|  | // Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include <openssl/cast.h> | 
|  | #include <openssl/cipher.h> | 
|  | #include <openssl/obj.h> | 
|  |  | 
|  | #if defined(OPENSSL_WINDOWS) | 
|  | #include <intrin.h> | 
|  | #endif | 
|  |  | 
|  | #include "../../crypto/fipsmodule/cipher/internal.h" | 
|  | #include "../../crypto/internal.h" | 
|  | #include "../macros.h" | 
|  | #include "internal.h" | 
|  |  | 
|  |  | 
|  | void CAST_ecb_encrypt(const uint8_t *in, uint8_t *out, const CAST_KEY *ks, | 
|  | int enc) { | 
|  | uint32_t d[2]; | 
|  |  | 
|  | n2l(in, d[0]); | 
|  | n2l(in, d[1]); | 
|  | if (enc) { | 
|  | CAST_encrypt(d, ks); | 
|  | } else { | 
|  | CAST_decrypt(d, ks); | 
|  | } | 
|  | l2n(d[0], out); | 
|  | l2n(d[1], out); | 
|  | } | 
|  |  | 
|  | #define E_CAST(n, key, L, R, OP1, OP2, OP3)                          \ | 
|  | {                                                                  \ | 
|  | uint32_t a, b, c, d;                                             \ | 
|  | t = (key[n * 2] OP1 R) & 0xffffffff;                             \ | 
|  | t = CRYPTO_rotl_u32(t, (key[n * 2 + 1]));                        \ | 
|  | a = CAST_S_table0[(t >> 8) & 0xff];                              \ | 
|  | b = CAST_S_table1[(t) & 0xff];                                   \ | 
|  | c = CAST_S_table2[(t >> 24) & 0xff];                             \ | 
|  | d = CAST_S_table3[(t >> 16) & 0xff];                             \ | 
|  | L ^= (((((a OP2 b) & 0xffffffffL) OP3 c) & 0xffffffffL) OP1 d) & \ | 
|  | 0xffffffffL;                                                \ | 
|  | } | 
|  |  | 
|  | void CAST_encrypt(uint32_t *data, const CAST_KEY *key) { | 
|  | uint32_t l, r, t; | 
|  | const uint32_t *k; | 
|  |  | 
|  | k = &key->data[0]; | 
|  | l = data[0]; | 
|  | r = data[1]; | 
|  |  | 
|  | E_CAST(0, k, l, r, +, ^, -); | 
|  | E_CAST(1, k, r, l, ^, -, +); | 
|  | E_CAST(2, k, l, r, -, +, ^); | 
|  | E_CAST(3, k, r, l, +, ^, -); | 
|  | E_CAST(4, k, l, r, ^, -, +); | 
|  | E_CAST(5, k, r, l, -, +, ^); | 
|  | E_CAST(6, k, l, r, +, ^, -); | 
|  | E_CAST(7, k, r, l, ^, -, +); | 
|  | E_CAST(8, k, l, r, -, +, ^); | 
|  | E_CAST(9, k, r, l, +, ^, -); | 
|  | E_CAST(10, k, l, r, ^, -, +); | 
|  | E_CAST(11, k, r, l, -, +, ^); | 
|  |  | 
|  | if (!key->short_key) { | 
|  | E_CAST(12, k, l, r, +, ^, -); | 
|  | E_CAST(13, k, r, l, ^, -, +); | 
|  | E_CAST(14, k, l, r, -, +, ^); | 
|  | E_CAST(15, k, r, l, +, ^, -); | 
|  | } | 
|  |  | 
|  | data[1] = l & 0xffffffffL; | 
|  | data[0] = r & 0xffffffffL; | 
|  | } | 
|  |  | 
|  | void CAST_decrypt(uint32_t *data, const CAST_KEY *key) { | 
|  | uint32_t l, r, t; | 
