|  | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | 
|  | * All rights reserved. | 
|  | * | 
|  | * This package is an SSL implementation written | 
|  | * by Eric Young (eay@cryptsoft.com). | 
|  | * The implementation was written so as to conform with Netscapes SSL. | 
|  | * | 
|  | * This library is free for commercial and non-commercial use as long as | 
|  | * the following conditions are aheared to.  The following conditions | 
|  | * apply to all code found in this distribution, be it the RC4, RSA, | 
|  | * lhash, DES, etc., code; not just the SSL code.  The SSL documentation | 
|  | * included with this distribution is covered by the same copyright terms | 
|  | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 
|  | * | 
|  | * Copyright remains Eric Young's, and as such any Copyright notices in | 
|  | * the code are not to be removed. | 
|  | * If this package is used in a product, Eric Young should be given attribution | 
|  | * as the author of the parts of the library used. | 
|  | * This can be in the form of a textual message at program startup or | 
|  | * in documentation (online or textual) provided with the package. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * 3. All advertising materials mentioning features or use of this software | 
|  | *    must display the following acknowledgement: | 
|  | *    "This product includes cryptographic software written by | 
|  | *     Eric Young (eay@cryptsoft.com)" | 
|  | *    The word 'cryptographic' can be left out if the rouines from the library | 
|  | *    being used are not cryptographic related :-). | 
|  | * 4. If you include any Windows specific code (or a derivative thereof) from | 
|  | *    the apps directory (application code) you must include an acknowledgement: | 
|  | *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 
|  | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | 
|  | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
|  | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
|  | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
|  | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
|  | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
|  | * SUCH DAMAGE. | 
|  | * | 
|  | * The licence and distribution terms for any publically available version or | 
|  | * derivative of this code cannot be changed.  i.e. this code cannot simply be | 
|  | * copied and put under another distribution licence | 
|  | * [including the GNU Public Licence.] */ | 
|  |  | 
|  | #include <openssl/bn.h> | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/mem.h> | 
|  |  | 
|  | #include "internal.h" | 
|  | #include "../../internal.h" | 
|  |  | 
|  |  | 
|  | #define BN_MUL_RECURSIVE_SIZE_NORMAL 16 | 
|  | #define BN_SQR_RECURSIVE_SIZE_NORMAL BN_MUL_RECURSIVE_SIZE_NORMAL | 
|  |  | 
|  |  | 
|  | static void bn_abs_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, | 
|  | size_t num, BN_ULONG *tmp) { | 
|  | BN_ULONG borrow = bn_sub_words(tmp, a, b, num); | 
|  | bn_sub_words(r, b, a, num); | 
|  | bn_select_words(r, 0 - borrow, r /* tmp < 0 */, tmp /* tmp >= 0 */, num); | 
|  | } | 
|  |  | 
|  | static void bn_mul_normal(BN_ULONG *r, const BN_ULONG *a, size_t na, | 
|  | const BN_ULONG *b, size_t nb) { | 
|  | if (na < nb) { | 
