on Windows */, &read_set, &write_set, nullptr, | 
|  | &timeout) <= 0) { | 
|  | return false; | 
|  | } | 
|  | return FD_ISSET(sock, wait_set); | 
|  | #else | 
|  | short events = wait_type == WaitType::kRead ? POLLIN : POLLOUT; | 
|  | pollfd fd = {/*fd=*/sock, events, /*revents=*/0}; | 
|  | return poll(&fd, 1, kTimeoutSeconds * 1000) == 1 && (fd.revents & events); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | TEST(BIOTest, SocketConnect) { | 
|  | static const char kTestMessage[] = "test"; | 
|  | OwnedSocket listening_sock = ListenLoopback(/*backlog=*/1); | 
|  | ASSERT_TRUE(listening_sock.is_valid()) << LastSocketError(); | 
|  |  | 
|  | SockaddrStorage addr; | 
|  | ASSERT_EQ(getsockname(listening_sock.get(), addr.addr_mut(), &addr.len), 0) | 
|  | << LastSocketError(); | 
|  |  | 
|  | char hostname[80]; | 
|  | if (addr.family() == AF_INET6) { | 
|  | snprintf(hostname, sizeof(hostname), "[::1]:%d", | 
|  | ntohs(addr.ToIPv6().sin6_port)); | 
|  | } else { | 
|  | snprintf(hostname, sizeof(hostname), "127.0.0.1:%d", | 
|  | ntohs(addr.ToIPv4().sin_port)); | 
|  | } | 
|  |  | 
|  | // Connect to it with a connect BIO. | 
|  | bssl::UniquePtr<BIO> bio(BIO_new_connect(hostname)); | 
|  | ASSERT_TRUE(bio); | 
|  |  | 
|  | // Write a test message to the BIO. This is assumed to be smaller than the | 
|  | // transport buffer. | 
|  | ASSERT_EQ(static_cast<int>(sizeof(kTestMessage)), | 
|  | BIO_write(bio.get(), kTestMessage, sizeof(kTestMessage))) | 
|  | << LastSocketError(); | 
|  |  | 
|  | // Accept the socket. | 
|  | OwnedSocket sock(accept(listening_sock.get(), addr.addr_mut(), &addr.len)); | 
|  | ASSERT_TRUE(sock.is_valid()) << LastSocketError(); | 
|  |  | 
|  | // Check the same message is read back out. | 
|  | char buf[sizeof(kTestMessage)]; | 
|  | ASSERT_EQ(static_cast<int>(sizeof(kTestMessage)), | 
|  | recv(sock.get(), buf, sizeof(buf), 0)) | 
|  | << LastSocketError(); | 
|  | EXPECT_EQ(Bytes(kTestMessage, sizeof(kTestMessage)), Bytes(buf, sizeof(buf))); | 
|  | } | 
|  |  | 
|  | TEST(BIOTest, SocketNonBlocking) { | 
|  | OwnedSocket listening_sock = ListenLoopback(/*backlog=*/1); | 
|  | ASSERT_TRUE(listening_sock.is_valid()) << LastSocketError(); | 
|  |  | 
|  | // Connect to |listening_sock|. | 
|  | SockaddrStorage addr; | 
|  | ASSERT_EQ(getsockname(listening_sock.get(), addr.addr_mut(), &addr.len), 0) | 
|  | << LastSocketError(); | 
|  | OwnedSocket connect_sock(socket(addr.family(), SOCK_STREAM, 0)); | 
|  | ASSERT_TRUE(connect_sock.is_valid()) << LastSocketError(); | 
|  | ASSERT_EQ(connect(connect_sock.get(), addr.addr(), addr.len), 0) | 
|  | << LastSocketError(); | 
|  | ASSERT_TRUE(SocketSetNonBlocking(connect_sock.get())) << LastSocketError(); | 
|  | bssl::UniquePtr<BIO> connect_bio( | 
|  | BIO_new_socket(connect_sock.get(), BIO_NOCLOSE)); | 
|  | ASSERT_TRUE(connect_bio); | 
|  |  | 
|  | // Make a corresponding accepting socket. | 
|  | OwnedSocket accept_sock( | 
|  | accept(listening_sock.get(), addr.addr_mut(), &addr.len)); | 
|  | ASSERT_TRUE(accept_sock.is_valid()) << LastSocketError(); | 
|  | ASSERT_TRUE(SocketSetNonBlocking(accept_sock.get())) << LastSocketError(); | 
|  | bssl::UniquePtr<BIO> accept_bio( | 
|  | BIO_new_socket(accept_sock.get(), BIO_NOCLOSE)); | 
|  | ASSERT_TRUE(accept_bio); | 
|  |  | 
|  | // Exchange data through the socket. | 
|  | static const char kTestMessage[] = "hello, world"; | 
|  |  | 
|  | // Reading from |accept_bio| should not block. | 
|  | char buf[sizeof(kTestMessage)]; | 
|  | int ret = BIO_read(accept_bio.get(), buf, sizeof(buf)); | 
|  | EXPECT_EQ(ret, -1); | 
|  | EXPECT_TRUE(BIO_should_read(accept_bio.get())) << LastSocketError(); | 
