| /* Copyright (c) 2014, Google Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <string.h> |
| |
| #if defined(BORINGSSL_FIPS) |
| #include <unistd.h> |
| #endif |
| |
| #include <openssl/chacha.h> |
| #include <openssl/ctrdrbg.h> |
| #include <openssl/mem.h> |
| |
| #include "../../bcm_support.h" |
| #include "../bcm_interface.h" |
| #include "../delocate.h" |
| #include "internal.h" |
| |
| |
| // It's assumed that the operating system always has an unfailing source of |
| // entropy which is accessed via |CRYPTO_sysrand[_for_seed]|. (If the operating |
| // system entropy source fails, it's up to |CRYPTO_sysrand| to abort the |
| // process—we don't try to handle it.) |
| // |
| // In addition, the hardware may provide a low-latency RNG. Intel's rdrand |
| // instruction is the canonical example of this. When a hardware RNG is |
| // available we don't need to worry about an RNG failure arising from fork()ing |
| // the process or moving a VM, so we can keep thread-local RNG state and use it |
| // as an additional-data input to CTR-DRBG. |
| // |
| // (We assume that the OS entropy is safe from fork()ing and VM duplication. |
| // This might be a bit of a leap of faith, esp on Windows, but there's nothing |
| // that we can do about it.) |
| |
| // kReseedInterval is the number of generate calls made to CTR-DRBG before |
| // reseeding. |
| static const unsigned kReseedInterval = 4096; |
| |
| // CRNGT_BLOCK_SIZE is the number of bytes in a “block” for the purposes of the |
| // continuous random number generator test in FIPS 140-2, section 4.9.2. |
| #define CRNGT_BLOCK_SIZE 16 |
| |
| // rand_thread_state contains the per-thread state for the RNG. |
| struct rand_thread_state { |
| CTR_DRBG_STATE drbg; |
| uint64_t fork_generation; |
| // calls is the number of generate calls made on |drbg| since it was last |
| // (re)seeded. This is bound by |kReseedInterval|. |
| unsigned calls; |
| // last_block_valid is non-zero iff |last_block| contains data from |
| // |get_seed_entropy|. |
| int last_block_valid; |
| // fork_unsafe_buffering is non-zero iff, when |drbg| was last (re)seeded, |
| // fork-unsafe buffering was enabled. |
| int fork_unsafe_buffering; |
| |
| #if defined(BORINGSSL_FIPS) |
| // last_block contains the previous block from |get_seed_entropy|. |
| uint8_t last_block[CRNGT_BLOCK_SIZE]; |
| // next and prev form a NULL-terminated, double-linked list of all states in |
| // a process. |
| struct rand_thread_state *next, *prev; |
| // clear_drbg_lock synchronizes between uses of |drbg| and |
| // |rand_thread_state_clear_all| clearing it. This lock should be uncontended |
| // in the common case, except on shutdown. |
| CRYPTO_MUTEX clear_drbg_lock; |
| #endif |
| }; |
| |
| #if defined(BORINGSSL_FIPS) |
| // thread_states_list is the head of a linked-list of all |rand_thread_state| |
| // objects in the process, one per thread. This is needed because FIPS requires |
| // that they be zeroed on process exit, but thread-local destructors aren't |
| // called when the whole process is exiting. |
| DEFINE_BSS_GET(struct rand_thread_state *, thread_states_list) |
| DEFINE_STATIC_MUTEX(thread_states_list_lock) |
| |
| static void rand_thread_state_clear_all(void) __attribute__((destructor)); |
| static void rand_thread_state_clear_all(void) { |
| CRYPTO_MUTEX_lock_write(thread_states_list_lock_bss_get()); |
| for (struct rand_thread_state *cur = *thread_states_list_bss_get(); |
| cur != NULL; cur = cur->next) { |
| CRYPTO_MUTEX_lock_write(&cur->clear_drbg_lock); |