|  | size_t itmp = na; | 
|  | na = nb; | 
|  | nb = itmp; | 
|  | const BN_ULONG *ltmp = a; | 
|  | a = b; | 
|  | b = ltmp; | 
|  | } | 
|  | BN_ULONG *rr = &(r[na]); | 
|  | if (nb == 0) { | 
|  | OPENSSL_memset(r, 0, na * sizeof(BN_ULONG)); | 
|  | return; | 
|  | } | 
|  | rr[0] = bn_mul_words(r, a, na, b[0]); | 
|  |  | 
|  | for (;;) { | 
|  | if (--nb == 0) { | 
|  | return; | 
|  | } | 
|  | rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]); | 
|  | if (--nb == 0) { | 
|  | return; | 
|  | } | 
|  | rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]); | 
|  | if (--nb == 0) { | 
|  | return; | 
|  | } | 
|  | rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]); | 
|  | if (--nb == 0) { | 
|  | return; | 
|  | } | 
|  | rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]); | 
|  | rr += 4; | 
|  | r += 4; | 
|  | b += 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | // bn_sub_part_words sets |r| to |a| - |b|. It returns the borrow bit, which is | 
|  | // one if the operation underflowed and zero otherwise. |cl| is the common | 
|  | // length, that is, the shorter of len(a) or len(b). |dl| is the delta length, | 
|  | // that is, len(a) - len(b). |r|'s length matches the larger of |a| and |b|, or | 
|  | // cl + abs(dl). | 
|  | // | 
|  | // TODO(davidben): Make this take |size_t|. The |cl| + |dl| calling convention | 
|  | // is confusing. | 
|  | static BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, | 
|  | const BN_ULONG *b, int cl, int dl) { | 
|  | assert(cl >= 0); | 
|  | BN_ULONG borrow = bn_sub_words(r, a, b, cl); | 
|  | if (dl == 0) { | 
|  | return borrow; | 
|  | } | 
|  |  | 
|  | r += cl; | 
|  | a += cl; | 
|  | b += cl; | 
|  |  | 
|  | if (dl < 0) { | 
|  | // |a| is shorter than |b|. Complete the subtraction as if the excess words | 
|  | // in |a| were zeros. | 
|  | dl = -dl; | 
|  | for (int i = 0; i < dl; i++) { | 
|  | r[i] = CRYPTO_subc_w(0, b[i], borrow, &borrow); | 
|  | } | 
|  | } else { | 
|  | // |b| is shorter than |a|. Complete the subtraction as if the excess words | 
|  | // in |b| were zeros. | 
|  | for (int i = 0; i < dl; i++) { | 
|  | r[i] = CRYPTO_subc_w(a[i], 0, borrow, &borrow); | 
|  | } | 
|  | } | 
|  |  | 
|  | return borrow; | 
|  | } | 
|  |  | 
|  | // bn_abs_sub_part_words computes |r| = |a| - |b|, storing the absolute value | 
|  | // and returning a mask of all ones if the result was negative and all zeros if | 
|  | // the result was positive. |cl| and |dl| follow the |bn_sub_part_words| calling | 
|  | // convention. | 
|  | // | 
|  | // TODO(davidben): Make this take |size_t|. The |cl| + |dl| calling convention | 
|  | // is confusing. | 
|  | static BN_ULONG bn_abs_sub_part_words(BN_ULONG *r, const BN_ULONG *a, | 
|  | const BN_ULONG *b, int cl, int dl, | 
|  | BN_ULONG *tmp) { | 
|  | BN_ULONG borrow = bn_sub_part_words(tmp, a, b, cl, dl); | 
|  | bn_sub_part_words(r, b, a, cl, -dl); | 
|  | int r_len = cl + (dl < 0 ? -dl : dl); | 
|  | borrow = 0 - borrow; | 
|  | bn_select_words(r, borrow, r /* tmp < 0 */, tmp /* tmp >= 0 */, r_len); | 
|  | return borrow; | 
|  | } | 
|  |  | 
|  | int bn_abs_sub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
|  | BN_CTX *ctx) { | 
|  | int cl = a->width < b->width ? a->width : b->width; | 
