| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] */ |
| |
| #include <openssl/rsa.h> |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <string.h> |
| |
| #include <openssl/bn.h> |
| #include <openssl/digest.h> |
| #include <openssl/engine.h> |
| #include <openssl/err.h> |
| #include <openssl/ex_data.h> |
| #include <openssl/md5.h> |
| #include <openssl/mem.h> |
| #include <openssl/nid.h> |
| #include <openssl/sha.h> |
| #include <openssl/thread.h> |
| |
| #include "../bn/internal.h" |
| #include "../delocate.h" |
| #include "../../internal.h" |
| #include "internal.h" |
| |
| |
| // RSA_R_BLOCK_TYPE_IS_NOT_02 is part of the legacy SSLv23 padding scheme. |
| // Cryptography.io depends on this error code. |
| OPENSSL_DECLARE_ERROR_REASON(RSA, BLOCK_TYPE_IS_NOT_02) |
| |
| DEFINE_STATIC_EX_DATA_CLASS(g_rsa_ex_data_class) |
| |
| static int bn_dup_into(BIGNUM **dst, const BIGNUM *src) { |
| if (src == NULL) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| |
| BN_free(*dst); |
| *dst = BN_dup(src); |
| return *dst != NULL; |
| } |
| |
| RSA *RSA_new_public_key(const BIGNUM *n, const BIGNUM *e) { |
| RSA *rsa = RSA_new(); |
| if (rsa == NULL || // |
| !bn_dup_into(&rsa->n, n) || // |
| !bn_dup_into(&rsa->e, e) || // |
| !RSA_check_key(rsa)) { |
| RSA_free(rsa); |
| return NULL; |
| } |
| |
| return rsa; |
| } |
| |
| RSA *RSA_new_private_key(const BIGNUM *n, const BIGNUM *e, const BIGNUM *d, |
| const BIGNUM *p, const BIGNUM *q, const BIGNUM *dmp1, |
| const BIGNUM *dmq1, const BIGNUM *iqmp) { |
| RSA *rsa = RSA_new(); |
| if (rsa == NULL || // |
| !bn_dup_into(&rsa->n, n) || // |
| !bn_dup_into(&rsa->e, e) || // |
| !bn_dup_into(&rsa->d, d) || // |
| !bn_dup_into(&rsa->p, p) || // |
| !bn_dup_into(&rsa->q, q) || // |
| !bn_dup_into(&rsa->dmp1, dmp1) || // |
| !bn_dup_into(&rsa->dmq1, dmq1) || // |
| !bn_dup_into(&rsa->iqmp, iqmp) || // |
| !RSA_check_key(rsa)) { |
| RSA_free(rsa); |
| return NULL; |
| } |
| |
| return rsa; |
| } |
| |
| RSA *RSA_new_private_key_no_crt(const BIGNUM *n, const BIGNUM *e, |
| const BIGNUM *d) { |
| RSA *rsa = RSA_new(); |
| if (rsa == NULL || // |
| !bn_dup_into(&rsa->n, n) || // |
| !bn_dup_into(&rsa->e, e) || // |
| !bn_dup_into(&rsa->d, d) || // |
| !RSA_check_key(rsa)) { |
| RSA_free(rsa); |
| return NULL; |
| } |
| |
| return rsa; |
| } |
| |
| RSA *RSA_new_private_key_no_e(const BIGNUM *n, const BIGNUM *d) { |
| RSA *rsa = RSA_new(); |
| if (rsa == NULL) { |
| return NULL; |
| } |
| |
| rsa->flags |= RSA_FLAG_NO_PUBLIC_EXPONENT; |
| if (!bn_dup_into(&rsa->n, n) || // |
| !bn_dup_into(&rsa->d, d) || // |
| !RSA_check_key(rsa)) { |
| RSA_free(rsa); |
| return NULL; |
| } |
| |
| return rsa; |
| } |
| |
| RSA *RSA_new_public_key_large_e(const BIGNUM *n, const BIGNUM *e) { |
| RSA *rsa = RSA_new(); |
| if (rsa == NULL) { |
| return NULL; |
| } |
| |
| rsa->flags |= RSA_FLAG_LARGE_PUBLIC_EXPONENT; |