|  | const uint32_t *k; | 
|  |  | 
|  | k = &key->data[0]; | 
|  | l = data[0]; | 
|  | r = data[1]; | 
|  |  | 
|  | if (!key->short_key) { | 
|  | E_CAST(15, k, l, r, +, ^, -); | 
|  | E_CAST(14, k, r, l, -, +, ^); | 
|  | E_CAST(13, k, l, r, ^, -, +); | 
|  | E_CAST(12, k, r, l, +, ^, -); | 
|  | } | 
|  |  | 
|  | E_CAST(11, k, l, r, -, +, ^); | 
|  | E_CAST(10, k, r, l, ^, -, +); | 
|  | E_CAST(9, k, l, r, +, ^, -); | 
|  | E_CAST(8, k, r, l, -, +, ^); | 
|  | E_CAST(7, k, l, r, ^, -, +); | 
|  | E_CAST(6, k, r, l, +, ^, -); | 
|  | E_CAST(5, k, l, r, -, +, ^); | 
|  | E_CAST(4, k, r, l, ^, -, +); | 
|  | E_CAST(3, k, l, r, +, ^, -); | 
|  | E_CAST(2, k, r, l, -, +, ^); | 
|  | E_CAST(1, k, l, r, ^, -, +); | 
|  | E_CAST(0, k, r, l, +, ^, -); | 
|  |  | 
|  | data[1] = l & 0xffffffffL; | 
|  | data[0] = r & 0xffffffffL; | 
|  | } | 
|  |  | 
|  | void CAST_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, | 
|  | const CAST_KEY *ks, uint8_t *iv, int enc) { | 
|  | uint32_t tin0, tin1; | 
|  | uint32_t tout0, tout1, xor0, xor1; | 
|  | size_t l = length; | 
|  | uint32_t tin[2]; | 
|  |  | 
|  | if (enc) { | 
|  | n2l(iv, tout0); | 
|  | n2l(iv, tout1); | 
|  | iv -= 8; | 
|  | while (l >= 8) { | 
|  | n2l(in, tin0); | 
|  | n2l(in, tin1); | 
|  | tin0 ^= tout0; | 
|  | tin1 ^= tout1; | 
|  | tin[0] = tin0; | 
|  | tin[1] = tin1; | 
|  | CAST_encrypt(tin, ks); | 
|  | tout0 = tin[0]; | 
|  | tout1 = tin[1]; | 
|  | l2n(tout0, out); | 
|  | l2n(tout1, out); | 
|  | l -= 8; | 
|  | } | 
|  | if (l != 0) { | 
|  | n2ln(in, tin0, tin1, l); | 
|  | tin0 ^= tout0; | 
|  | tin1 ^= tout1; | 
|  | tin[0] = tin0; | 
|  | tin[1] = tin1; | 
|  | CAST_encrypt(tin, ks); | 
|  | tout0 = tin[0]; | 
|  | tout1 = tin[1]; | 
|  | l2n(tout0, out); | 
|  | l2n(tout1, out); | 
|  | } | 
|  | l2n(tout0, iv); | 
|  | l2n(tout1, iv); | 
|  | } else { | 
|  | n2l(iv, xor0); | 
|  | n2l(iv, xor1); | 
|  | iv -= 8; | 
|  | while (l >= 8) { | 
|  | n2l(in, tin0); | 
|  | n2l(in, tin1); | 
|  | tin[0] = tin0; | 
|  | tin[1] = tin1; | 
|  | CAST_decrypt(tin, ks); | 
|  | tout0 = tin[0] ^ xor0; | 
|  | tout1 = tin[1] ^ xor1; | 
|  | l2n(tout0, out); | 
|  | l2n(tout1, out); | 
|  | xor0 = tin0; | 
|  | xor1 = tin1; | 
|  | l -= 8; | 
|  | } | 
|  | if (l != 0) { | 
|  | n2l(in, tin0); | 
|  | n2l(in, tin1); | 
|  | tin[0] = tin0; | 
|  | tin[1] = tin1; | 
|  | CAST_decrypt(tin, ks); | 
|  | tout0 = tin[0] ^ xor0; | 
|  | tout1 = tin[1] ^ xor1; | 
|  | l2nn(tout0, tout1, out, l); | 
|  | xor0 = tin0; | 
|  | xor1 = tin1; | 
|  | } | 
|  | l2n(xor0, iv); | 
|  | l2n(xor1, iv); | 
|  | } | 
|  | tin0 = tin1 = tout0 = tout1 = xor0 = xor1 = 0; | 