| CTR_DRBG_clear(&cur->drbg); |
| } |
| // The locks are deliberately left locked so that any threads that are still |
| // running will hang if they try to call |BCM_rand_bytes|. It also ensures |
| // |rand_thread_state_free| cannot free any thread state while we've taken the |
| // lock. |
| } |
| #endif |
| |
| // rand_thread_state_free frees a |rand_thread_state|. This is called when a |
| // thread exits. |
| static void rand_thread_state_free(void *state_in) { |
| struct rand_thread_state *state = state_in; |
| |
| if (state_in == NULL) { |
| return; |
| } |
| |
| #if defined(BORINGSSL_FIPS) |
| CRYPTO_MUTEX_lock_write(thread_states_list_lock_bss_get()); |
| |
| if (state->prev != NULL) { |
| state->prev->next = state->next; |
| } else if (*thread_states_list_bss_get() == state) { |
| // |state->prev| may be NULL either if it is the head of the list, |
| // or if |state| is freed before it was added to the list at all. |
| // Compare against the head of the list to distinguish these cases. |
| *thread_states_list_bss_get() = state->next; |
| } |
| |
| if (state->next != NULL) { |
| state->next->prev = state->prev; |
| } |
| |
| CRYPTO_MUTEX_unlock_write(thread_states_list_lock_bss_get()); |
| |
| CTR_DRBG_clear(&state->drbg); |
| #endif |
| |
| OPENSSL_free(state); |
| } |
| |
| #if defined(OPENSSL_X86_64) && !defined(OPENSSL_NO_ASM) && \ |
| !defined(BORINGSSL_UNSAFE_DETERMINISTIC_MODE) |
| // rdrand should only be called if either |have_rdrand| or |have_fast_rdrand| |
| // returned true. |
| static int rdrand(uint8_t *buf, const size_t len) { |
| const size_t len_multiple8 = len & ~7; |
| if (!CRYPTO_rdrand_multiple8_buf(buf, len_multiple8)) { |
| return 0; |
| } |
| const size_t remainder = len - len_multiple8; |
| |
| if (remainder != 0) { |
| assert(remainder < 8); |
| |
| uint8_t rand_buf[8]; |
| if (!CRYPTO_rdrand(rand_buf)) { |
| return 0; |
| } |
| OPENSSL_memcpy(buf + len_multiple8, rand_buf, remainder); |
| } |
| |
| return 1; |
| } |
| |
| #else |
| |
| static int rdrand(uint8_t *buf, size_t len) { return 0; } |
| |
| #endif |
| |
| bcm_status BCM_rand_bytes_hwrng(uint8_t *buf, const size_t len) { |
| if (!have_rdrand()) { |
| return bcm_status_failure; |
| } |
| if (rdrand(buf, len)) { |
| return bcm_status_not_approved; |
| } |
| return bcm_status_failure; |
| } |
| |
| #if defined(BORINGSSL_FIPS) |
| |
| // In passive entropy mode, entropy is supplied from outside of the module via |
| // |BCM_rand_load_entropy| and is stored in global instance of the following |
| // structure. |
| |
| struct entropy_buffer { |
| // bytes contains entropy suitable for seeding a DRBG. |
| uint8_t |
| bytes[CRNGT_BLOCK_SIZE + CTR_DRBG_ENTROPY_LEN * BORINGSSL_FIPS_OVERREAD]; |
| // bytes_valid indicates the number of bytes of |bytes| that contain valid |
| // data. |
| size_t bytes_valid; |
| // want_additional_input is true if any of the contents of |bytes| were |
| // obtained via a method other than from the kernel. In these cases entropy |
| // from the kernel is also provided via an additional input to the DRBG. |
| int want_additional_input; |
| }; |
| |
| DEFINE_BSS_GET(struct entropy_buffer, entropy_buffer) |
| DEFINE_STATIC_MUTEX(entropy_buffer_lock) |
| |
| bcm_infallible BCM_rand_load_entropy(const uint8_t *entropy, size_t entropy_len, |
| int want_additional_input) { |
| struct entropy_buffer *const buffer = entropy_buffer_bss_get(); |
| |
| CRYPTO_MUTEX_lock_write(entropy_buffer_lock_bss_get()); |