| if (!bn_dup_into(&rsa->n, n) || // |
| !bn_dup_into(&rsa->e, e) || // |
| !RSA_check_key(rsa)) { |
| RSA_free(rsa); |
| return NULL; |
| } |
| |
| return rsa; |
| } |
| |
| RSA *RSA_new_private_key_large_e(const BIGNUM *n, const BIGNUM *e, |
| const BIGNUM *d, const BIGNUM *p, |
| const BIGNUM *q, const BIGNUM *dmp1, |
| const BIGNUM *dmq1, const BIGNUM *iqmp) { |
| RSA *rsa = RSA_new(); |
| if (rsa == NULL) { |
| return NULL; |
| } |
| |
| rsa->flags |= RSA_FLAG_LARGE_PUBLIC_EXPONENT; |
| if (!bn_dup_into(&rsa->n, n) || // |
| !bn_dup_into(&rsa->e, e) || // |
| !bn_dup_into(&rsa->d, d) || // |
| !bn_dup_into(&rsa->p, p) || // |
| !bn_dup_into(&rsa->q, q) || // |
| !bn_dup_into(&rsa->dmp1, dmp1) || // |
| !bn_dup_into(&rsa->dmq1, dmq1) || // |
| !bn_dup_into(&rsa->iqmp, iqmp) || // |
| !RSA_check_key(rsa)) { |
| RSA_free(rsa); |
| return NULL; |
| } |
| |
| return rsa; |
| } |
| |
| RSA *RSA_new(void) { return RSA_new_method(NULL); } |
| |
| RSA *RSA_new_method(const ENGINE *engine) { |
| RSA *rsa = OPENSSL_zalloc(sizeof(RSA)); |
| if (rsa == NULL) { |
| return NULL; |
| } |
| |
| if (engine) { |
| rsa->meth = ENGINE_get_RSA_method(engine); |
| } |
| |
| if (rsa->meth == NULL) { |
| rsa->meth = (RSA_METHOD *) RSA_default_method(); |
| } |
| METHOD_ref(rsa->meth); |
| |
| rsa->references = 1; |
| rsa->flags = rsa->meth->flags; |
| CRYPTO_MUTEX_init(&rsa->lock); |
| CRYPTO_new_ex_data(&rsa->ex_data); |
| |
| if (rsa->meth->init && !rsa->meth->init(rsa)) { |
| CRYPTO_free_ex_data(g_rsa_ex_data_class_bss_get(), rsa, &rsa->ex_data); |
| CRYPTO_MUTEX_cleanup(&rsa->lock); |
| METHOD_unref(rsa->meth); |
| OPENSSL_free(rsa); |
| return NULL; |
| } |
| |
| return rsa; |
| } |
| |
| RSA *RSA_new_method_no_e(const ENGINE *engine, const BIGNUM *n) { |
| RSA *rsa = RSA_new_method(engine); |
| if (rsa == NULL || |
| !bn_dup_into(&rsa->n, n)) { |
| RSA_free(rsa); |
| return NULL; |
| } |
| rsa->flags |= RSA_FLAG_NO_PUBLIC_EXPONENT; |
| return rsa; |
| } |
| |
| void RSA_free(RSA *rsa) { |
| if (rsa == NULL) { |
| return; |
| } |
| |
| if (!CRYPTO_refcount_dec_and_test_zero(&rsa->references)) { |
| return; |
| } |
| |
| if (rsa->meth->finish) { |
| rsa->meth->finish(rsa); |
| } |
| METHOD_unref(rsa->meth); |
| |
| CRYPTO_free_ex_data(g_rsa_ex_data_class_bss_get(), rsa, &rsa->ex_data); |
| |
| BN_free(rsa->n); |
| BN_free(rsa->e); |
| BN_free(rsa->d); |
| BN_free(rsa->p); |
| BN_free(rsa->q); |
| BN_free(rsa->dmp1); |
| BN_free(rsa->dmq1); |
| BN_free(rsa->iqmp); |
| rsa_invalidate_key(rsa); |
| CRYPTO_MUTEX_cleanup(&rsa->lock); |
| OPENSSL_free(rsa); |
| } |
| |
| int RSA_up_ref(RSA *rsa) { |
| CRYPTO_refcount_inc(&rsa->references); |
| return 1; |
| } |
| |
| unsigned RSA_bits(const RSA *rsa) { return BN_num_bits(rsa->n); } |
| |
| const BIGNUM *RSA_get0_n(const RSA *rsa) { return rsa->n; } |
| |
| const BIGNUM *RSA_get0_e(const RSA *rsa) { return rsa->e; } |
| |