|  |  | 
|  | // Writing to |connect_bio| should eventually overflow the transport buffers | 
|  | // and also give a retryable error. | 
|  | int bytes_written = 0; | 
|  | for (;;) { | 
|  | ret = BIO_write(connect_bio.get(), kTestMessage, sizeof(kTestMessage)); | 
|  | if (ret <= 0) { | 
|  | EXPECT_EQ(ret, -1); | 
|  | EXPECT_TRUE(BIO_should_write(connect_bio.get())) << LastSocketError(); | 
|  | break; | 
|  | } | 
|  | bytes_written += ret; | 
|  | } | 
|  | EXPECT_GT(bytes_written, 0); | 
|  |  | 
|  | // |accept_bio| should readable. Drain it. Note data is not always available | 
|  | // from loopback immediately, notably on macOS, so wait for the socket first. | 
|  | int bytes_read = 0; | 
|  | while (bytes_read < bytes_written) { | 
|  | ASSERT_TRUE(WaitForSocket(accept_sock.get(), WaitType::kRead)) | 
|  | << LastSocketError(); | 
|  | ret = BIO_read(accept_bio.get(), buf, sizeof(buf)); | 
|  | ASSERT_GT(ret, 0); | 
|  | bytes_read += ret; | 
|  | } | 
|  |  | 
|  | // |connect_bio| should become writeable again. | 
|  | ASSERT_TRUE(WaitForSocket(accept_sock.get(), WaitType::kWrite)) | 
|  | << LastSocketError(); | 
|  | ret = BIO_write(connect_bio.get(), kTestMessage, sizeof(kTestMessage)); | 
|  | EXPECT_EQ(static_cast<int>(sizeof(kTestMessage)), ret); | 
|  |  | 
|  | ASSERT_TRUE(WaitForSocket(accept_sock.get(), WaitType::kRead)) | 
|  | << LastSocketError(); | 
|  | ret = BIO_read(accept_bio.get(), buf, sizeof(buf)); | 
|  | EXPECT_EQ(static_cast<int>(sizeof(kTestMessage)), ret); | 
|  | EXPECT_EQ(Bytes(buf), Bytes(kTestMessage)); | 
|  |  | 
|  | // Close one socket. We should get an EOF out the other. | 
|  | connect_bio.reset(); | 
|  | connect_sock.reset(); | 
|  |  | 
|  | ASSERT_TRUE(WaitForSocket(accept_sock.get(), WaitType::kRead)) | 
|  | << LastSocketError(); | 
|  | ret = BIO_read(accept_bio.get(), buf, sizeof(buf)); | 
|  | EXPECT_EQ(ret, 0) << LastSocketError(); | 
|  | EXPECT_FALSE(BIO_should_read(accept_bio.get())); | 
|  | } | 
|  |  | 
|  | TEST(BIOTest, Printf) { | 
|  | // Test a short output, a very long one, and various sizes around | 
|  | // 256 (the size of the buffer) to ensure edge cases are correct. | 
|  | static const size_t kLengths[] = {5, 250, 251, 252, 253, 254, 1023}; | 
|  |  | 
|  | bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem())); | 
|  | ASSERT_TRUE(bio); | 
|  |  | 
|  | for (size_t length : kLengths) { | 
|  | SCOPED_TRACE(length); | 
|  |  | 
|  | std::string in(length, 'a'); | 
|  |  | 
|  | int ret = BIO_printf(bio.get(), "test %s", in.c_str()); | 
|  | ASSERT_GE(ret, 0); | 
|  | EXPECT_EQ(5 + length, static_cast<size_t>(ret)); | 
|  |  | 
|  | const uint8_t *contents; | 
|  | size_t len; | 
|  | ASSERT_TRUE(BIO_mem_contents(bio.get(), &contents, &len)); | 
|  | EXPECT_EQ("test " + in, bssl::BytesAsStringView(bssl::Span(contents, len))); | 
|  |  | 
|  | ASSERT_TRUE(BIO_reset(bio.get())); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(BIOTest, ReadASN1) { | 
|  | static const size_t kLargeASN1PayloadLen = 8000; | 
|  |  | 
|  | struct ASN1Test { | 
|  | bool should_succeed; | 
|  | std::vector<uint8_t> input; | 
|  | // suffix_len is the number of zeros to append to |input|. | 
|  | size_t suffix_len; | 
|  | // expected_len, if |should_succeed| is true, is the expected length of the | 
|  | // ASN.1 element. | 
|  | size_t expected_len; | 
|  | size_t max_len; | 
|  | } kASN1Tests[] = { | 
|  | {true, {0x30, 2, 1, 2, 0, 0}, 0, 4, 100}, | 
|  | {false /* truncated */, {0x30, 3, 1, 2}, 0, 0, 100}, | 
|  | {false /* should be short len */, {0x30, 0x81, 1, 1}, 0, 0, 100}, | 
|  | {false /* zero padded */, {0x30, 0x82, 0, 1, 1}, 0, 0, 100}, | 
