| /* Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project. |
| * ==================================================================== |
| * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| * |
| */ |
| /* ==================================================================== |
| * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
| * |
| * Portions of the attached software ("Contribution") are developed by |
| * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. |
| * |
| * The Contribution is licensed pursuant to the OpenSSL open source |
| * license provided above. |
| * |
| * The elliptic curve binary polynomial software is originally written by |
| * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems |
| * Laboratories. */ |
| |
| #include <openssl/ec.h> |
| |
| #include <openssl/bn.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| |
| #include "../bn/internal.h" |
| #include "../delocate.h" |
| #include "internal.h" |
| |
| |
| int ec_GFp_mont_group_init(EC_GROUP *group) { |
| int ok; |
| |
| ok = ec_GFp_simple_group_init(group); |
| group->mont = NULL; |
| return ok; |
| } |
| |
| void ec_GFp_mont_group_finish(EC_GROUP *group) { |
| BN_MONT_CTX_free(group->mont); |
| group->mont = NULL; |
| ec_GFp_simple_group_finish(group); |
| } |
| |
| int ec_GFp_mont_group_set_curve(EC_GROUP *group, const BIGNUM *p, |
| const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { |
| BN_MONT_CTX_free(group->mont); |
| group->mont = BN_MONT_CTX_new_for_modulus(p, ctx); |
| if (group->mont == NULL) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB); |
| return 0; |
| } |
| |
| if (!ec_GFp_simple_group_set_curve(group, p, a, b, ctx)) { |
| BN_MONT_CTX_free(group->mont); |
| group->mont = NULL; |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static void ec_GFp_mont_felem_to_montgomery(const EC_GROUP *group, |
| EC_FELEM *out, const EC_FELEM *in) { |
| bn_to_montgomery_small(out->words, in->words, group->field.width, |
| group->mont); |
| } |
| |
| static void ec_GFp_mont_felem_from_montgomery(const EC_GROUP *group, |
| EC_FELEM *out, |
| const EC_FELEM *in) { |
| bn_from_montgomery_small(out->words, group->field.width, in->words, |
| group->field.width, group->mont); |
| } |
| |
| static void ec_GFp_mont_felem_inv0(const EC_GROUP *group, EC_FELEM *out, |
| const EC_FELEM *a) { |
| bn_mod_inverse0_prime_mont_small(out->words, a->words, group->field.width, |
| group->mont); |
| } |
| |
| void ec_GFp_mont_felem_mul(const EC_GROUP *group, EC_FELEM *r, |
| const EC_FELEM *a, const EC_FELEM *b) { |
| bn_mod_mul_montgomery_small(r->words, a->words, b->words, group->field.width, |
| group->mont); |
| } |
| |
| void ec_GFp_mont_felem_sqr(const EC_GROUP *group, EC_FELEM *r, |
| const EC_FELEM *a) { |
| bn_mod_mul_montgomery_small(r->words, a->words, a->words, group->field.width, |
| group->mont); |
| } |
| |
| void ec_GFp_mont_felem_to_bytes(const EC_GROUP *group, uint8_t *out, |
| size_t *out_len, const EC_FELEM *in) { |
| EC_FELEM tmp; |
| ec_GFp_mont_felem_from_montgomery(group, &tmp, in); |
| ec_GFp_simple_felem_to_bytes(group, out, out_len, &tmp); |
| } |
| |
| int ec_GFp_mont_felem_from_bytes(const EC_GROUP *group, EC_FELEM *out, |
| const uint8_t *in, size_t len) { |
| if (!ec_GFp_simple_felem_from_bytes(group, out, in, len)) { |
| return 0; |