| const BIGNUM *RSA_get0_d(const RSA *rsa) { return rsa->d; } |
| |
| const BIGNUM *RSA_get0_p(const RSA *rsa) { return rsa->p; } |
| |
| const BIGNUM *RSA_get0_q(const RSA *rsa) { return rsa->q; } |
| |
| const BIGNUM *RSA_get0_dmp1(const RSA *rsa) { return rsa->dmp1; } |
| |
| const BIGNUM *RSA_get0_dmq1(const RSA *rsa) { return rsa->dmq1; } |
| |
| const BIGNUM *RSA_get0_iqmp(const RSA *rsa) { return rsa->iqmp; } |
| |
| void RSA_get0_key(const RSA *rsa, const BIGNUM **out_n, const BIGNUM **out_e, |
| const BIGNUM **out_d) { |
| if (out_n != NULL) { |
| *out_n = rsa->n; |
| } |
| if (out_e != NULL) { |
| *out_e = rsa->e; |
| } |
| if (out_d != NULL) { |
| *out_d = rsa->d; |
| } |
| } |
| |
| void RSA_get0_factors(const RSA *rsa, const BIGNUM **out_p, |
| const BIGNUM **out_q) { |
| if (out_p != NULL) { |
| *out_p = rsa->p; |
| } |
| if (out_q != NULL) { |
| *out_q = rsa->q; |
| } |
| } |
| |
| const RSA_PSS_PARAMS *RSA_get0_pss_params(const RSA *rsa) { |
| // We do not support the id-RSASSA-PSS key encoding. If we add support later, |
| // the |maskHash| field should be filled in for OpenSSL compatibility. |
| return NULL; |
| } |
| |
| void RSA_get0_crt_params(const RSA *rsa, const BIGNUM **out_dmp1, |
| const BIGNUM **out_dmq1, const BIGNUM **out_iqmp) { |
| if (out_dmp1 != NULL) { |
| *out_dmp1 = rsa->dmp1; |
| } |
| if (out_dmq1 != NULL) { |
| *out_dmq1 = rsa->dmq1; |
| } |
| if (out_iqmp != NULL) { |
| *out_iqmp = rsa->iqmp; |
| } |
| } |
| |
| int RSA_set0_key(RSA *rsa, BIGNUM *n, BIGNUM *e, BIGNUM *d) { |
| if ((rsa->n == NULL && n == NULL) || |
| (rsa->e == NULL && e == NULL)) { |
| return 0; |
| } |
| |
| if (n != NULL) { |
| BN_free(rsa->n); |
| rsa->n = n; |
| } |
| if (e != NULL) { |
| BN_free(rsa->e); |
| rsa->e = e; |
| } |
| if (d != NULL) { |
| BN_free(rsa->d); |
| rsa->d = d; |
| } |
| |
| rsa_invalidate_key(rsa); |
| return 1; |
| } |
| |
| int RSA_set0_factors(RSA *rsa, BIGNUM *p, BIGNUM *q) { |
| if ((rsa->p == NULL && p == NULL) || |
| (rsa->q == NULL && q == NULL)) { |
| return 0; |
| } |
| |
| if (p != NULL) { |
| BN_free(rsa->p); |
| rsa->p = p; |
| } |
| if (q != NULL) { |
| BN_free(rsa->q); |
| rsa->q = q; |
| } |
| |
| rsa_invalidate_key(rsa); |
| return 1; |
| } |
| |
| int RSA_set0_crt_params(RSA *rsa, BIGNUM *dmp1, BIGNUM *dmq1, BIGNUM *iqmp) { |
| if ((rsa->dmp1 == NULL && dmp1 == NULL) || |
| (rsa->dmq1 == NULL && dmq1 == NULL) || |
| (rsa->iqmp == NULL && iqmp == NULL)) { |
| return 0; |
| } |
| |
| if (dmp1 != NULL) { |
| BN_free(rsa->dmp1); |
| rsa->dmp1 = dmp1; |
| } |
| if (dmq1 != NULL) { |
| BN_free(rsa->dmq1); |
| rsa->dmq1 = dmq1; |
| } |
| if (iqmp != NULL) { |
| BN_free(rsa->iqmp); |
| rsa->iqmp = iqmp; |
| } |
| |
| rsa_invalidate_key(rsa); |
| return 1; |
| } |
| |
| static int rsa_sign_raw_no_self_test(RSA *rsa, size_t *out_len, uint8_t *out, |
| size_t max_out, const uint8_t *in, |
| size_t in_len, int padding) { |