|  |  | 
|  | // Test a large payload. | 
|  | {true, | 
|  | {0x30, 0x82, kLargeASN1PayloadLen >> 8, kLargeASN1PayloadLen & 0xff}, | 
|  | kLargeASN1PayloadLen, | 
|  | 4 + kLargeASN1PayloadLen, | 
|  | kLargeASN1PayloadLen * 2}, | 
|  | {false /* max_len too short */, | 
|  | {0x30, 0x82, kLargeASN1PayloadLen >> 8, kLargeASN1PayloadLen & 0xff}, | 
|  | kLargeASN1PayloadLen, | 
|  | 4 + kLargeASN1PayloadLen, | 
|  | 3 + kLargeASN1PayloadLen}, | 
|  |  | 
|  | // Test an indefinite-length input. | 
|  | {true, | 
|  | {0x30, 0x80}, | 
|  | kLargeASN1PayloadLen + 2, | 
|  | 2 + kLargeASN1PayloadLen + 2, | 
|  | kLargeASN1PayloadLen * 2}, | 
|  | {false /* max_len too short */, | 
|  | {0x30, 0x80}, | 
|  | kLargeASN1PayloadLen + 2, | 
|  | 2 + kLargeASN1PayloadLen + 2, | 
|  | 2 + kLargeASN1PayloadLen + 1}, | 
|  | }; | 
|  |  | 
|  | for (const auto &t : kASN1Tests) { | 
|  | std::vector<uint8_t> input = t.input; | 
|  | input.resize(input.size() + t.suffix_len, 0); | 
|  |  | 
|  | bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(input.data(), input.size())); | 
|  | ASSERT_TRUE(bio); | 
|  |  | 
|  | uint8_t *out; | 
|  | size_t out_len; | 
|  | int ok = BIO_read_asn1(bio.get(), &out, &out_len, t.max_len); | 
|  | if (!ok) { | 
|  | out = nullptr; | 
|  | } | 
|  | bssl::UniquePtr<uint8_t> out_storage(out); | 
|  |  | 
|  | ASSERT_EQ(t.should_succeed, (ok == 1)); | 
|  | if (t.should_succeed) { | 
|  | EXPECT_EQ(Bytes(input.data(), t.expected_len), Bytes(out, out_len)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(BIOTest, MemReadOnly) { | 
|  | // A memory BIO created from |BIO_new_mem_buf| is a read-only buffer. | 
|  | static const char kData[] = "abcdefghijklmno"; | 
|  | bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kData, strlen(kData))); | 
|  | ASSERT_TRUE(bio); | 
|  |  | 
|  | // Writing to read-only buffers should fail. | 
|  | EXPECT_EQ(BIO_write(bio.get(), kData, strlen(kData)), -1); | 
|  |  | 
|  | const uint8_t *contents; | 
|  | size_t len; | 
|  | ASSERT_TRUE(BIO_mem_contents(bio.get(), &contents, &len)); | 
|  | EXPECT_EQ(Bytes(contents, len), Bytes(kData)); | 
|  | EXPECT_EQ(BIO_eof(bio.get()), 0); | 
|  |  | 
|  | // Read less than the whole buffer. | 
|  | char buf[6]; | 
|  | int ret = BIO_read(bio.get(), buf, sizeof(buf)); | 
|  | ASSERT_GT(ret, 0); | 
|  | EXPECT_EQ(Bytes(buf, ret), Bytes("abcdef")); | 
|  |  | 
|  | ASSERT_TRUE(BIO_mem_contents(bio.get(), &contents, &len)); | 
|  | EXPECT_EQ(Bytes(contents, len), Bytes("ghijklmno")); | 
|  | EXPECT_EQ(BIO_eof(bio.get()), 0); | 
|  |  | 
|  | ret = BIO_read(bio.get(), buf, sizeof(buf)); | 
|  | ASSERT_GT(ret, 0); | 
|  | EXPECT_EQ(Bytes(buf, ret), Bytes("ghijkl")); | 
|  |  | 
|  | ASSERT_TRUE(BIO_mem_contents(bio.get(), &contents, &len)); | 
|  | EXPECT_EQ(Bytes(contents, len), Bytes("mno")); | 
|  | EXPECT_EQ(BIO_eof(bio.get()), 0); | 
|  |  | 
|  | // Read the remainder of the buffer. | 
|  | ret = BIO_read(bio.get(), buf, sizeof(buf)); | 
|  | ASSERT_GT(ret, 0); | 
|  | EXPECT_EQ(Bytes(buf, ret), Bytes("mno")); | 
|  |  | 
|  | ASSERT_TRUE(BIO_mem_contents(bio.get(), &contents, &len)); | 
|  | EXPECT_EQ(Bytes(contents, len), Bytes("")); | 
|  | EXPECT_EQ(BIO_eof(bio.get()), 1); | 
|  |  | 
|  | // By default, reading from a consumed read-only buffer returns EOF. | 
|  | EXPECT_EQ(BIO_read(bio.get(), buf, sizeof(buf)), 0); | 
|  | EXPECT_FALSE(BIO_should_read(bio.get())); | 
|  |  | 
|  | // A memory BIO can be configured to return an error instead of EOF. This is | 
|  | // error is returned as retryable. (This is not especially useful here. It | 
|  | // makes more sense for a writable BIO.) | 