|  | int dl = a->width - b->width; | 
|  | int r_len = a->width < b->width ? b->width : a->width; | 
|  | BN_CTX_start(ctx); | 
|  | BIGNUM *tmp = BN_CTX_get(ctx); | 
|  | int ok = tmp != NULL && | 
|  | bn_wexpand(r, r_len) && | 
|  | bn_wexpand(tmp, r_len); | 
|  | if (ok) { | 
|  | bn_abs_sub_part_words(r->d, a->d, b->d, cl, dl, tmp->d); | 
|  | r->width = r_len; | 
|  | } | 
|  | BN_CTX_end(ctx); | 
|  | return ok; | 
|  | } | 
|  |  | 
|  | // Karatsuba recursive multiplication algorithm | 
|  | // (cf. Knuth, The Art of Computer Programming, Vol. 2) | 
|  |  | 
|  | // bn_mul_recursive sets |r| to |a| * |b|, using |t| as scratch space. |r| has | 
|  | // length 2*|n2|, |a| has length |n2| + |dna|, |b| has length |n2| + |dnb|, and | 
|  | // |t| has length 4*|n2|. |n2| must be a power of two. Finally, we must have | 
|  | // -|BN_MUL_RECURSIVE_SIZE_NORMAL|/2 <= |dna| <= 0 and | 
|  | // -|BN_MUL_RECURSIVE_SIZE_NORMAL|/2 <= |dnb| <= 0. | 
|  | // | 
|  | // TODO(davidben): Simplify and |size_t| the calling convention around lengths | 
|  | // here. | 
|  | static void bn_mul_recursive(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, | 
|  | int n2, int dna, int dnb, BN_ULONG *t) { | 
|  | // |n2| is a power of two. | 
|  | assert(n2 != 0 && (n2 & (n2 - 1)) == 0); | 
|  | // Check |dna| and |dnb| are in range. | 
|  | assert(-BN_MUL_RECURSIVE_SIZE_NORMAL/2 <= dna && dna <= 0); | 
|  | assert(-BN_MUL_RECURSIVE_SIZE_NORMAL/2 <= dnb && dnb <= 0); | 
|  |  | 
|  | // Only call bn_mul_comba 8 if n2 == 8 and the | 
|  | // two arrays are complete [steve] | 
|  | if (n2 == 8 && dna == 0 && dnb == 0) { | 
|  | bn_mul_comba8(r, a, b); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Else do normal multiply | 
|  | if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) { | 
|  | bn_mul_normal(r, a, n2 + dna, b, n2 + dnb); | 
|  | if (dna + dnb < 0) { | 
|  | OPENSSL_memset(&r[2 * n2 + dna + dnb], 0, | 
|  | sizeof(BN_ULONG) * -(dna + dnb)); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Split |a| and |b| into a0,a1 and b0,b1, where a0 and b0 have size |n|. | 
|  | // Split |t| into t0,t1,t2,t3, each of size |n|, with the remaining 4*|n| used | 
|  | // for recursive calls. | 
|  | // Split |r| into r0,r1,r2,r3. We must contribute a0*b0 to r0,r1, a0*a1+b0*b1 | 
|  | // to r1,r2, and a1*b1 to r2,r3. The middle term we will compute as: | 
|  | // | 
|  | //   a0*a1 + b0*b1 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0 | 
|  | // | 
|  | // Note that we know |n| >= |BN_MUL_RECURSIVE_SIZE_NORMAL|/2 above, so | 
|  | // |tna| and |tnb| are non-negative. | 
|  | int n = n2 / 2, tna = n + dna, tnb = n + dnb; | 
|  |  | 
|  | // t0 = a0 - a1 and t1 = b1 - b0. The result will be multiplied, so we XOR | 
|  | // their sign masks, giving the sign of (a0 - a1)*(b1 - b0). t0 and t1 | 
|  | // themselves store the absolute value. | 
|  | BN_ULONG neg = bn_abs_sub_part_words(t, a, &a[n], tna, n - tna, &t[n2]); | 
|  | neg ^= bn_abs_sub_part_words(&t[n], &b[n], b, tnb, tnb - n, &t[n2]); | 
|  |  | 
|  | // Compute: | 
|  | // t2,t3 = t0 * t1 = |(a0 - a1)*(b1 - b0)| | 
|  | // r0,r1 = a0 * b0 | 
|  | // r2,r3 = a1 * b1 | 
|  | if (n == 4 && dna == 0 && dnb == 0) { | 
|  | bn_mul_comba4(&t[n2], t, &t[n]); | 
|  |  | 