|  | tin[0] = tin[1] = 0; | 
|  | } | 
|  |  | 
|  | #define CAST_exp(l, A, a, n)   \ | 
|  | A[n / 4] = l;                \ | 
|  | a[n + 3] = (l) & 0xff;       \ | 
|  | a[n + 2] = (l >> 8) & 0xff;  \ | 
|  | a[n + 1] = (l >> 16) & 0xff; \ | 
|  | a[n + 0] = (l >> 24) & 0xff; | 
|  | #define S4 CAST_S_table4 | 
|  | #define S5 CAST_S_table5 | 
|  | #define S6 CAST_S_table6 | 
|  | #define S7 CAST_S_table7 | 
|  |  | 
|  | void CAST_set_key(CAST_KEY *key, size_t len, const uint8_t *data) { | 
|  | uint32_t x[16]; | 
|  | uint32_t z[16]; | 
|  | uint32_t k[32]; | 
|  | uint32_t X[4], Z[4]; | 
|  | uint32_t l, *K; | 
|  | size_t i; | 
|  |  | 
|  | for (i = 0; i < 16; i++) { | 
|  | x[i] = 0; | 
|  | } | 
|  |  | 
|  | if (len > 16) { | 
|  | len = 16; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < len; i++) { | 
|  | x[i] = data[i]; | 
|  | } | 
|  |  | 
|  | if (len <= 10) { | 
|  | key->short_key = 1; | 
|  | } else { | 
|  | key->short_key = 0; | 
|  | } | 
|  |  | 
|  | K = &k[0]; | 
|  | X[0] = ((x[0] << 24) | (x[1] << 16) | (x[2] << 8) | x[3]) & 0xffffffffL; | 
|  | X[1] = ((x[4] << 24) | (x[5] << 16) | (x[6] << 8) | x[7]) & 0xffffffffL; | 
|  | X[2] = ((x[8] << 24) | (x[9] << 16) | (x[10] << 8) | x[11]) & 0xffffffffL; | 
|  | X[3] = ((x[12] << 24) | (x[13] << 16) | (x[14] << 8) | x[15]) & 0xffffffffL; | 
|  |  | 
|  | for (;;) { | 
|  | l = X[0] ^ S4[x[13]] ^ S5[x[15]] ^ S6[x[12]] ^ S7[x[14]] ^ S6[x[8]]; | 
|  | CAST_exp(l, Z, z, 0); | 
|  | l = X[2] ^ S4[z[0]] ^ S5[z[2]] ^ S6[z[1]] ^ S7[z[3]] ^ S7[x[10]]; | 
|  | CAST_exp(l, Z, z, 4); | 
|  | l = X[3] ^ S4[z[7]] ^ S5[z[6]] ^ S6[z[5]] ^ S7[z[4]] ^ S4[x[9]]; | 
|  | CAST_exp(l, Z, z, 8); | 
|  | l = X[1] ^ S4[z[10]] ^ S5[z[9]] ^ S6[z[11]] ^ S7[z[8]] ^ S5[x[11]]; | 
|  | CAST_exp(l, Z, z, 12); | 
|  |  | 
|  | K[0] = S4[z[8]] ^ S5[z[9]] ^ S6[z[7]] ^ S7[z[6]] ^ S4[z[2]]; | 
|  | K[1] = S4[z[10]] ^ S5[z[11]] ^ S6[z[5]] ^ S7[z[4]] ^ S5[z[6]]; | 
|  | K[2] = S4[z[12]] ^ S5[z[13]] ^ S6[z[3]] ^ S7[z[2]] ^ S6[z[9]]; | 
|  | K[3] = S4[z[14]] ^ S5[z[15]] ^ S6[z[1]] ^ S7[z[0]] ^ S7[z[12]]; | 
|  |  | 
|  | l = Z[2] ^ S4[z[5]] ^ S5[z[7]] ^ S6[z[4]] ^ S7[z[6]] ^ S6[z[0]]; | 
|  | CAST_exp(l, X, x, 0); | 
|  | l = Z[0] ^ S4[x[0]] ^ S5[x[2]] ^ S6[x[1]] ^ S7[x[3]] ^ S7[z[2]]; | 
|  | CAST_exp(l, X, x, 4); | 
|  | l = Z[1] ^ S4[x[7]] ^ S5[x[6]] ^ S6[x[5]] ^ S7[x[4]] ^ S4[z[1]]; | 
|  | CAST_exp(l, X, x, 8); | 
|  | l = Z[3] ^ S4[x[10]] ^ S5[x[9]] ^ S6[x[11]] ^ S7[x[8]] ^ S5[z[3]]; | 
|  | CAST_exp(l, X, x, 12); | 
|  |  | 
|  | K[4] = S4[x[3]] ^ S5[x[2]] ^ S6[x[12]] ^ S7[x[13]] ^ S4[x[8]]; | 
|  | K[5] = S4[x[1]] ^ S5[x[0]] ^ S6[x[14]] ^ S7[x[15]] ^ S5[x[13]]; | 
