blob: 093b4acd7979a8176a86436b543d920f06011a24 [file] [log] [blame]
/* Copyright (c) 2019, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#ifndef OPENSSL_HEADER_TRUST_TOKEN_INTERNAL_H
#define OPENSSL_HEADER_TRUST_TOKEN_INTERNAL_H
#include <openssl/base.h>
#include <openssl/ec.h>
#include <openssl/ec_key.h>
#include <openssl/nid.h>
#include "../fipsmodule/ec/internal.h"
#include <openssl/trust_token.h>
#if defined(__cplusplus)
extern "C" {
#endif
// For the following cryptographic schemes, we use P-384 instead of our usual
// choice of P-256. See Appendix I of
// https://eprint.iacr.org/2020/072/20200324:214215 which describes two attacks
// which may affect smaller curves. In particular, p-1 for P-256 is smooth,
// giving a low complexity for the p-1 attack. P-384's p-1 has a 281-bit prime
// factor,
// 3055465788140352002733946906144561090641249606160407884365391979704929268480326390471.
// This lower-bounds the p-1 attack at O(2^140). The p+1 attack is lower-bounded
// by O(p^(1/3)) or O(2^128), so we do not need to check the smoothness of p+1.
// TRUST_TOKEN_NONCE_SIZE is the size of nonces used as part of the Trust_Token
// protocol.
#define TRUST_TOKEN_NONCE_SIZE 64
typedef struct {
// TODO(https://crbug.com/boringssl/334): These should store |EC_PRECOMP| so
// that |TRUST_TOKEN_finish_issuance| can use |ec_point_mul_scalar_precomp|.
EC_AFFINE pub0;
EC_AFFINE pub1;
EC_AFFINE pubs;
} TRUST_TOKEN_CLIENT_KEY;
typedef struct {
EC_SCALAR x0;
EC_SCALAR y0;
EC_SCALAR x1;
EC_SCALAR y1;
EC_SCALAR xs;
EC_SCALAR ys;
EC_AFFINE pub0;
EC_PRECOMP pub0_precomp;
EC_AFFINE pub1;
EC_PRECOMP pub1_precomp;
EC_AFFINE pubs;
EC_PRECOMP pubs_precomp;
} TRUST_TOKEN_ISSUER_KEY;
// TRUST_TOKEN_PRETOKEN represents the intermediate state a client keeps during
// a Trust_Token issuance operation.
typedef struct pmb_pretoken_st {
uint8_t salt[TRUST_TOKEN_NONCE_SIZE];
uint8_t t[TRUST_TOKEN_NONCE_SIZE];
EC_SCALAR r;
EC_AFFINE Tp;
} TRUST_TOKEN_PRETOKEN;
// TRUST_TOKEN_PRETOKEN_free releases the memory associated with |token|.
OPENSSL_EXPORT void TRUST_TOKEN_PRETOKEN_free(TRUST_TOKEN_PRETOKEN *token);
DEFINE_STACK_OF(TRUST_TOKEN_PRETOKEN)
// PMBTokens.
//
// PMBTokens is described in https://eprint.iacr.org/2020/072/20200324:214215
// and provides anonymous tokens with private metadata. We implement the
// construction with validity verification, described in appendix H,
// construction 6.
// The following functions implement the corresponding |TRUST_TOKENS_METHOD|
// functions for |TRUST_TOKENS_experiment_v1|'s PMBTokens construction which
// uses P-384.
int pmbtoken_exp1_generate_key(CBB *out_private, CBB *out_public);
int pmbtoken_exp1_derive_key_from_secret(CBB *out_private, CBB *out_public,
const uint8_t *secret,
size_t secret_len);
int pmbtoken_exp1_client_key_from_bytes(TRUST_TOKEN_CLIENT_KEY *key,
const uint8_t *in, size_t len);
int pmbtoken_exp1_issuer_key_from_bytes(TRUST_TOKEN_ISSUER_KEY *key,
const uint8_t *in, size_t len);
STACK_OF(TRUST_TOKEN_PRETOKEN) *pmbtoken_exp1_blind(CBB *cbb, size_t count,
int include_message,
const uint8_t *msg,
size_t msg_len);
int pmbtoken_exp1_sign(const TRUST_TOKEN_ISSUER_KEY *key, CBB *cbb, CBS *cbs,
size_t num_requested, size_t num_to_issue,
uint8_t private_metadata);
STACK_OF(TRUST_TOKEN) *pmbtoken_exp1_unblind(
const TRUST_TOKEN_CLIENT_KEY *key,
const STACK_OF(TRUST_TOKEN_PRETOKEN) *pretokens, CBS *cbs, size_t count,
uint32_t key_id);
int pmbtoken_exp1_read(const TRUST_TOKEN_ISSUER_KEY *key,
uint8_t out_nonce[TRUST_TOKEN_NONCE_SIZE],
uint8_t *out_private_metadata, const uint8_t *token,
size_t token_len, int include_message,
const uint8_t *msg, size_t msg_len);
// pmbtoken_exp1_get_h_for_testing returns H in uncompressed coordinates. This
// function is used to confirm H was computed as expected.