|  | bn_mul_comba4(r, a, b); | 
|  | bn_mul_comba4(&r[n2], &a[n], &b[n]); | 
|  | } else if (n == 8 && dna == 0 && dnb == 0) { | 
|  | bn_mul_comba8(&t[n2], t, &t[n]); | 
|  |  | 
|  | bn_mul_comba8(r, a, b); | 
|  | bn_mul_comba8(&r[n2], &a[n], &b[n]); | 
|  | } else { | 
|  | BN_ULONG *p = &t[n2 * 2]; | 
|  | bn_mul_recursive(&t[n2], t, &t[n], n, 0, 0, p); | 
|  | bn_mul_recursive(r, a, b, n, 0, 0, p); | 
|  | bn_mul_recursive(&r[n2], &a[n], &b[n], n, dna, dnb, p); | 
|  | } | 
|  |  | 
|  | // t0,t1,c = r0,r1 + r2,r3 = a0*b0 + a1*b1 | 
|  | BN_ULONG c = bn_add_words(t, r, &r[n2], n2); | 
|  |  | 
|  | // t2,t3,c = t0,t1,c + neg*t2,t3 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0. | 
|  | // The second term is stored as the absolute value, so we do this with a | 
|  | // constant-time select. | 
|  | BN_ULONG c_neg = c - bn_sub_words(&t[n2 * 2], t, &t[n2], n2); | 
|  | BN_ULONG c_pos = c + bn_add_words(&t[n2], t, &t[n2], n2); | 
|  | bn_select_words(&t[n2], neg, &t[n2 * 2], &t[n2], n2); | 
|  | static_assert(sizeof(BN_ULONG) <= sizeof(crypto_word_t), | 
|  | "crypto_word_t is too small"); | 
|  | c = constant_time_select_w(neg, c_neg, c_pos); | 
|  |  | 
|  | // We now have our three components. Add them together. | 
|  | // r1,r2,c = r1,r2 + t2,t3,c | 
|  | c += bn_add_words(&r[n], &r[n], &t[n2], n2); | 
|  |  | 
|  | // Propagate the carry bit to the end. | 
|  | for (int i = n + n2; i < n2 + n2; i++) { | 
|  | BN_ULONG old = r[i]; | 
|  | r[i] = old + c; | 
|  | c = r[i] < old; | 
|  | } | 
|  |  | 
|  | // The product should fit without carries. | 
|  | declassify_assert(c == 0); | 
|  | } | 
|  |  | 
|  | // bn_mul_part_recursive sets |r| to |a| * |b|, using |t| as scratch space. |r| | 
|  | // has length 4*|n|, |a| has length |n| + |tna|, |b| has length |n| + |tnb|, and | 
|  | // |t| has length 8*|n|. |n| must be a power of two. Additionally, we must have | 
|  | // 0 <= tna < n and 0 <= tnb < n, and |tna| and |tnb| must differ by at most | 
|  | // one. | 
|  | // | 
|  | // TODO(davidben): Make this take |size_t| and perhaps the actual lengths of |a| | 
|  | // and |b|. | 
|  | static void bn_mul_part_recursive(BN_ULONG *r, const BN_ULONG *a, | 
|  | const BN_ULONG *b, int n, int tna, int tnb, | 
|  | BN_ULONG *t) { | 
|  | // |n| is a power of two. | 
|  | assert(n != 0 && (n & (n - 1)) == 0); | 
|  | // Check |tna| and |tnb| are in range. | 
|  | assert(0 <= tna && tna < n); | 
|  | assert(0 <= tnb && tnb < n); | 
|  | assert(-1 <= tna - tnb && tna - tnb <= 1); | 
|  |  | 
|  | int n2 = n * 2; | 
|  | if (n < 8) { | 
|  | bn_mul_normal(r, a, n + tna, b, n + tnb); | 
|  | OPENSSL_memset(r + n2 + tna + tnb, 0, n2 - tna - tnb); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Split |a| and |b| into a0,a1 and b0,b1, where a0 and b0 have size |n|. |a1| | 
|  | // and |b1| have size |tna| and |tnb|, respectively. | 
|  | // Split |t| into t0,t1,t2,t3, each of size |n|, with the remaining 4*|n| used | 
|  | // for recursive calls. | 
|  | // Split |r| into r0,r1,r2,r3. We must contribute a0*b0 to r0,r1, a0*a1+b0*b1 | 
|  | // to r1,r2, and a1*b1 to r2,r3. The middle term we will compute as: | 
|  | // | 
|  | //   a0*a1 + b0*b1 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0 | 
|  |  | 