|  | K[6] = S4[x[7]] ^ S5[x[6]] ^ S6[x[8]] ^ S7[x[9]] ^ S6[x[3]]; | 
|  | K[7] = S4[x[5]] ^ S5[x[4]] ^ S6[x[10]] ^ S7[x[11]] ^ S7[x[7]]; | 
|  |  | 
|  | l = X[0] ^ S4[x[13]] ^ S5[x[15]] ^ S6[x[12]] ^ S7[x[14]] ^ S6[x[8]]; | 
|  | CAST_exp(l, Z, z, 0); | 
|  | l = X[2] ^ S4[z[0]] ^ S5[z[2]] ^ S6[z[1]] ^ S7[z[3]] ^ S7[x[10]]; | 
|  | CAST_exp(l, Z, z, 4); | 
|  | l = X[3] ^ S4[z[7]] ^ S5[z[6]] ^ S6[z[5]] ^ S7[z[4]] ^ S4[x[9]]; | 
|  | CAST_exp(l, Z, z, 8); | 
|  | l = X[1] ^ S4[z[10]] ^ S5[z[9]] ^ S6[z[11]] ^ S7[z[8]] ^ S5[x[11]]; | 
|  | CAST_exp(l, Z, z, 12); | 
|  |  | 
|  | K[8] = S4[z[3]] ^ S5[z[2]] ^ S6[z[12]] ^ S7[z[13]] ^ S4[z[9]]; | 
|  | K[9] = S4[z[1]] ^ S5[z[0]] ^ S6[z[14]] ^ S7[z[15]] ^ S5[z[12]]; | 
|  | K[10] = S4[z[7]] ^ S5[z[6]] ^ S6[z[8]] ^ S7[z[9]] ^ S6[z[2]]; | 
|  | K[11] = S4[z[5]] ^ S5[z[4]] ^ S6[z[10]] ^ S7[z[11]] ^ S7[z[6]]; | 
|  |  | 
|  | l = Z[2] ^ S4[z[5]] ^ S5[z[7]] ^ S6[z[4]] ^ S7[z[6]] ^ S6[z[0]]; | 
|  | CAST_exp(l, X, x, 0); | 
|  | l = Z[0] ^ S4[x[0]] ^ S5[x[2]] ^ S6[x[1]] ^ S7[x[3]] ^ S7[z[2]]; | 
|  | CAST_exp(l, X, x, 4); | 
|  | l = Z[1] ^ S4[x[7]] ^ S5[x[6]] ^ S6[x[5]] ^ S7[x[4]] ^ S4[z[1]]; | 
|  | CAST_exp(l, X, x, 8); | 
|  | l = Z[3] ^ S4[x[10]] ^ S5[x[9]] ^ S6[x[11]] ^ S7[x[8]] ^ S5[z[3]]; | 
|  | CAST_exp(l, X, x, 12); | 
|  |  | 
|  | K[12] = S4[x[8]] ^ S5[x[9]] ^ S6[x[7]] ^ S7[x[6]] ^ S4[x[3]]; | 
|  | K[13] = S4[x[10]] ^ S5[x[11]] ^ S6[x[5]] ^ S7[x[4]] ^ S5[x[7]]; | 
|  | K[14] = S4[x[12]] ^ S5[x[13]] ^ S6[x[3]] ^ S7[x[2]] ^ S6[x[8]]; | 
|  | K[15] = S4[x[14]] ^ S5[x[15]] ^ S6[x[1]] ^ S7[x[0]] ^ S7[x[13]]; | 
|  | if (K != k) { | 
|  | break; | 
|  | } | 
|  | K += 16; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 16; i++) { | 
|  | key->data[i * 2] = k[i]; | 
|  | key->data[i * 2 + 1] = ((k[i + 16]) + 16) & 0x1f; | 
|  | } | 
|  | } | 
|  |  | 
|  | // The input and output encrypted as though 64bit cfb mode is being used. The | 
|  | // extra state information to record how much of the 64bit block we have used | 
|  | // is contained in *num. | 
|  | void CAST_cfb64_encrypt(const uint8_t *in, uint8_t *out, size_t length, | 
|  | const CAST_KEY *schedule, uint8_t *ivec, int *num, | 
|  | int enc) { | 
|  | uint32_t v0, v1, t; | 
|  | int n = *num; | 
|  | size_t l = length; | 
|  | uint32_t ti[2]; | 
|  | uint8_t *iv, c, cc; | 
|  |  | 
|  | iv = ivec; | 
|  | if (enc) { | 
|  | while (l--) { | 
|  | if (n == 0) { | 
|  | n2l(iv, v0); | 
|  | ti[0] = v0; | 
|  | n2l(iv, v1); | 
|  | ti[1] = v1; | 
|  | CAST_encrypt((uint32_t *)ti, schedule); | 
|  | iv = ivec; | 
|  | t = ti[0]; | 
|  | l2n(t, iv); | 
|  | t = ti[1]; | 
|  | l2n(t, iv); | 
|  | iv = ivec; | 
|  | } | 
|  | c = *(in++) ^ iv[n]; | 
|  | *(out++) = c; | 