| if (rsa->meth->sign_raw) { |
| return rsa->meth->sign_raw(rsa, out_len, out, max_out, in, in_len, padding); |
| } |
| |
| return rsa_default_sign_raw(rsa, out_len, out, max_out, in, in_len, padding); |
| } |
| |
| int RSA_sign_raw(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, |
| const uint8_t *in, size_t in_len, int padding) { |
| boringssl_ensure_rsa_self_test(); |
| return rsa_sign_raw_no_self_test(rsa, out_len, out, max_out, in, in_len, |
| padding); |
| } |
| |
| unsigned RSA_size(const RSA *rsa) { |
| size_t ret = rsa->meth->size ? rsa->meth->size(rsa) : rsa_default_size(rsa); |
| // RSA modulus sizes are bounded by |BIGNUM|, which must fit in |unsigned|. |
| // |
| // TODO(https://crbug.com/boringssl/516): Should we make this return |size_t|? |
| assert(ret < UINT_MAX); |
| return (unsigned)ret; |
| } |
| |
| int RSA_is_opaque(const RSA *rsa) { |
| return rsa->meth && (rsa->meth->flags & RSA_FLAG_OPAQUE); |
| } |
| |
| int RSA_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused, |
| CRYPTO_EX_dup *dup_unused, CRYPTO_EX_free *free_func) { |
| return CRYPTO_get_ex_new_index_ex(g_rsa_ex_data_class_bss_get(), argl, argp, |
| free_func); |
| } |
| |
| int RSA_set_ex_data(RSA *rsa, int idx, void *arg) { |
| return CRYPTO_set_ex_data(&rsa->ex_data, idx, arg); |
| } |
| |
| void *RSA_get_ex_data(const RSA *rsa, int idx) { |
| return CRYPTO_get_ex_data(&rsa->ex_data, idx); |
| } |
| |
| // SSL_SIG_LENGTH is the size of an SSL/TLS (prior to TLS 1.2) signature: it's |
| // the length of an MD5 and SHA1 hash. |
| static const unsigned SSL_SIG_LENGTH = 36; |
| |
| // pkcs1_sig_prefix contains the ASN.1, DER encoded prefix for a hash that is |
| // to be signed with PKCS#1. |
| struct pkcs1_sig_prefix { |
| // nid identifies the hash function. |
| int nid; |
| // hash_len is the expected length of the hash function. |
| uint8_t hash_len; |
| // len is the number of bytes of |bytes| which are valid. |
| uint8_t len; |
| // bytes contains the DER bytes. |
| uint8_t bytes[19]; |
| }; |
| |
| // kPKCS1SigPrefixes contains the ASN.1 prefixes for PKCS#1 signatures with |
| // different hash functions. |
| static const struct pkcs1_sig_prefix kPKCS1SigPrefixes[] = { |
| { |
| NID_md5, |
| MD5_DIGEST_LENGTH, |
| 18, |
| {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, |
| 0x02, 0x05, 0x05, 0x00, 0x04, 0x10}, |
| }, |
| { |
| NID_sha1, |
| BCM_SHA_DIGEST_LENGTH, |
| 15, |
| {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, |
| 0x00, 0x04, 0x14}, |
| }, |
| { |
| NID_sha224, |
| BCM_SHA224_DIGEST_LENGTH, |
| 19, |
| {0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, |
| 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c}, |
| }, |
| { |
| NID_sha256, |
| BCM_SHA256_DIGEST_LENGTH, |
| 19, |
| {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, |
| 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20}, |
| }, |
| { |
| NID_sha384, |