|  | // t0 = a0 - a1 and t1 = b1 - b0. The result will be multiplied, so we XOR | 
|  | // their sign masks, giving the sign of (a0 - a1)*(b1 - b0). t0 and t1 | 
|  | // themselves store the absolute value. | 
|  | BN_ULONG neg = bn_abs_sub_part_words(t, a, &a[n], tna, n - tna, &t[n2]); | 
|  | neg ^= bn_abs_sub_part_words(&t[n], &b[n], b, tnb, tnb - n, &t[n2]); | 
|  |  | 
|  | // Compute: | 
|  | // t2,t3 = t0 * t1 = |(a0 - a1)*(b1 - b0)| | 
|  | // r0,r1 = a0 * b0 | 
|  | // r2,r3 = a1 * b1 | 
|  | if (n == 8) { | 
|  | bn_mul_comba8(&t[n2], t, &t[n]); | 
|  | bn_mul_comba8(r, a, b); | 
|  |  | 
|  | bn_mul_normal(&r[n2], &a[n], tna, &b[n], tnb); | 
|  | // |bn_mul_normal| only writes |tna| + |tna| words. Zero the rest. | 
|  | OPENSSL_memset(&r[n2 + tna + tnb], 0, sizeof(BN_ULONG) * (n2 - tna - tnb)); | 
|  | } else { | 
|  | BN_ULONG *p = &t[n2 * 2]; | 
|  | bn_mul_recursive(&t[n2], t, &t[n], n, 0, 0, p); | 
|  | bn_mul_recursive(r, a, b, n, 0, 0, p); | 
|  |  | 
|  | OPENSSL_memset(&r[n2], 0, sizeof(BN_ULONG) * n2); | 
|  | if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL && | 
|  | tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) { | 
|  | bn_mul_normal(&r[n2], &a[n], tna, &b[n], tnb); | 
|  | } else { | 
|  | int i = n; | 
|  | for (;;) { | 
|  | i /= 2; | 
|  | if (i < tna || i < tnb) { | 
|  | // E.g., n == 16, i == 8 and tna == 11. |tna| and |tnb| are within one | 
|  | // of each other, so if |tna| is larger and tna > i, then we know | 
|  | // tnb >= i, and this call is valid. | 
|  | bn_mul_part_recursive(&r[n2], &a[n], &b[n], i, tna - i, tnb - i, p); | 
|  | break; | 
|  | } | 
|  | if (i == tna || i == tnb) { | 
|  | // If there is only a bottom half to the number, just do it. We know | 
|  | // the larger of |tna - i| and |tnb - i| is zero. The other is zero or | 
|  | // -1 by because of |tna| and |tnb| differ by at most one. | 
|  | bn_mul_recursive(&r[n2], &a[n], &b[n], i, tna - i, tnb - i, p); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // This loop will eventually terminate when |i| falls below | 
|  | // |BN_MUL_RECURSIVE_SIZE_NORMAL| because we know one of |tna| and |tnb| | 
|  | // exceeds that. | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // t0,t1,c = r0,r1 + r2,r3 = a0*b0 + a1*b1 | 
|  | BN_ULONG c = bn_add_words(t, r, &r[n2], n2); | 
|  |  | 
|  | // t2,t3,c = t0,t1,c + neg*t2,t3 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0. | 
|  | // The second term is stored as the absolute value, so we do this with a | 
|  | // constant-time select. | 
|  | BN_ULONG c_neg = c - bn_sub_words(&t[n2 * 2], t, &t[n2], n2); | 
|  | BN_ULONG c_pos = c + bn_add_words(&t[n2], t, &t[n2], n2); | 
|  | bn_select_words(&t[n2], neg, &t[n2 * 2], &t[n2], n2); | 
|  | static_assert(sizeof(BN_ULONG) <= sizeof(crypto_word_t), | 
|  | "crypto_word_t is too small"); | 
|  | c = constant_time_select_w(neg, c_neg, c_pos); | 
|  |  | 
|  | // We now have our three components. Add them together. | 
|  | // r1,r2,c = r1,r2 + t2,t3,c | 
|  | c += bn_add_words(&r[n], &r[n], &t[n2], n2); | 
|  |  | 
|  | // Propagate the carry bit to the end. | 
|  | for (int i = n + n2; i < n2 + n2; i++) { | 
|  | BN_ULONG old = r[i]; | 
|  | r[i] = old + c; | 
|  | c = r[i] < old; | 
|  | } | 
|  |  | 
|  | // The product should fit without carries. | 