| const size_t space = sizeof(buffer->bytes) - buffer->bytes_valid; |
| if (entropy_len > space) { |
| entropy_len = space; |
| } |
| |
| OPENSSL_memcpy(&buffer->bytes[buffer->bytes_valid], entropy, entropy_len); |
| buffer->bytes_valid += entropy_len; |
| buffer->want_additional_input |= want_additional_input && (entropy_len != 0); |
| CRYPTO_MUTEX_unlock_write(entropy_buffer_lock_bss_get()); |
| return bcm_infallible_not_approved; |
| } |
| |
| // get_seed_entropy fills |out_entropy_len| bytes of |out_entropy| from the |
| // global |entropy_buffer|. |
| static void get_seed_entropy(uint8_t *out_entropy, size_t out_entropy_len, |
| int *out_want_additional_input) { |
| struct entropy_buffer *const buffer = entropy_buffer_bss_get(); |
| if (out_entropy_len > sizeof(buffer->bytes)) { |
| abort(); |
| } |
| |
| CRYPTO_MUTEX_lock_write(entropy_buffer_lock_bss_get()); |
| while (buffer->bytes_valid < out_entropy_len) { |
| CRYPTO_MUTEX_unlock_write(entropy_buffer_lock_bss_get()); |
| RAND_need_entropy(out_entropy_len - buffer->bytes_valid); |
| CRYPTO_MUTEX_lock_write(entropy_buffer_lock_bss_get()); |
| } |
| |
| *out_want_additional_input = buffer->want_additional_input; |
| OPENSSL_memcpy(out_entropy, buffer->bytes, out_entropy_len); |
| OPENSSL_memmove(buffer->bytes, &buffer->bytes[out_entropy_len], |
| buffer->bytes_valid - out_entropy_len); |
| buffer->bytes_valid -= out_entropy_len; |
| if (buffer->bytes_valid == 0) { |
| buffer->want_additional_input = 0; |
| } |
| |
| CRYPTO_MUTEX_unlock_write(entropy_buffer_lock_bss_get()); |
| } |
| |
| // rand_get_seed fills |seed| with entropy. In some cases, it will additionally |
| // fill |additional_input| with entropy to supplement |seed|. It sets |
| // |*out_additional_input_len| to the number of extra bytes. |
| static void rand_get_seed(struct rand_thread_state *state, |
| uint8_t seed[CTR_DRBG_ENTROPY_LEN], |
| uint8_t additional_input[CTR_DRBG_ENTROPY_LEN], |
| size_t *out_additional_input_len) { |
| uint8_t entropy_bytes[sizeof(state->last_block) + |
| CTR_DRBG_ENTROPY_LEN * BORINGSSL_FIPS_OVERREAD]; |
| uint8_t *entropy = entropy_bytes; |
| size_t entropy_len = sizeof(entropy_bytes); |
| |
| if (state->last_block_valid) { |
| // No need to fill |state->last_block| with entropy from the read. |
| entropy += sizeof(state->last_block); |
| entropy_len -= sizeof(state->last_block); |
| } |
| |
| int want_additional_input; |
| get_seed_entropy(entropy, entropy_len, &want_additional_input); |
| |
| if (!state->last_block_valid) { |
| OPENSSL_memcpy(state->last_block, entropy, sizeof(state->last_block)); |
| entropy += sizeof(state->last_block); |
| entropy_len -= sizeof(state->last_block); |
| } |
| |
| // See FIPS 140-2, section 4.9.2. This is the “continuous random number |
| // generator test” which causes the program to randomly abort. Hopefully the |
| // rate of failure is small enough not to be a problem in practice. |
| if (CRYPTO_memcmp(state->last_block, entropy, sizeof(state->last_block)) == |
| 0) { |
| fprintf(CRYPTO_get_stderr(), "CRNGT failed.\n"); |
| BORINGSSL_FIPS_abort(); |
| } |
| |
| assert(entropy_len % CRNGT_BLOCK_SIZE == 0); |
| for (size_t i = CRNGT_BLOCK_SIZE; i < entropy_len; i += CRNGT_BLOCK_SIZE) { |
| if (CRYPTO_memcmp(entropy + i - CRNGT_BLOCK_SIZE, entropy + i, |
| CRNGT_BLOCK_SIZE) == 0) { |
| fprintf(CRYPTO_get_stderr(), "CRNGT failed.\n"); |
| BORINGSSL_FIPS_abort(); |
| } |
| } |
| OPENSSL_memcpy(state->last_block, entropy + entropy_len - CRNGT_BLOCK_SIZE, |
| CRNGT_BLOCK_SIZE); |
| |