| } |
| |
| ec_GFp_mont_felem_to_montgomery(group, out, out); |
| return 1; |
| } |
| |
| void ec_GFp_mont_felem_reduce(const EC_GROUP *group, EC_FELEM *out, |
| const BN_ULONG *words, size_t num) { |
| // Convert "from" Montgomery form so the value is reduced mod p. |
| bn_from_montgomery_small(out->words, group->field.width, words, num, |
| group->mont); |
| // Convert "to" Montgomery form to remove the R^-1 factor added. |
| ec_GFp_mont_felem_to_montgomery(group, out, out); |
| // Convert to Montgomery form to match this implementation's representation. |
| ec_GFp_mont_felem_to_montgomery(group, out, out); |
| } |
| |
| void ec_GFp_mont_felem_exp(const EC_GROUP *group, EC_FELEM *out, |
| const EC_FELEM *a, const BN_ULONG *exp, |
| size_t num_exp) { |
| bn_mod_exp_mont_small(out->words, a->words, group->field.width, exp, num_exp, |
| group->mont); |
| } |
| |
| static int ec_GFp_mont_point_get_affine_coordinates(const EC_GROUP *group, |
| const EC_JACOBIAN *point, |
| EC_FELEM *x, EC_FELEM *y) { |
| if (constant_time_declassify_int( |
| ec_GFp_simple_is_at_infinity(group, point))) { |
| OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY); |
| return 0; |
| } |
| |
| // Transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3). Note the check above |
| // ensures |point->Z| is non-zero, so the inverse always exists. |
| EC_FELEM z1, z2; |
| ec_GFp_mont_felem_inv0(group, &z2, &point->Z); |
| ec_GFp_mont_felem_sqr(group, &z1, &z2); |
| |
| if (x != NULL) { |
| ec_GFp_mont_felem_mul(group, x, &point->X, &z1); |
| } |
| |
| if (y != NULL) { |
| ec_GFp_mont_felem_mul(group, &z1, &z1, &z2); |
| ec_GFp_mont_felem_mul(group, y, &point->Y, &z1); |
| } |
| |
| return 1; |
| } |
| |
| static int ec_GFp_mont_jacobian_to_affine_batch(const EC_GROUP *group, |
| EC_AFFINE *out, |
| const EC_JACOBIAN *in, |
| size_t num) { |
| if (num == 0) { |
| return 1; |
| } |
| |
| // Compute prefix products of all Zs. Use |out[i].X| as scratch space |
| // to store these values. |
| out[0].X = in[0].Z; |
| for (size_t i = 1; i < num; i++) { |
| ec_GFp_mont_felem_mul(group, &out[i].X, &out[i - 1].X, &in[i].Z); |
| } |
| |
| // Some input was infinity iff the product of all Zs is zero. |
| if (ec_felem_non_zero_mask(group, &out[num - 1].X) == 0) { |
| OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY); |
| return 0; |
| } |
| |
| // Invert the product of all Zs. |
| EC_FELEM zinvprod; |
| ec_GFp_mont_felem_inv0(group, &zinvprod, &out[num - 1].X); |
| for (size_t i = num - 1; i < num; i--) { |
| // Our loop invariant is that |zinvprod| is Z0^-1 * Z1^-1 * ... * Zi^-1. |
| // Recover Zi^-1 by multiplying by the previous product. |
| EC_FELEM zinv, zinv2; |
| if (i == 0) { |
| zinv = zinvprod; |
| } else { |
| ec_GFp_mont_felem_mul(group, &zinv, &zinvprod, &out[i - 1].X); |
| // Maintain the loop invariant for the next iteration. |
| ec_GFp_mont_felem_mul(group, &zinvprod, &zinvprod, &in[i].Z); |
| } |
| |
| // Compute affine coordinates: x = X * Z^-2 and y = Y * Z^-3. |
| ec_GFp_mont_felem_sqr(group, &zinv2, &zinv); |
| ec_GFp_mont_felem_mul(group, &out[i].X, &in[i].X, &zinv2); |
| ec_GFp_mont_felem_mul(group, &out[i].Y, &in[i].Y, &zinv2); |
| ec_GFp_mont_felem_mul(group, &out[i].Y, &out[i].Y, &zinv); |
| } |
| |
| return 1; |
| } |
| |
| void ec_GFp_mont_add(const EC_GROUP *group, EC_JACOBIAN *out, |