|  | declassify_assert(c == 0); | 
|  | } | 
|  |  | 
|  | // bn_mul_impl implements |BN_mul| and |bn_mul_consttime|. Note this function | 
|  | // breaks |BIGNUM| invariants and may return a negative zero. This is handled by | 
|  | // the callers. | 
|  | static int bn_mul_impl(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
|  | BN_CTX *ctx) { | 
|  | int al = a->width; | 
|  | int bl = b->width; | 
|  | if (al == 0 || bl == 0) { | 
|  | BN_zero(r); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int ret = 0; | 
|  | BIGNUM *rr; | 
|  | BN_CTX_start(ctx); | 
|  | if (r == a || r == b) { | 
|  | rr = BN_CTX_get(ctx); | 
|  | if (rr == NULL) { | 
|  | goto err; | 
|  | } | 
|  | } else { | 
|  | rr = r; | 
|  | } | 
|  | rr->neg = a->neg ^ b->neg; | 
|  |  | 
|  | int i = al - bl; | 
|  | if (i == 0) { | 
|  | if (al == 8) { | 
|  | if (!bn_wexpand(rr, 16)) { | 
|  | goto err; | 
|  | } | 
|  | rr->width = 16; | 
|  | bn_mul_comba8(rr->d, a->d, b->d); | 
|  | goto end; | 
|  | } | 
|  | } | 
|  |  | 
|  | int top = al + bl; | 
|  | static const int kMulNormalSize = 16; | 
|  | if (al >= kMulNormalSize && bl >= kMulNormalSize) { | 
|  | if (-1 <= i && i <= 1) { | 
|  | // Find the largest power of two less than or equal to the larger length. | 
|  | int j; | 
|  | if (i >= 0) { | 
|  | j = BN_num_bits_word((BN_ULONG)al); | 
|  | } else { | 
|  | j = BN_num_bits_word((BN_ULONG)bl); | 
|  | } | 
|  | j = 1 << (j - 1); | 
|  | assert(j <= al || j <= bl); | 
|  | BIGNUM *t = BN_CTX_get(ctx); | 
|  | if (t == NULL) { | 
|  | goto err; | 
|  | } | 
|  | if (al > j || bl > j) { | 
|  | // We know |al| and |bl| are at most one from each other, so if al > j, | 
|  | // bl >= j, and vice versa. Thus we can use |bn_mul_part_recursive|. | 
|  | // | 
|  | // TODO(davidben): This codepath is almost unused in standard | 
|  | // algorithms. Is this optimization necessary? See notes in | 
|  | // https://boringssl-review.googlesource.com/q/I0bd604e2cd6a75c266f64476c23a730ca1721ea6 | 
|  | assert(al >= j && bl >= j); | 
|  | if (!bn_wexpand(t, j * 8) || | 
|  | !bn_wexpand(rr, j * 4)) { | 
|  | goto err; | 
|  | } | 
|  | bn_mul_part_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d); | 
|  | } else { | 
|  | // al <= j && bl <= j. Additionally, we know j <= al or j <= bl, so one | 
|  | // of al - j or bl - j is zero. The other, by the bound on |i| above, is | 
|  | // zero or -1. Thus, we can use |bn_mul_recursive|. | 
|  | if (!bn_wexpand(t, j * 4) || | 
|  | !bn_wexpand(rr, j * 2)) { | 
|  | goto err; | 
|  | } | 
|  | bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d); | 
|  | } | 
|  | rr->width = top; | 
|  | goto end; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!bn_wexpand(rr, top)) { | 
|  | goto err; | 
|  | } | 
|  | rr->width = top; | 
|  | bn_mul_normal(rr->d, a->d, al, b->d, bl); | 
|  |  | 
|  | end: | 
|  | if (r != rr && !BN_copy(r, rr)) { | 
|  | goto err; | 
|  | } | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | BN_CTX_end(ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { | 
|  | if (!bn_mul_impl(r, a, b, ctx)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // This additionally fixes any negative zeros created by |bn_mul_impl|. | 