|  | EXPECT_EQ(BIO_set_mem_eof_return(bio.get(), -1), 1); | 
|  | EXPECT_EQ(BIO_read(bio.get(), buf, sizeof(buf)), -1); | 
|  | EXPECT_TRUE(BIO_should_read(bio.get())); | 
|  |  | 
|  | // Read exactly the right number of bytes, to test the boundary condition is | 
|  | // correct. | 
|  | bio.reset(BIO_new_mem_buf("abc", 3)); | 
|  | ASSERT_TRUE(bio); | 
|  | ret = BIO_read(bio.get(), buf, 3); | 
|  | ASSERT_GT(ret, 0); | 
|  | EXPECT_EQ(Bytes(buf, ret), Bytes("abc")); | 
|  | EXPECT_EQ(BIO_eof(bio.get()), 1); | 
|  | } | 
|  |  | 
|  | TEST(BIOTest, MemWritable) { | 
|  | // A memory BIO created from |BIO_new| is writable. | 
|  | bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem())); | 
|  | ASSERT_TRUE(bio); | 
|  |  | 
|  | auto check_bio_contents = [&](Bytes b) { | 
|  | const uint8_t *contents; | 
|  | size_t len; | 
|  | ASSERT_TRUE(BIO_mem_contents(bio.get(), &contents, &len)); | 
|  | EXPECT_EQ(Bytes(contents, len), b); | 
|  |  | 
|  | char *contents_c; | 
|  | long len_l = BIO_get_mem_data(bio.get(), &contents_c); | 
|  | ASSERT_GE(len_l, 0); | 
|  | EXPECT_EQ(Bytes(contents_c, len_l), b); | 
|  |  | 
|  | BUF_MEM *buf; | 
|  | ASSERT_EQ(BIO_get_mem_ptr(bio.get(), &buf), 1); | 
|  | EXPECT_EQ(Bytes(buf->data, buf->length), b); | 
|  | }; | 
|  |  | 
|  | // It is initially empty. | 
|  | check_bio_contents(Bytes("")); | 
|  | EXPECT_EQ(BIO_eof(bio.get()), 1); | 
|  |  | 
|  | // Reading from it should default to returning a retryable error. | 
|  | char buf[32]; | 
|  | EXPECT_EQ(BIO_read(bio.get(), buf, sizeof(buf)), -1); | 
|  | EXPECT_TRUE(BIO_should_read(bio.get())); | 
|  |  | 
|  | // This can be configured to return an EOF. | 
|  | EXPECT_EQ(BIO_set_mem_eof_return(bio.get(), 0), 1); | 
|  | EXPECT_EQ(BIO_read(bio.get(), buf, sizeof(buf)), 0); | 
|  | EXPECT_FALSE(BIO_should_read(bio.get())); | 
|  |  | 
|  | // Restore the default. A writable memory |BIO| is typically used in this mode | 
|  | // so additional data can be written when exhausted. | 
|  | EXPECT_EQ(BIO_set_mem_eof_return(bio.get(), -1), 1); | 
|  |  | 
|  | // Writes append to the buffer. | 
|  | ASSERT_EQ(BIO_write(bio.get(), "abcdef", 6), 6); | 
|  | check_bio_contents(Bytes("abcdef")); | 
|  | EXPECT_EQ(BIO_eof(bio.get()), 0); | 
|  |  | 
|  | // Writes can include embedded NULs. | 
|  | ASSERT_EQ(BIO_write(bio.get(), "\0ghijk", 6), 6); | 
|  | check_bio_contents(Bytes("abcdef\0ghijk", 12)); | 
|  | EXPECT_EQ(BIO_eof(bio.get()), 0); | 
|  |  | 
|  | // Do a partial read. | 
|  | int ret = BIO_read(bio.get(), buf, 4); | 
|  | ASSERT_GT(ret, 0); | 
|  | EXPECT_EQ(Bytes(buf, ret), Bytes("abcd")); | 
|  | check_bio_contents(Bytes("ef\0ghijk", 8)); | 
|  | EXPECT_EQ(BIO_eof(bio.get()), 0); | 
|  |  | 
|  | // Reads and writes may alternate. | 
|  | ASSERT_EQ(BIO_write(bio.get(), "lmnopq", 6), 6); | 
|  | check_bio_contents(Bytes("ef\0ghijklmnopq", 14)); | 
|  | EXPECT_EQ(BIO_eof(bio.get()), 0); | 
|  |  | 
|  | // Reads may consume embedded NULs. | 
|  | ret = BIO_read(bio.get(), buf, 4); | 
|  | ASSERT_GT(ret, 0); | 
|  | EXPECT_EQ(Bytes(buf, ret), Bytes("ef\0g", 4)); | 
|  | check_bio_contents(Bytes("hijklmnopq")); | 
|  | EXPECT_EQ(BIO_eof(bio.get()), 0); | 
|  |  | 
|  | // The read buffer exceeds the |BIO|, so we consume everything. | 
|  | ret = BIO_read(bio.get(), buf, sizeof(buf)); | 
|  | ASSERT_GT(ret, 0); | 
|  | EXPECT_EQ(Bytes(buf, ret), Bytes("hijklmnopq")); | 
|  | check_bio_contents(Bytes("")); | 
|  | EXPECT_EQ(BIO_eof(bio.get()), 1); | 
|  |  | 
|  | // The |BIO| is now empty. | 
|  | EXPECT_EQ(BIO_read(bio.get(), buf, sizeof(buf)), -1); | 
|  | EXPECT_TRUE(BIO_should_read(bio.get())); | 
|  |  | 