| assert(entropy_len == BORINGSSL_FIPS_OVERREAD * CTR_DRBG_ENTROPY_LEN); |
| OPENSSL_memcpy(seed, entropy, CTR_DRBG_ENTROPY_LEN); |
| |
| for (size_t i = 1; i < BORINGSSL_FIPS_OVERREAD; i++) { |
| for (size_t j = 0; j < CTR_DRBG_ENTROPY_LEN; j++) { |
| seed[j] ^= entropy[CTR_DRBG_ENTROPY_LEN * i + j]; |
| } |
| } |
| |
| // If we used something other than system entropy then also |
| // opportunistically read from the system. This avoids solely relying on the |
| // hardware once the entropy pool has been initialized. |
| *out_additional_input_len = 0; |
| if (want_additional_input && |
| CRYPTO_sysrand_if_available(additional_input, CTR_DRBG_ENTROPY_LEN)) { |
| *out_additional_input_len = CTR_DRBG_ENTROPY_LEN; |
| } |
| } |
| |
| #else |
| |
| // rand_get_seed fills |seed| with entropy. In some cases, it will additionally |
| // fill |additional_input| with entropy to supplement |seed|. It sets |
| // |*out_additional_input_len| to the number of extra bytes. |
| static void rand_get_seed(struct rand_thread_state *state, |
| uint8_t seed[CTR_DRBG_ENTROPY_LEN], |
| uint8_t additional_input[CTR_DRBG_ENTROPY_LEN], |
| size_t *out_additional_input_len) { |
| // If not in FIPS mode, we don't overread from the system entropy source and |
| // we don't depend only on the hardware RDRAND. |
| CRYPTO_sysrand_for_seed(seed, CTR_DRBG_ENTROPY_LEN); |
| *out_additional_input_len = 0; |
| } |
| |
| #endif |
| |
| bcm_infallible BCM_rand_bytes_with_additional_data( |
| uint8_t *out, size_t out_len, const uint8_t user_additional_data[32]) { |
| if (out_len == 0) { |
| return bcm_infallible_approved; |
| } |
| |
| const uint64_t fork_generation = CRYPTO_get_fork_generation(); |
| const int fork_unsafe_buffering = rand_fork_unsafe_buffering_enabled(); |
| |
| // Additional data is mixed into every CTR-DRBG call to protect, as best we |
| // can, against forks & VM clones. We do not over-read this information and |
| // don't reseed with it so, from the point of view of FIPS, this doesn't |
| // provide “prediction resistance”. But, in practice, it does. |
| uint8_t additional_data[32]; |
| // Intel chips have fast RDRAND instructions while, in other cases, RDRAND can |
| // be _slower_ than a system call. |
| if (!have_fast_rdrand() || |
| !rdrand(additional_data, sizeof(additional_data))) { |
| // Without a hardware RNG to save us from address-space duplication, the OS |
| // entropy is used. This can be expensive (one read per |RAND_bytes| call) |
| // and so is disabled when we have fork detection, or if the application has |
| // promised not to fork. |
| if (fork_generation != 0 || fork_unsafe_buffering) { |
| OPENSSL_memset(additional_data, 0, sizeof(additional_data)); |
| } else if (!have_rdrand()) { |
| // No alternative so block for OS entropy. |
| CRYPTO_sysrand(additional_data, sizeof(additional_data)); |
| } else if (!CRYPTO_sysrand_if_available(additional_data, |
| sizeof(additional_data)) && |
| !rdrand(additional_data, sizeof(additional_data))) { |
| // RDRAND failed: block for OS entropy. |
| CRYPTO_sysrand(additional_data, sizeof(additional_data)); |
| } |
| } |
| |
| for (size_t i = 0; i < sizeof(additional_data); i++) { |
| additional_data[i] ^= user_additional_data[i]; |
| } |
| |
| struct rand_thread_state stack_state; |
| struct rand_thread_state *state = |
| CRYPTO_get_thread_local(OPENSSL_THREAD_LOCAL_RAND); |
| |
| if (state == NULL) { |
| state = OPENSSL_zalloc(sizeof(struct rand_thread_state)); |
| if (state == NULL || |