|  | bn_set_minimal_width(r); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int bn_mul_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { | 
|  | // Prevent negative zeros. | 
|  | if (a->neg || b->neg) { | 
|  | OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return bn_mul_impl(r, a, b, ctx); | 
|  | } | 
|  |  | 
|  | void bn_mul_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a, | 
|  | const BN_ULONG *b, size_t num_b) { | 
|  | if (num_r != num_a + num_b) { | 
|  | abort(); | 
|  | } | 
|  | // TODO(davidben): Should this call |bn_mul_comba4| too? |BN_mul| does not | 
|  | // hit that code. | 
|  | if (num_a == 8 && num_b == 8) { | 
|  | bn_mul_comba8(r, a, b); | 
|  | } else { | 
|  | bn_mul_normal(r, a, num_a, b, num_b); | 
|  | } | 
|  | } | 
|  |  | 
|  | // tmp must have 2*n words | 
|  | static void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, size_t n, | 
|  | BN_ULONG *tmp) { | 
|  | if (n == 0) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | size_t max = n * 2; | 
|  | const BN_ULONG *ap = a; | 
|  | BN_ULONG *rp = r; | 
|  | rp[0] = rp[max - 1] = 0; | 
|  | rp++; | 
|  |  | 
|  | // Compute the contribution of a[i] * a[j] for all i < j. | 
|  | if (n > 1) { | 
|  | ap++; | 
|  | rp[n - 1] = bn_mul_words(rp, ap, n - 1, ap[-1]); | 
|  | rp += 2; | 
|  | } | 
|  | if (n > 2) { | 
|  | for (size_t i = n - 2; i > 0; i--) { | 
|  | ap++; | 
|  | rp[i] = bn_mul_add_words(rp, ap, i, ap[-1]); | 
|  | rp += 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | // The final result fits in |max| words, so none of the following operations | 
|  | // will overflow. | 
|  |  | 
|  | // Double |r|, giving the contribution of a[i] * a[j] for all i != j. | 
|  | bn_add_words(r, r, r, max); | 
|  |  | 
|  | // Add in the contribution of a[i] * a[i] for all i. | 
|  | bn_sqr_words(tmp, a, n); | 
|  | bn_add_words(r, r, tmp, max); | 
|  | } | 
|  |  | 
|  | // bn_sqr_recursive sets |r| to |a|^2, using |t| as scratch space. |r| has | 
|  | // length 2*|n2|, |a| has length |n2|, and |t| has length 4*|n2|. |n2| must be | 
|  | // a power of two. | 
|  | static void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, size_t n2, | 
|  | BN_ULONG *t) { | 
|  | // |n2| is a power of two. | 
|  | assert(n2 != 0 && (n2 & (n2 - 1)) == 0); | 
|  |  | 
|  | if (n2 == 4) { | 
|  | bn_sqr_comba4(r, a); | 
|  | return; | 
|  | } | 
|  | if (n2 == 8) { | 
|  | bn_sqr_comba8(r, a); | 
|  | return; | 
|  | } | 
|  | if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) { | 
|  | bn_sqr_normal(r, a, n2, t); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Split |a| into a0,a1, each of size |n|. | 
|  | // Split |t| into t0,t1,t2,t3, each of size |n|, with the remaining 4*|n| used | 
|  | // for recursive calls. | 
|  | // Split |r| into r0,r1,r2,r3. We must contribute a0^2 to r0,r1, 2*a0*a1 to | 
|  | // r1,r2, and a1^2 to r2,r3. | 
|  | size_t n = n2 / 2; | 
|  | BN_ULONG *t_recursive = &t[n2 * 2]; | 
|  |  | 
|  | // t0 = |a0 - a1|. | 
|  | bn_abs_sub_words(t, a, &a[n], n, &t[n]); | 
|  | // t2,t3 = t0^2 = |a0 - a1|^2 = a0^2 - 2*a0*a1 + a1^2 | 
|  | bn_sqr_recursive(&t[n2], t, n, t_recursive); | 
|  |  | 
|  | // r0,r1 = a0^2 | 
|  | bn_sqr_recursive(r, a, n, t_recursive); | 
|  |  | 
|  | // r2,r3 = a1^2 | 
|  | bn_sqr_recursive(&r[n2], &a[n], n, t_recursive); | 