|  | // Repeat the above, reading exactly the right number of bytes, to test the | 
|  | // boundary condition is correct. | 
|  | ASSERT_EQ(BIO_write(bio.get(), "abc", 3), 3); | 
|  | ret = BIO_read(bio.get(), buf, 3); | 
|  | EXPECT_EQ(Bytes(buf, ret), Bytes("abc")); | 
|  | EXPECT_EQ(BIO_read(bio.get(), buf, sizeof(buf)), -1); | 
|  | EXPECT_TRUE(BIO_should_read(bio.get())); | 
|  | EXPECT_EQ(BIO_eof(bio.get()), 1); | 
|  | } | 
|  |  | 
|  | TEST(BIOTest, Gets) { | 
|  | const struct { | 
|  | std::string bio; | 
|  | int gets_len; | 
|  | std::string gets_result; | 
|  | } kGetsTests[] = { | 
|  | // BIO_gets should stop at the first newline. If the buffer is too small, | 
|  | // stop there instead. Note the buffer size | 
|  | // includes a trailing NUL. | 
|  | {"123456789\n123456789", 5, "1234"}, | 
|  | {"123456789\n123456789", 9, "12345678"}, | 
|  | {"123456789\n123456789", 10, "123456789"}, | 
|  | {"123456789\n123456789", 11, "123456789\n"}, | 
|  | {"123456789\n123456789", 12, "123456789\n"}, | 
|  | {"123456789\n123456789", 256, "123456789\n"}, | 
|  |  | 
|  | // If we run out of buffer, read the whole buffer. | 
|  | {"12345", 5, "1234"}, | 
|  | {"12345", 6, "12345"}, | 
|  | {"12345", 10, "12345"}, | 
|  |  | 
|  | // NUL bytes do not terminate gets. | 
|  | {std::string("abc\0def\nghi", 11), 256, std::string("abc\0def\n", 8)}, | 
|  |  | 
|  | // An output size of one means we cannot read any bytes. Only the trailing | 
|  | // NUL is included. | 
|  | {"12345", 1, ""}, | 
|  |  | 
|  | // Empty line. | 
|  | {"\nabcdef", 256, "\n"}, | 
|  | // Empty BIO. | 
|  | {"", 256, ""}, | 
|  | }; | 
|  | for (const auto &t : kGetsTests) { | 
|  | SCOPED_TRACE(t.bio); | 
|  | SCOPED_TRACE(t.gets_len); | 
|  |  | 
|  | auto check_bio_gets = [&](BIO *bio) { | 
|  | std::vector<char> buf(t.gets_len, 'a'); | 
|  | int ret = BIO_gets(bio, buf.data(), t.gets_len); | 
|  | ASSERT_GE(ret, 0); | 
|  | // |BIO_gets| should write a NUL terminator, not counted in the return | 
|  | // value. | 
|  | EXPECT_EQ(Bytes(buf.data(), ret + 1), | 
|  | Bytes(t.gets_result.data(), t.gets_result.size() + 1)); | 
|  |  | 
|  | // The remaining data should still be in the BIO. | 
|  | buf.resize(t.bio.size() + 1); | 
|  | ret = BIO_read(bio, buf.data(), static_cast<int>(buf.size())); | 
|  | ASSERT_GE(ret, 0); | 
|  | EXPECT_EQ(Bytes(buf.data(), ret), | 
|  | Bytes(t.bio.substr(t.gets_result.size()))); | 
|  | }; | 
|  |  | 
|  | { | 
|  | SCOPED_TRACE("memory"); | 
|  | bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(t.bio.data(), t.bio.size())); | 
|  | ASSERT_TRUE(bio); | 
|  | check_bio_gets(bio.get()); | 
|  | } | 
|  |  | 
|  | if (!bssl::SkipTempFileTests()) { | 
|  | bssl::TemporaryFile file; | 
|  | ASSERT_TRUE(file.Init(t.bio)); | 
|  |  | 
|  | // TODO(crbug.com/boringssl/585): If the line has an embedded NUL, file | 
|  | // BIOs do not currently report the answer correctly. | 
|  | if (t.bio.find('\0') == std::string::npos) { | 
|  | SCOPED_TRACE("file"); | 
|  |  | 
|  | // Test |BIO_new_file|. | 
|  | bssl::UniquePtr<BIO> bio(BIO_new_file(file.path().c_str(), "rb")); | 
|  | ASSERT_TRUE(bio); | 
|  | check_bio_gets(bio.get()); | 
|  |  | 
|  | // Test |BIO_read_filename|. | 
|  | bio.reset(BIO_new(BIO_s_file())); | 
|  | ASSERT_TRUE(bio); | 
|  | ASSERT_TRUE(BIO_read_filename(bio.get(), file.path().c_str())); | 
|  | check_bio_gets(bio.get()); | 
|  |  | 
|  | // Test |BIO_NOCLOSE|. | 
|  | bssl::ScopedFILE file_obj = file.Open("rb"); | 
|  | ASSERT_TRUE(file_obj); | 
|  | bio.reset(BIO_new_fp(file_obj.get(), BIO_NOCLOSE)); | 
|  | ASSERT_TRUE(bio); | 
|  | check_bio_gets(bio.get()); | 
|  |  | 