|  | iv[n] = c; | 
|  | n = (n + 1) & 0x07; | 
|  | } | 
|  | } else { | 
|  | while (l--) { | 
|  | if (n == 0) { | 
|  | n2l(iv, v0); | 
|  | ti[0] = v0; | 
|  | n2l(iv, v1); | 
|  | ti[1] = v1; | 
|  | CAST_encrypt((uint32_t *)ti, schedule); | 
|  | iv = ivec; | 
|  | t = ti[0]; | 
|  | l2n(t, iv); | 
|  | t = ti[1]; | 
|  | l2n(t, iv); | 
|  | iv = ivec; | 
|  | } | 
|  | cc = *(in++); | 
|  | c = iv[n]; | 
|  | iv[n] = cc; | 
|  | *(out++) = c ^ cc; | 
|  | n = (n + 1) & 0x07; | 
|  | } | 
|  | } | 
|  | v0 = v1 = ti[0] = ti[1] = t = c = cc = 0; | 
|  | *num = n; | 
|  | } | 
|  |  | 
|  | static int cast_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key, | 
|  | const uint8_t *iv, int enc) { | 
|  | CAST_KEY *cast_key = reinterpret_cast<CAST_KEY *>(ctx->cipher_data); | 
|  | CAST_set_key(cast_key, ctx->key_len, key); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int cast_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, | 
|  | size_t len) { | 
|  | CAST_KEY *cast_key = reinterpret_cast<CAST_KEY *>(ctx->cipher_data); | 
|  |  | 
|  | while (len >= CAST_BLOCK) { | 
|  | CAST_ecb_encrypt(in, out, cast_key, ctx->encrypt); | 
|  | in += CAST_BLOCK; | 
|  | out += CAST_BLOCK; | 
|  | len -= CAST_BLOCK; | 
|  | } | 
|  | assert(len == 0); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int cast_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, | 
|  | size_t len) { | 
|  | CAST_KEY *cast_key = reinterpret_cast<CAST_KEY *>(ctx->cipher_data); | 
|  | CAST_cbc_encrypt(in, out, len, cast_key, ctx->iv, ctx->encrypt); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static const EVP_CIPHER cast5_ecb = { | 
|  | /* nid= */ NID_cast5_ecb, | 
|  | /* block_size= */ CAST_BLOCK, | 
|  | /* key_len= */ CAST_KEY_LENGTH, | 
|  | /* iv_len= */ CAST_BLOCK, | 
|  | /* ctx_size= */ sizeof(CAST_KEY), | 
|  | /* flags= */ EVP_CIPH_ECB_MODE | EVP_CIPH_VARIABLE_LENGTH, | 
|  | /* init= */ cast_init_key, | 
|  | /* cipher= */ cast_ecb_cipher, | 
|  | /* cleanup= */ nullptr, | 
|  | /* ctrl= */ nullptr, | 
|  | }; | 
|  |  | 
|  | static const EVP_CIPHER cast5_cbc = { | 
|  | /* nid= */ NID_cast5_cbc, | 
|  | /* block_size= */ CAST_BLOCK, | 
|  | /* key_len= */ CAST_KEY_LENGTH, | 
|  | /* iv_len= */ CAST_BLOCK, | 
|  | /* ctx_size= */ sizeof(CAST_KEY), | 
|  | /* flags= */ EVP_CIPH_CBC_MODE | EVP_CIPH_VARIABLE_LENGTH, | 
|  | /* init= */ cast_init_key, | 
|  | /* cipher= */ cast_cbc_cipher, | 
|  | /* cleanup= */ nullptr, | 
|  | /* ctrl= */ nullptr, | 
|  | }; | 
|  |  | 
|  | const EVP_CIPHER *EVP_cast5_ecb(void) { return &cast5_ecb; } | 
|  |  | 
|  | const EVP_CIPHER *EVP_cast5_cbc(void) { return &cast5_cbc; } |