|  |  | 
|  | // t0,t1,c = r0,r1 + r2,r3 = a0^2 + a1^2 | 
|  | BN_ULONG c = bn_add_words(t, r, &r[n2], n2); | 
|  | // t2,t3,c = t0,t1,c - t2,t3 = 2*a0*a1 | 
|  | c -= bn_sub_words(&t[n2], t, &t[n2], n2); | 
|  |  | 
|  | // We now have our three components. Add them together. | 
|  | // r1,r2,c = r1,r2 + t2,t3,c | 
|  | c += bn_add_words(&r[n], &r[n], &t[n2], n2); | 
|  |  | 
|  | // Propagate the carry bit to the end. | 
|  | for (size_t i = n + n2; i < n2 + n2; i++) { | 
|  | BN_ULONG old = r[i]; | 
|  | r[i] = old + c; | 
|  | c = r[i] < old; | 
|  | } | 
|  |  | 
|  | // The square should fit without carries. | 
|  | assert(c == 0); | 
|  | } | 
|  |  | 
|  | int BN_mul_word(BIGNUM *bn, BN_ULONG w) { | 
|  | if (!bn->width) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (w == 0) { | 
|  | BN_zero(bn); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | BN_ULONG ll = bn_mul_words(bn->d, bn->d, bn->width, w); | 
|  | if (ll) { | 
|  | if (!bn_wexpand(bn, bn->width + 1)) { | 
|  | return 0; | 
|  | } | 
|  | bn->d[bn->width++] = ll; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int bn_sqr_consttime(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) { | 
|  | int al = a->width; | 
|  | if (al <= 0) { | 
|  | r->width = 0; | 
|  | r->neg = 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int ret = 0; | 
|  | BN_CTX_start(ctx); | 
|  | BIGNUM *rr = (a != r) ? r : BN_CTX_get(ctx); | 
|  | BIGNUM *tmp = BN_CTX_get(ctx); | 
|  | if (!rr || !tmp) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | int max = 2 * al;  // Non-zero (from above) | 
|  | if (!bn_wexpand(rr, max)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (al == 4) { | 
|  | bn_sqr_comba4(rr->d, a->d); | 
|  | } else if (al == 8) { | 
|  | bn_sqr_comba8(rr->d, a->d); | 
|  | } else { | 
|  | if (al < BN_SQR_RECURSIVE_SIZE_NORMAL) { | 
|  | BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL * 2]; | 
|  | bn_sqr_normal(rr->d, a->d, al, t); | 
|  | } else { | 
|  | // If |al| is a power of two, we can use |bn_sqr_recursive|. | 
|  | if (al != 0 && (al & (al - 1)) == 0) { | 
|  | if (!bn_wexpand(tmp, al * 4)) { | 
|  | goto err; | 
|  | } | 
|  | bn_sqr_recursive(rr->d, a->d, al, tmp->d); | 
|  | } else { | 
|  | if (!bn_wexpand(tmp, max)) { | 
|  | goto err; | 
|  | } | 
|  | bn_sqr_normal(rr->d, a->d, al, tmp->d); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | rr->neg = 0; | 
|  | rr->width = max; | 
|  |  | 
|  | if (rr != r && !BN_copy(r, rr)) { | 
|  | goto err; | 
|  | } | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | BN_CTX_end(ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) { | 
|  | if (!bn_sqr_consttime(r, a, ctx)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bn_set_minimal_width(r); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void bn_sqr_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a) { | 
|  | if (num_r != 2 * num_a || num_a > BN_SMALL_MAX_WORDS) { | 
|  | abort(); | 
|  | } | 
|  | if (num_a == 4) { | 
|  | bn_sqr_comba4(r, a); | 
|  | } else if (num_a == 8) { | 
|  | bn_sqr_comba8(r, a); | 
|  | } else { | 
|  | BN_ULONG tmp[2 * BN_SMALL_MAX_WORDS]; | 
|  | bn_sqr_normal(r, a, num_a, tmp); | 
|  | OPENSSL_cleanse(tmp, 2 * num_a * sizeof(BN_ULONG)); | 
|  | } | 
|  | } |