|  | // Test |BIO_CLOSE|. | 
|  | file_obj = file.Open("rb"); | 
|  | ASSERT_TRUE(file_obj); | 
|  | bio.reset(BIO_new_fp(file_obj.get(), BIO_CLOSE)); | 
|  | ASSERT_TRUE(bio); | 
|  | file_obj.release();  // |BIO_new_fp| took ownership on success. | 
|  | check_bio_gets(bio.get()); | 
|  | } | 
|  |  | 
|  | { | 
|  | SCOPED_TRACE("fd"); | 
|  |  | 
|  | // Test |BIO_NOCLOSE|. | 
|  | bssl::ScopedFD fd = file.OpenFD(kOpenReadOnlyBinary); | 
|  | ASSERT_TRUE(fd.is_valid()); | 
|  | bssl::UniquePtr<BIO> bio(BIO_new_fd(fd.get(), BIO_NOCLOSE)); | 
|  | ASSERT_TRUE(bio); | 
|  | check_bio_gets(bio.get()); | 
|  |  | 
|  | // Test |BIO_CLOSE|. | 
|  | fd = file.OpenFD(kOpenReadOnlyBinary); | 
|  | ASSERT_TRUE(fd.is_valid()); | 
|  | bio.reset(BIO_new_fd(fd.get(), BIO_CLOSE)); | 
|  | ASSERT_TRUE(bio); | 
|  | fd.release();  // |BIO_new_fd| took ownership on success. | 
|  | check_bio_gets(bio.get()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Negative and zero lengths should not output anything, even a trailing NUL. | 
|  | bssl::UniquePtr<BIO> bio(BIO_new_mem_buf("12345", -1)); | 
|  | ASSERT_TRUE(bio); | 
|  | char c = 'a'; | 
|  | EXPECT_EQ(0, BIO_gets(bio.get(), &c, -1)); | 
|  | EXPECT_EQ(0, BIO_gets(bio.get(), &c, 0)); | 
|  | EXPECT_EQ(c, 'a'); | 
|  | } | 
|  |  | 
|  | // Test that, on Windows, file BIOs correctly handle text vs binary mode. | 
|  | TEST(BIOTest, FileMode) { | 
|  | if (bssl::SkipTempFileTests()) { | 
|  | GTEST_SKIP(); | 
|  | } | 
|  |  | 
|  | bssl::TemporaryFile temp; | 
|  | ASSERT_TRUE(temp.Init("hello\r\nworld")); | 
|  |  | 
|  | auto expect_file_contents = [](BIO *bio, const std::string &str) { | 
|  | // Read more than expected, to make sure we've reached the end of the file. | 
|  | std::vector<char> buf(str.size() + 100); | 
|  | int len = BIO_read(bio, buf.data(), static_cast<int>(buf.size())); | 
|  | ASSERT_GT(len, 0); | 
|  | EXPECT_EQ(Bytes(buf.data(), len), Bytes(str)); | 
|  | }; | 
|  | auto expect_binary_mode = [&](BIO *bio) { | 
|  | expect_file_contents(bio, "hello\r\nworld"); | 
|  | }; | 
|  | auto expect_text_mode = [&](BIO *bio) { | 
|  | #if defined(OPENSSL_WINDOWS) | 
|  | expect_file_contents(bio, "hello\nworld"); | 
|  | #else | 
|  | expect_file_contents(bio, "hello\r\nworld"); | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | // |BIO_read_filename| should open in binary mode. | 
|  | bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_file())); | 
|  | ASSERT_TRUE(bio); | 
|  | ASSERT_TRUE(BIO_read_filename(bio.get(), temp.path().c_str())); | 
|  | expect_binary_mode(bio.get()); | 
|  |  | 
|  | // |BIO_new_file| should use the specified mode. | 
|  | bio.reset(BIO_new_file(temp.path().c_str(), "rb")); | 
|  | ASSERT_TRUE(bio); | 
|  | expect_binary_mode(bio.get()); | 
|  |  | 
|  | bio.reset(BIO_new_file(temp.path().c_str(), "r")); | 
|  | ASSERT_TRUE(bio); | 
|  | expect_text_mode(bio.get()); | 
|  |  | 
|  | // |BIO_new_fp| inherits the file's existing mode by default. | 
|  | bssl::ScopedFILE file = temp.Open("rb"); | 
|  | ASSERT_TRUE(file); | 
|  | bio.reset(BIO_new_fp(file.get(), BIO_NOCLOSE)); | 
|  | ASSERT_TRUE(bio); | 
|  | expect_binary_mode(bio.get()); | 
|  |  | 
|  | file = temp.Open("r"); | 
|  | ASSERT_TRUE(file); | 
|  | bio.reset(BIO_new_fp(file.get(), BIO_NOCLOSE)); | 
|  | ASSERT_TRUE(bio); | 
|  | expect_text_mode(bio.get()); | 
|  |  | 
|  | // However, |BIO_FP_TEXT| changes the file to be text mode, no matter how it | 
|  | // was opened. | 
|  | file = temp.Open("rb"); | 
|  | ASSERT_TRUE(file); | 
|  | bio.reset(BIO_new_fp(file.get(), BIO_NOCLOSE | BIO_FP_TEXT)); | 
|  | ASSERT_TRUE(bio); | 
|  | expect_text_mode(bio.get()); | 