| const EC_JACOBIAN *a, const EC_JACOBIAN *b) { |
| if (a == b) { |
| ec_GFp_mont_dbl(group, out, a); |
| return; |
| } |
| |
| // The method is taken from: |
| // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-add-2007-bl |
| // |
| // Coq transcription and correctness proof: |
| // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L467> |
| // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L544> |
| EC_FELEM x_out, y_out, z_out; |
| BN_ULONG z1nz = ec_felem_non_zero_mask(group, &a->Z); |
| BN_ULONG z2nz = ec_felem_non_zero_mask(group, &b->Z); |
| |
| // z1z1 = z1z1 = z1**2 |
| EC_FELEM z1z1; |
| ec_GFp_mont_felem_sqr(group, &z1z1, &a->Z); |
| |
| // z2z2 = z2**2 |
| EC_FELEM z2z2; |
| ec_GFp_mont_felem_sqr(group, &z2z2, &b->Z); |
| |
| // u1 = x1*z2z2 |
| EC_FELEM u1; |
| ec_GFp_mont_felem_mul(group, &u1, &a->X, &z2z2); |
| |
| // two_z1z2 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 |
| EC_FELEM two_z1z2; |
| ec_felem_add(group, &two_z1z2, &a->Z, &b->Z); |
| ec_GFp_mont_felem_sqr(group, &two_z1z2, &two_z1z2); |
| ec_felem_sub(group, &two_z1z2, &two_z1z2, &z1z1); |
| ec_felem_sub(group, &two_z1z2, &two_z1z2, &z2z2); |
| |
| // s1 = y1 * z2**3 |
| EC_FELEM s1; |
| ec_GFp_mont_felem_mul(group, &s1, &b->Z, &z2z2); |
| ec_GFp_mont_felem_mul(group, &s1, &s1, &a->Y); |
| |
| // u2 = x2*z1z1 |
| EC_FELEM u2; |
| ec_GFp_mont_felem_mul(group, &u2, &b->X, &z1z1); |
| |
| // h = u2 - u1 |
| EC_FELEM h; |
| ec_felem_sub(group, &h, &u2, &u1); |
| |
| BN_ULONG xneq = ec_felem_non_zero_mask(group, &h); |
| |
| // z_out = two_z1z2 * h |
| ec_GFp_mont_felem_mul(group, &z_out, &h, &two_z1z2); |
| |
| // z1z1z1 = z1 * z1z1 |
| EC_FELEM z1z1z1; |
| ec_GFp_mont_felem_mul(group, &z1z1z1, &a->Z, &z1z1); |
| |
| // s2 = y2 * z1**3 |
| EC_FELEM s2; |
| ec_GFp_mont_felem_mul(group, &s2, &b->Y, &z1z1z1); |
| |
| // r = (s2 - s1)*2 |
| EC_FELEM r; |
| ec_felem_sub(group, &r, &s2, &s1); |
| ec_felem_add(group, &r, &r, &r); |
| |
| BN_ULONG yneq = ec_felem_non_zero_mask(group, &r); |
| |
| // This case will never occur in the constant-time |ec_GFp_mont_mul|. |
| BN_ULONG is_nontrivial_double = ~xneq & ~yneq & z1nz & z2nz; |
| if (constant_time_declassify_w(is_nontrivial_double)) { |
| ec_GFp_mont_dbl(group, out, a); |
| return; |
| } |
| |
| // I = (2h)**2 |
| EC_FELEM i; |
| ec_felem_add(group, &i, &h, &h); |
| ec_GFp_mont_felem_sqr(group, &i, &i); |
| |
| // J = h * I |
| EC_FELEM j; |
| ec_GFp_mont_felem_mul(group, &j, &h, &i); |
| |
| // V = U1 * I |
| EC_FELEM v; |
| ec_GFp_mont_felem_mul(group, &v, &u1, &i); |
| |
| // x_out = r**2 - J - 2V |
| ec_GFp_mont_felem_sqr(group, &x_out, &r); |
| ec_felem_sub(group, &x_out, &x_out, &j); |
| ec_felem_sub(group, &x_out, &x_out, &v); |
| ec_felem_sub(group, &x_out, &x_out, &v); |
| |
| // y_out = r(V-x_out) - 2 * s1 * J |
| ec_felem_sub(group, &y_out, &v, &x_out); |
| ec_GFp_mont_felem_mul(group, &y_out, &y_out, &r); |
| EC_FELEM s1j; |
| ec_GFp_mont_felem_mul(group, &s1j, &s1, &j); |
| ec_felem_sub(group, &y_out, &y_out, &s1j); |
| ec_felem_sub(group, &y_out, &y_out, &s1j); |
| |
| ec_felem_select(group, &x_out, z1nz, &x_out, &b->X); |
| ec_felem_select(group, &out->X, z2nz, &x_out, &a->X); |
| ec_felem_select(group, &y_out, z1nz, &y_out, &b->Y); |
| ec_felem_select(group, &out->Y, z2nz, &y_out, &a->Y); |