| !CRYPTO_set_thread_local(OPENSSL_THREAD_LOCAL_RAND, state, |
| rand_thread_state_free)) { |
| // If the system is out of memory, use an ephemeral state on the |
| // stack. |
| state = &stack_state; |
| } |
| |
| state->last_block_valid = 0; |
| uint8_t seed[CTR_DRBG_ENTROPY_LEN]; |
| uint8_t personalization[CTR_DRBG_ENTROPY_LEN] = {0}; |
| size_t personalization_len = 0; |
| rand_get_seed(state, seed, personalization, &personalization_len); |
| |
| if (!CTR_DRBG_init(&state->drbg, seed, personalization, |
| personalization_len)) { |
| abort(); |
| } |
| state->calls = 0; |
| state->fork_generation = fork_generation; |
| state->fork_unsafe_buffering = fork_unsafe_buffering; |
| |
| #if defined(BORINGSSL_FIPS) |
| CRYPTO_MUTEX_init(&state->clear_drbg_lock); |
| if (state != &stack_state) { |
| CRYPTO_MUTEX_lock_write(thread_states_list_lock_bss_get()); |
| struct rand_thread_state **states_list = thread_states_list_bss_get(); |
| state->next = *states_list; |
| if (state->next != NULL) { |
| state->next->prev = state; |
| } |
| state->prev = NULL; |
| *states_list = state; |
| CRYPTO_MUTEX_unlock_write(thread_states_list_lock_bss_get()); |
| } |
| #endif |
| } |
| |
| if (state->calls >= kReseedInterval || |
| // If we've forked since |state| was last seeded, reseed. |
| state->fork_generation != fork_generation || |
| // If |state| was seeded from a state with different fork-safety |
| // preferences, reseed. Suppose |state| was fork-safe, then forked into |
| // two children, but each of the children never fork and disable fork |
| // safety. The children must reseed to avoid working from the same PRNG |
| // state. |
| state->fork_unsafe_buffering != fork_unsafe_buffering) { |
| uint8_t seed[CTR_DRBG_ENTROPY_LEN]; |
| uint8_t reseed_additional_data[CTR_DRBG_ENTROPY_LEN] = {0}; |
| size_t reseed_additional_data_len = 0; |
| rand_get_seed(state, seed, reseed_additional_data, |
| &reseed_additional_data_len); |
| #if defined(BORINGSSL_FIPS) |
| // Take a read lock around accesses to |state->drbg|. This is needed to |
| // avoid returning bad entropy if we race with |
| // |rand_thread_state_clear_all|. |
| CRYPTO_MUTEX_lock_read(&state->clear_drbg_lock); |
| #endif |
| if (!CTR_DRBG_reseed(&state->drbg, seed, reseed_additional_data, |
| reseed_additional_data_len)) { |
| abort(); |
| } |
| state->calls = 0; |
| state->fork_generation = fork_generation; |
| state->fork_unsafe_buffering = fork_unsafe_buffering; |
| } else { |
| #if defined(BORINGSSL_FIPS) |
| CRYPTO_MUTEX_lock_read(&state->clear_drbg_lock); |
| #endif |
| } |
| |
| int first_call = 1; |
| while (out_len > 0) { |
| size_t todo = out_len; |
| if (todo > CTR_DRBG_MAX_GENERATE_LENGTH) { |
| todo = CTR_DRBG_MAX_GENERATE_LENGTH; |
| } |
| |
| if (!CTR_DRBG_generate(&state->drbg, out, todo, additional_data, |
| first_call ? sizeof(additional_data) : 0)) { |
| abort(); |
| } |
| |
| out += todo; |
| out_len -= todo; |
| // Though we only check before entering the loop, this cannot add enough to |
| // overflow a |size_t|. |
| state->calls++; |
| first_call = 0; |
| } |
| |
| if (state == &stack_state) { |
| CTR_DRBG_clear(&state->drbg); |
| } |
| |
| #if defined(BORINGSSL_FIPS) |
| CRYPTO_MUTEX_unlock_read(&state->clear_drbg_lock); |
| #endif |
| return bcm_infallible_approved; |
| } |
| |
| bcm_infallible BCM_rand_bytes(uint8_t *out, size_t out_len) { |
| static const uint8_t kZeroAdditionalData[32] = {0}; |
| BCM_rand_bytes_with_additional_data(out, out_len, kZeroAdditionalData); |
| return bcm_infallible_approved; |
| } |