|  |  | 
|  | file = temp.Open("r"); | 
|  | ASSERT_TRUE(file); | 
|  | bio.reset(BIO_new_fp(file.get(), BIO_NOCLOSE | BIO_FP_TEXT)); | 
|  | ASSERT_TRUE(bio); | 
|  | expect_text_mode(bio.get()); | 
|  |  | 
|  | // |BIO_new_fd| inherits the FD's existing mode. | 
|  | bssl::ScopedFD fd = temp.OpenFD(kOpenReadOnlyBinary); | 
|  | ASSERT_TRUE(fd.is_valid()); | 
|  | bio.reset(BIO_new_fd(fd.get(), BIO_NOCLOSE)); | 
|  | ASSERT_TRUE(bio); | 
|  | expect_binary_mode(bio.get()); | 
|  |  | 
|  | fd = temp.OpenFD(kOpenReadOnlyText); | 
|  | ASSERT_TRUE(fd.is_valid()); | 
|  | bio.reset(BIO_new_fd(fd.get(), BIO_NOCLOSE)); | 
|  | ASSERT_TRUE(bio); | 
|  | expect_text_mode(bio.get()); | 
|  | } | 
|  |  | 
|  | // Run through the tests twice, swapping |bio1| and |bio2|, for symmetry. | 
|  | class BIOPairTest : public testing::TestWithParam<bool> {}; | 
|  |  | 
|  | TEST_P(BIOPairTest, TestPair) { | 
|  | BIO *bio1_raw, *bio2_raw; | 
|  | ASSERT_TRUE(BIO_new_bio_pair(&bio1_raw, 10, &bio2_raw, 10)); | 
|  | bssl::UniquePtr<BIO> bio1(bio1_raw), bio2(bio2_raw); | 
|  |  | 
|  | if (GetParam()) { | 
|  | std::swap(bio1, bio2); | 
|  | } | 
|  |  | 
|  | // Check initial states. | 
|  | EXPECT_EQ(10u, BIO_ctrl_get_write_guarantee(bio1.get())); | 
|  | EXPECT_EQ(0u, BIO_ctrl_get_read_request(bio1.get())); | 
|  | EXPECT_FALSE(BIO_eof(bio1.get())); | 
|  | EXPECT_EQ(0u, BIO_pending(bio1.get())); | 
|  | EXPECT_EQ(0u, BIO_wpending(bio1.get())); | 
|  |  | 
|  | // Data written in one end may be read out the other. | 
|  | uint8_t buf[20]; | 
|  | EXPECT_EQ(5, BIO_write(bio1.get(), "12345", 5)); | 
|  | EXPECT_EQ(5u, BIO_ctrl_get_write_guarantee(bio1.get())); | 
|  | EXPECT_EQ(5u, BIO_pending(bio2.get())); | 
|  | EXPECT_EQ(5u, BIO_wpending(bio1.get())); | 
|  | ASSERT_EQ(5, BIO_read(bio2.get(), buf, sizeof(buf))); | 
|  | EXPECT_EQ(Bytes("12345"), Bytes(buf, 5)); | 
|  | EXPECT_EQ(10u, BIO_ctrl_get_write_guarantee(bio1.get())); | 
|  | EXPECT_EQ(0u, BIO_pending(bio2.get())); | 
|  | EXPECT_EQ(0u, BIO_wpending(bio1.get())); | 
|  |  | 
|  | // Attempting to write more than 10 bytes will write partially. | 
|  | EXPECT_EQ(10, BIO_write(bio1.get(), "1234567890___", 13)); | 
|  | EXPECT_EQ(0u, BIO_ctrl_get_write_guarantee(bio1.get())); | 
|  | EXPECT_EQ(-1, BIO_write(bio1.get(), "z", 1)); | 
|  | EXPECT_TRUE(BIO_should_write(bio1.get())); | 
|  | ASSERT_EQ(10, BIO_read(bio2.get(), buf, sizeof(buf))); | 
|  | EXPECT_EQ(Bytes("1234567890"), Bytes(buf, 10)); | 
|  | EXPECT_EQ(10u, BIO_ctrl_get_write_guarantee(bio1.get())); | 
|  |  | 
|  | // Unsuccessful reads update the read request. | 
|  | EXPECT_EQ(-1, BIO_read(bio2.get(), buf, 5)); | 
|  | EXPECT_TRUE(BIO_should_read(bio2.get())); | 
|  | EXPECT_EQ(5u, BIO_ctrl_get_read_request(bio1.get())); | 
|  |  | 
|  | // The read request is clamped to the size of the buffer. | 
|  | EXPECT_EQ(-1, BIO_read(bio2.get(), buf, 20)); | 
|  | EXPECT_TRUE(BIO_should_read(bio2.get())); | 
|  | EXPECT_EQ(10u, BIO_ctrl_get_read_request(bio1.get())); | 
|  |  | 
|  | // Data may be written and read in chunks. | 
|  | EXPECT_EQ(5, BIO_write(bio1.get(), "12345", 5)); | 
|  | EXPECT_EQ(5u, BIO_ctrl_get_write_guarantee(bio1.get())); | 
|  | EXPECT_EQ(5, BIO_write(bio1.get(), "67890___", 8)); | 
|  | EXPECT_EQ(0u, BIO_ctrl_get_write_guarantee(bio1.get())); | 
|  | ASSERT_EQ(3, BIO_read(bio2.get(), buf, 3)); | 
|  | EXPECT_EQ(Bytes("123"), Bytes(buf, 3)); | 
|  | EXPECT_EQ(3u, BIO_ctrl_get_write_guarantee(bio1.get())); | 
|  | ASSERT_EQ(7, BIO_read(bio2.get(), buf, sizeof(buf))); | 
|  | EXPECT_EQ(Bytes("4567890"), Bytes(buf, 7)); | 
|  | EXPECT_EQ(10u, BIO_ctrl_get_write_guarantee(bio1.get())); | 