OPENSSL_EXPORT int pmbtoken_exp1_get_h_for_testing(uint8_t out[97]);
// The following functions implement the corresponding |TRUST_TOKENS_METHOD|
// functions for |TRUST_TOKENS_experiment_v2|'s PMBTokens construction which
// uses P-384.
int pmbtoken_exp2_generate_key(CBB *out_private, CBB *out_public);
int pmbtoken_exp2_derive_key_from_secret(CBB *out_private, CBB *out_public,
const uint8_t *secret,
size_t secret_len);
int pmbtoken_exp2_client_key_from_bytes(TRUST_TOKEN_CLIENT_KEY *key,
const uint8_t *in, size_t len);
int pmbtoken_exp2_issuer_key_from_bytes(TRUST_TOKEN_ISSUER_KEY *key,
const uint8_t *in, size_t len);
STACK_OF(TRUST_TOKEN_PRETOKEN) *pmbtoken_exp2_blind(CBB *cbb, size_t count,
int include_message,
const uint8_t *msg,
size_t msg_len);
int pmbtoken_exp2_sign(const TRUST_TOKEN_ISSUER_KEY *key, CBB *cbb, CBS *cbs,
size_t num_requested, size_t num_to_issue,
uint8_t private_metadata);
STACK_OF(TRUST_TOKEN) *pmbtoken_exp2_unblind(
const TRUST_TOKEN_CLIENT_KEY *key,
const STACK_OF(TRUST_TOKEN_PRETOKEN) *pretokens, CBS *cbs, size_t count,
uint32_t key_id);
int pmbtoken_exp2_read(const TRUST_TOKEN_ISSUER_KEY *key,
uint8_t out_nonce[TRUST_TOKEN_NONCE_SIZE],
uint8_t *out_private_metadata, const uint8_t *token,
size_t token_len, int include_message,
const uint8_t *msg, size_t msg_len);
// pmbtoken_exp2_get_h_for_testing returns H in uncompressed coordinates. This
// function is used to confirm H was computed as expected.
OPENSSL_EXPORT int pmbtoken_exp2_get_h_for_testing(uint8_t out[97]);
// VOPRF.
//
// VOPRFs are described in https://tools.ietf.org/html/draft-irtf-cfrg-voprf-04
// and provide anonymous tokens. This implementation uses TrustToken DSTs and
// the DLEQ batching primitive from
// https://eprint.iacr.org/2020/072/20200324:214215.
// VOPRF only uses the |pub|' field of the TRUST_TOKEN_CLIENT_KEY and
// |xs|/|pubs| fields of the TRUST_TOKEN_ISSUER_KEY.
// The following functions implement the corresponding |TRUST_TOKENS_METHOD|
// functions for |TRUST_TOKENS_experiment_v2|'s VOPRF construction which uses
// P-384.
int voprf_exp2_generate_key(CBB *out_private, CBB *out_public);
int voprf_exp2_derive_key_from_secret(CBB *out_private, CBB *out_public,
const uint8_t *secret, size_t secret_len);
int voprf_exp2_client_key_from_bytes(TRUST_TOKEN_CLIENT_KEY *key,
const uint8_t *in, size_t len);
int voprf_exp2_issuer_key_from_bytes(TRUST_TOKEN_ISSUER_KEY *key,
const uint8_t *in, size_t len);
STACK_OF(TRUST_TOKEN_PRETOKEN) *voprf_exp2_blind(CBB *cbb, size_t count,
int include_message,
const uint8_t *msg,
size_t msg_len);
int voprf_exp2_sign(const TRUST_TOKEN_ISSUER_KEY *key, CBB *cbb, CBS *cbs,
size_t num_requested, size_t num_to_issue,
uint8_t private_metadata);
STACK_OF(TRUST_TOKEN) *voprf_exp2_unblind(
const TRUST_TOKEN_CLIENT_KEY *key,
const STACK_OF(TRUST_TOKEN_PRETOKEN) *pretokens, CBS *cbs, size_t count,
uint32_t key_id);
int voprf_exp2_read(const TRUST_TOKEN_ISSUER_KEY *key,
uint8_t out_nonce[TRUST_TOKEN_NONCE_SIZE],
uint8_t *out_private_metadata, const uint8_t *token,
size_t token_len, int include_message, const uint8_t *msg,
size_t msg_len);
// Trust Tokens internals.
struct trust_token_method_st {
// generate_key generates a fresh keypair and writes their serialized
// forms into |out_private| and |out_public|. It returns one on success and
// zero on failure.
int (*generate_key)(CBB *out_private, CBB *out_public);
// derive_key_from_secret deterministically derives a keypair based on
// |secret| and writes their serialized forms into |out_private| and
// |out_public|. It returns one on success and zero on failure.
int (*derive_key_from_secret)(CBB *out_private, CBB *out_public,
const uint8_t *secret, size_t secret_len);
// client_key_from_bytes decodes a client key from |in| and sets |key|
// to the resulting key. It returns one on success and zero
// on failure.