| ec_felem_select(group, &z_out, z1nz, &z_out, &b->Z); |
| ec_felem_select(group, &out->Z, z2nz, &z_out, &a->Z); |
| } |
| |
| void ec_GFp_mont_dbl(const EC_GROUP *group, EC_JACOBIAN *r, |
| const EC_JACOBIAN *a) { |
| if (group->a_is_minus3) { |
| // The method is taken from: |
| // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b |
| // |
| // Coq transcription and correctness proof: |
| // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L93> |
| // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L201> |
| EC_FELEM delta, gamma, beta, ftmp, ftmp2, tmptmp, alpha, fourbeta; |
| // delta = z^2 |
| ec_GFp_mont_felem_sqr(group, &delta, &a->Z); |
| // gamma = y^2 |
| ec_GFp_mont_felem_sqr(group, &gamma, &a->Y); |
| // beta = x*gamma |
| ec_GFp_mont_felem_mul(group, &beta, &a->X, &gamma); |
| |
| // alpha = 3*(x-delta)*(x+delta) |
| ec_felem_sub(group, &ftmp, &a->X, &delta); |
| ec_felem_add(group, &ftmp2, &a->X, &delta); |
| |
| ec_felem_add(group, &tmptmp, &ftmp2, &ftmp2); |
| ec_felem_add(group, &ftmp2, &ftmp2, &tmptmp); |
| ec_GFp_mont_felem_mul(group, &alpha, &ftmp, &ftmp2); |
| |
| // x' = alpha^2 - 8*beta |
| ec_GFp_mont_felem_sqr(group, &r->X, &alpha); |
| ec_felem_add(group, &fourbeta, &beta, &beta); |
| ec_felem_add(group, &fourbeta, &fourbeta, &fourbeta); |
| ec_felem_add(group, &tmptmp, &fourbeta, &fourbeta); |
| ec_felem_sub(group, &r->X, &r->X, &tmptmp); |
| |
| // z' = (y + z)^2 - gamma - delta |
| ec_felem_add(group, &delta, &gamma, &delta); |
| ec_felem_add(group, &ftmp, &a->Y, &a->Z); |
| ec_GFp_mont_felem_sqr(group, &r->Z, &ftmp); |
| ec_felem_sub(group, &r->Z, &r->Z, &delta); |
| |
| // y' = alpha*(4*beta - x') - 8*gamma^2 |
| ec_felem_sub(group, &r->Y, &fourbeta, &r->X); |
| ec_felem_add(group, &gamma, &gamma, &gamma); |
| ec_GFp_mont_felem_sqr(group, &gamma, &gamma); |
| ec_GFp_mont_felem_mul(group, &r->Y, &alpha, &r->Y); |
| ec_felem_add(group, &gamma, &gamma, &gamma); |
| ec_felem_sub(group, &r->Y, &r->Y, &gamma); |
| } else { |
| // The method is taken from: |
| // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-2007-bl |
| // |
| // Coq transcription and correctness proof: |
| // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L102> |
| // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L534> |
| EC_FELEM xx, yy, yyyy, zz; |
| ec_GFp_mont_felem_sqr(group, &xx, &a->X); |
| ec_GFp_mont_felem_sqr(group, &yy, &a->Y); |
| ec_GFp_mont_felem_sqr(group, &yyyy, &yy); |
| ec_GFp_mont_felem_sqr(group, &zz, &a->Z); |
| |
| // s = 2*((x_in + yy)^2 - xx - yyyy) |
| EC_FELEM s; |
| ec_felem_add(group, &s, &a->X, &yy); |
| ec_GFp_mont_felem_sqr(group, &s, &s); |
| ec_felem_sub(group, &s, &s, &xx); |
| ec_felem_sub(group, &s, &s, &yyyy); |
| ec_felem_add(group, &s, &s, &s); |
| |
| // m = 3*xx + a*zz^2 |
| EC_FELEM m; |
| ec_GFp_mont_felem_sqr(group, &m, &zz); |
| ec_GFp_mont_felem_mul(group, &m, &group->a, &m); |
| ec_felem_add(group, &m, &m, &xx); |
| ec_felem_add(group, &m, &m, &xx); |
| ec_felem_add(group, &m, &m, &xx); |
| |
| // x_out = m^2 - 2*s |
| ec_GFp_mont_felem_sqr(group, &r->X, &m); |
| ec_felem_sub(group, &r->X, &r->X, &s); |
| ec_felem_sub(group, &r->X, &r->X, &s); |
| |
| // z_out = (y_in + z_in)^2 - yy - zz |
| ec_felem_add(group, &r->Z, &a->Y, &a->Z); |
| ec_GFp_mont_felem_sqr(group, &r->Z, &r->Z); |