|  |  | 
|  | // Successful reads reset the read request. | 
|  | EXPECT_EQ(0u, BIO_ctrl_get_read_request(bio1.get())); | 
|  |  | 
|  | // Test writes and reads starting in the middle of the ring buffer and | 
|  | // wrapping to front. | 
|  | EXPECT_EQ(8, BIO_write(bio1.get(), "abcdefgh", 8)); | 
|  | EXPECT_EQ(2u, BIO_ctrl_get_write_guarantee(bio1.get())); | 
|  | ASSERT_EQ(3, BIO_read(bio2.get(), buf, 3)); | 
|  | EXPECT_EQ(Bytes("abc"), Bytes(buf, 3)); | 
|  | EXPECT_EQ(5u, BIO_ctrl_get_write_guarantee(bio1.get())); | 
|  | EXPECT_EQ(5, BIO_write(bio1.get(), "ijklm___", 8)); | 
|  | EXPECT_EQ(0u, BIO_ctrl_get_write_guarantee(bio1.get())); | 
|  | ASSERT_EQ(10, BIO_read(bio2.get(), buf, sizeof(buf))); | 
|  | EXPECT_EQ(Bytes("defghijklm"), Bytes(buf, 10)); | 
|  | EXPECT_EQ(10u, BIO_ctrl_get_write_guarantee(bio1.get())); | 
|  |  | 
|  | // Data may flow from both ends in parallel. | 
|  | EXPECT_EQ(5, BIO_write(bio1.get(), "12345", 5)); | 
|  | EXPECT_EQ(5, BIO_write(bio2.get(), "67890", 5)); | 
|  | ASSERT_EQ(5, BIO_read(bio2.get(), buf, sizeof(buf))); | 
|  | EXPECT_EQ(Bytes("12345"), Bytes(buf, 5)); | 
|  | ASSERT_EQ(5, BIO_read(bio1.get(), buf, sizeof(buf))); | 
|  | EXPECT_EQ(Bytes("67890"), Bytes(buf, 5)); | 
|  |  | 
|  | // Closing the write end causes an EOF on the read half, after draining. | 
|  | EXPECT_EQ(5, BIO_write(bio1.get(), "12345", 5)); | 
|  | EXPECT_TRUE(BIO_shutdown_wr(bio1.get())); | 
|  | EXPECT_FALSE(BIO_eof(bio2.get())); | 
|  | EXPECT_EQ(5u, BIO_pending(bio2.get())); | 
|  | EXPECT_EQ(5u, BIO_wpending(bio1.get())); | 
|  | ASSERT_EQ(5, BIO_read(bio2.get(), buf, sizeof(buf))); | 
|  | EXPECT_EQ(Bytes("12345"), Bytes(buf, 5)); | 
|  | EXPECT_TRUE(BIO_eof(bio2.get())); | 
|  | EXPECT_EQ(0u, BIO_pending(bio2.get())); | 
|  | EXPECT_EQ(0u, BIO_wpending(bio1.get())); | 
|  | EXPECT_EQ(0, BIO_read(bio2.get(), buf, sizeof(buf))); | 
|  | EXPECT_TRUE(BIO_eof(bio2.get())); | 
|  | EXPECT_EQ(0u, BIO_pending(bio2.get())); | 
|  | EXPECT_EQ(0u, BIO_wpending(bio1.get())); | 
|  |  | 
|  | // A closed write end may not be written to. | 
|  | EXPECT_EQ(0u, BIO_ctrl_get_write_guarantee(bio1.get())); | 
|  | EXPECT_EQ(-1, BIO_write(bio1.get(), "_____", 5)); | 
|  | EXPECT_TRUE(ErrorEquals(ERR_get_error(), ERR_LIB_BIO, BIO_R_BROKEN_PIPE)); | 
|  |  | 
|  | // The other end is still functional. | 
|  | EXPECT_EQ(5, BIO_write(bio2.get(), "12345", 5)); | 
|  | ASSERT_EQ(5, BIO_read(bio1.get(), buf, sizeof(buf))); | 
|  | EXPECT_EQ(Bytes("12345"), Bytes(buf, 5)); | 
|  | EXPECT_FALSE(BIO_eof(bio1.get())); | 
|  |  | 
|  | // Destroying |bio2| implicitly closes it, and discards unread data. | 
|  | EXPECT_EQ(5, BIO_write(bio2.get(), "12345", 5)); | 
|  | bio2 = nullptr; | 
|  |  | 
|  | // |bio1| no longer has the "init" flag set, so reads and writes will fail at | 
|  | // the BIO framework. | 
|  | EXPECT_FALSE(BIO_get_init(bio1.get())); | 
|  | EXPECT_EQ(-2, BIO_write(bio1.get(), "12345", 5)); | 
|  | EXPECT_TRUE(ErrorEquals(ERR_get_error(), ERR_LIB_BIO, BIO_R_UNINITIALIZED)); | 
|  | EXPECT_EQ(-2, BIO_read(bio1.get(), buf, sizeof(buf))); | 
|  | EXPECT_TRUE(ErrorEquals(ERR_get_error(), ERR_LIB_BIO, BIO_R_UNINITIALIZED)); | 
|  |  | 
|  | // Although in this disconnected state, |BIO_ctrl| works. |bio1| should | 
|  | // report EOF when it has no peer. | 
|  | EXPECT_TRUE(BIO_eof(bio1.get())); | 
|  |  | 
|  | // BIO_ctrl_get_write_guarantee should return 0 because there is no one to | 
|  | // write to. | 
|  | EXPECT_EQ(0u, BIO_ctrl_get_write_guarantee(bio1.get())); | 
|  | } | 
|  |  | 
|  | INSTANTIATE_TEST_SUITE_P(All, BIOPairTest, testing::Values(false, true)); | 
|  |  | 
|  | }  // namespace |