int (*client_key_from_bytes)(TRUST_TOKEN_CLIENT_KEY *key, const uint8_t *in,
size_t len);
// issuer_key_from_bytes decodes a issuer key from |in| and sets |key|
// to the resulting key. It returns one on success and zero
// on failure.
int (*issuer_key_from_bytes)(TRUST_TOKEN_ISSUER_KEY *key, const uint8_t *in,
size_t len);
// blind generates a new issuance request for |count| tokens. If
// |include_message| is set, then |msg| is used to derive the token nonces. On
// success, it returns a newly-allocated |STACK_OF(TRUST_TOKEN_PRETOKEN)| and
// writes a request to the issuer to |cbb|. On failure, it returns NULL. The
// |STACK_OF(TRUST_TOKEN_PRETOKEN)|s should be passed to |pmbtoken_unblind|
// when the server responds.
//
// This function implements the AT.Usr0 operation.
STACK_OF(TRUST_TOKEN_PRETOKEN) *(*blind)(CBB *cbb, size_t count,
int include_message,
const uint8_t *msg, size_t msg_len);
// sign parses a request for |num_requested| tokens from |cbs| and
// issues |num_to_issue| tokens with |key| and a private metadata value of
// |private_metadata|. It then writes the response to |cbb|. It returns one on
// success and zero on failure.
//
// This function implements the AT.Sig operation.
int (*sign)(const TRUST_TOKEN_ISSUER_KEY *key, CBB *cbb, CBS *cbs,
size_t num_requested, size_t num_to_issue,
uint8_t private_metadata);
// unblind processes an issuance response for |count| tokens from |cbs|
// and unblinds the signed tokens. |pretokens| are the pre-tokens returned
// from the corresponding |blind| call. On success, the function returns a
// newly-allocated |STACK_OF(TRUST_TOKEN)| containing the resulting tokens.
// Each token's serialization will have |key_id| prepended. Otherwise, it
// returns NULL.
//
// This function implements the AT.Usr1 operation.
STACK_OF(TRUST_TOKEN) *(*unblind)(
const TRUST_TOKEN_CLIENT_KEY *key,
const STACK_OF(TRUST_TOKEN_PRETOKEN) *pretokens, CBS *cbs, size_t count,
uint32_t key_id);
// read parses a token from |token| and verifies it using |key|. If
// |include_message| is set, then the nonce is derived from |msg| and the salt
// in the token. On success, it returns one and stores the nonce and private
// metadata bit in |out_nonce| and |*out_private_metadata|. Otherwise, it
// returns zero. Note that, unlike the output of |unblind|, |token| does not
// have a four-byte key ID prepended.
int (*read)(const TRUST_TOKEN_ISSUER_KEY *key,
uint8_t out_nonce[TRUST_TOKEN_NONCE_SIZE],
uint8_t *out_private_metadata, const uint8_t *token,
size_t token_len, int include_message, const uint8_t *msg,
size_t msg_len);
// whether the construction supports private metadata.
int has_private_metadata;
// max keys that can be configured.
size_t max_keys;
// whether the SRR is part of the protocol.
int has_srr;
};
// Structure representing a single Trust Token public key with the specified ID.
struct trust_token_client_key_st {
uint32_t id;
TRUST_TOKEN_CLIENT_KEY key;
};
// Structure representing a single Trust Token private key with the specified
// ID.
struct trust_token_issuer_key_st {
uint32_t id;
TRUST_TOKEN_ISSUER_KEY key;
};
struct trust_token_client_st {
const TRUST_TOKEN_METHOD *method;
// max_batchsize is the maximum supported batchsize.
uint16_t max_batchsize;
// keys is the set of public keys that are supported by the client for
// issuance/redemptions.
struct trust_token_client_key_st keys[6];
// num_keys is the number of keys currently configured.
size_t num_keys;
// pretokens is the intermediate state during an active issuance.
STACK_OF(TRUST_TOKEN_PRETOKEN) *pretokens;
// srr_key is the public key used to verify the signature of the SRR.
EVP_PKEY *srr_key;
};
struct trust_token_issuer_st {
const TRUST_TOKEN_METHOD *method;
// max_batchsize is the maximum supported batchsize.
uint16_t max_batchsize;
// keys is the set of private keys that are supported by the issuer for
// issuance/redemptions. The public metadata is an index into this list of
// keys.
struct trust_token_issuer_key_st keys[6];
// num_keys is the number of keys currently configured.
size_t num_keys;
// srr_key is the private key used to sign the SRR.
EVP_PKEY *srr_key;
// metadata_key is the secret material used to encode the private metadata bit
// in the SRR.
uint8_t *metadata_key;
size_t metadata_key_len;
};
#if defined(__cplusplus)
} // extern C
extern "C++" {
BSSL_NAMESPACE_BEGIN
BORINGSSL_MAKE_DELETER(TRUST_TOKEN_PRETOKEN, TRUST_TOKEN_PRETOKEN_free)
BSSL_NAMESPACE_END
} // extern C++
#endif
#endif // OPENSSL_HEADER_TRUST_TOKEN_INTERNAL_H