| ec_felem_sub(group, &r->Z, &r->Z, &yy); |
| ec_felem_sub(group, &r->Z, &r->Z, &zz); |
| |
| // y_out = m*(s-x_out) - 8*yyyy |
| ec_felem_add(group, &yyyy, &yyyy, &yyyy); |
| ec_felem_add(group, &yyyy, &yyyy, &yyyy); |
| ec_felem_add(group, &yyyy, &yyyy, &yyyy); |
| ec_felem_sub(group, &r->Y, &s, &r->X); |
| ec_GFp_mont_felem_mul(group, &r->Y, &r->Y, &m); |
| ec_felem_sub(group, &r->Y, &r->Y, &yyyy); |
| } |
| } |
| |
| static int ec_GFp_mont_cmp_x_coordinate(const EC_GROUP *group, |
| const EC_JACOBIAN *p, |
| const EC_SCALAR *r) { |
| if (!group->field_greater_than_order || |
| group->field.width != group->order->N.width) { |
| // Do not bother optimizing this case. p > order in all commonly-used |
| // curves. |
| return ec_GFp_simple_cmp_x_coordinate(group, p, r); |
| } |
| |
| if (ec_GFp_simple_is_at_infinity(group, p)) { |
| return 0; |
| } |
| |
| // We wish to compare X/Z^2 with r. This is equivalent to comparing X with |
| // r*Z^2. Note that X and Z are represented in Montgomery form, while r is |
| // not. |
| EC_FELEM r_Z2, Z2_mont, X; |
| ec_GFp_mont_felem_mul(group, &Z2_mont, &p->Z, &p->Z); |
| // r < order < p, so this is valid. |
| OPENSSL_memcpy(r_Z2.words, r->words, group->field.width * sizeof(BN_ULONG)); |
| ec_GFp_mont_felem_mul(group, &r_Z2, &r_Z2, &Z2_mont); |
| ec_GFp_mont_felem_from_montgomery(group, &X, &p->X); |
| |
| if (ec_felem_equal(group, &r_Z2, &X)) { |
| return 1; |
| } |
| |
| // During signing the x coefficient is reduced modulo the group order. |
| // Therefore there is a small possibility, less than 1/2^128, that group_order |
| // < p.x < P. in that case we need not only to compare against |r| but also to |
| // compare against r+group_order. |
| BN_ULONG carry = |
| bn_add_words(r_Z2.words, r->words, group->order->N.d, group->field.width); |
| if (carry == 0 && |
| bn_less_than_words(r_Z2.words, group->field.d, group->field.width)) { |
| // r + group_order < p, so compare (r + group_order) * Z^2 against X. |
| ec_GFp_mont_felem_mul(group, &r_Z2, &r_Z2, &Z2_mont); |
| if (ec_felem_equal(group, &r_Z2, &X)) { |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_mont_method) { |
| out->group_init = ec_GFp_mont_group_init; |
| out->group_finish = ec_GFp_mont_group_finish; |
| out->group_set_curve = ec_GFp_mont_group_set_curve; |
| out->point_get_affine_coordinates = ec_GFp_mont_point_get_affine_coordinates; |
| out->jacobian_to_affine_batch = ec_GFp_mont_jacobian_to_affine_batch; |
| out->add = ec_GFp_mont_add; |
| out->dbl = ec_GFp_mont_dbl; |
| out->mul = ec_GFp_mont_mul; |
| out->mul_base = ec_GFp_mont_mul_base; |
| out->mul_batch = ec_GFp_mont_mul_batch; |
| out->mul_public_batch = ec_GFp_mont_mul_public_batch; |
| out->init_precomp = ec_GFp_mont_init_precomp; |
| out->mul_precomp = ec_GFp_mont_mul_precomp; |
| out->felem_mul = ec_GFp_mont_felem_mul; |
| out->felem_sqr = ec_GFp_mont_felem_sqr; |
| out->felem_to_bytes = ec_GFp_mont_felem_to_bytes; |
| out->felem_from_bytes = ec_GFp_mont_felem_from_bytes; |
| out->felem_reduce = ec_GFp_mont_felem_reduce; |
| out->felem_exp = ec_GFp_mont_felem_exp; |
| out->scalar_inv0_montgomery = ec_simple_scalar_inv0_montgomery; |
| out->scalar_to_montgomery_inv_vartime = |
| ec_simple_scalar_to_montgomery_inv_vartime; |
| out->cmp_x_coordinate = ec_GFp_mont_cmp_x_coordinate; |
| } |