| SHA384_DIGEST_LENGTH, |
| 19, |
| {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, |
| 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30}, |
| }, |
| { |
| NID_sha512, |
| SHA512_DIGEST_LENGTH, |
| 19, |
| {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, |
| 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40}, |
| }, |
| { |
| NID_undef, 0, 0, {0}, |
| }, |
| }; |
| |
| static int rsa_check_digest_size(int hash_nid, size_t digest_len) { |
| if (hash_nid == NID_md5_sha1) { |
| if (digest_len != SSL_SIG_LENGTH) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH); |
| return 0; |
| } |
| return 1; |
| } |
| |
| for (size_t i = 0; kPKCS1SigPrefixes[i].nid != NID_undef; i++) { |
| const struct pkcs1_sig_prefix *sig_prefix = &kPKCS1SigPrefixes[i]; |
| if (sig_prefix->nid == hash_nid) { |
| if (digest_len != sig_prefix->hash_len) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH); |
| return 0; |
| } |
| return 1; |
| } |
| } |
| |
| OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_ALGORITHM_TYPE); |
| return 0; |
| |
| } |
| |
| int RSA_add_pkcs1_prefix(uint8_t **out_msg, size_t *out_msg_len, |
| int *is_alloced, int hash_nid, const uint8_t *digest, |
| size_t digest_len) { |
| if (!rsa_check_digest_size(hash_nid, digest_len)) { |
| return 0; |
| } |
| |
| if (hash_nid == NID_md5_sha1) { |
| // The length should already have been checked. |
| assert(digest_len == SSL_SIG_LENGTH); |
| *out_msg = (uint8_t *)digest; |
| *out_msg_len = digest_len; |
| *is_alloced = 0; |
| return 1; |
| } |
| |
| for (size_t i = 0; kPKCS1SigPrefixes[i].nid != NID_undef; i++) { |
| const struct pkcs1_sig_prefix *sig_prefix = &kPKCS1SigPrefixes[i]; |
| if (sig_prefix->nid != hash_nid) { |
| continue; |
| } |
| |
| // The length should already have been checked. |
| assert(digest_len == sig_prefix->hash_len); |
| const uint8_t* prefix = sig_prefix->bytes; |
| size_t prefix_len = sig_prefix->len; |
| size_t signed_msg_len = prefix_len + digest_len; |
| if (signed_msg_len < prefix_len) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_TOO_LONG); |
| return 0; |
| } |
| |
| uint8_t *signed_msg = OPENSSL_malloc(signed_msg_len); |
| if (!signed_msg) { |
| return 0; |
| } |
| |
| OPENSSL_memcpy(signed_msg, prefix, prefix_len); |
| OPENSSL_memcpy(signed_msg + prefix_len, digest, digest_len); |
| |
| *out_msg = signed_msg; |
| *out_msg_len = signed_msg_len; |
| *is_alloced = 1; |
| |
| return 1; |
| } |
| |
| OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_ALGORITHM_TYPE); |
| return 0; |
| } |
| |
| int rsa_sign_no_self_test(int hash_nid, const uint8_t *digest, |
| size_t digest_len, uint8_t *out, unsigned *out_len, |
| RSA *rsa) { |
| if (rsa->meth->sign) { |
| if (!rsa_check_digest_size(hash_nid, digest_len)) { |
| return 0; |
| } |
| // All supported digest lengths fit in |unsigned|. |
| assert(digest_len <= EVP_MAX_MD_SIZE); |
| static_assert(EVP_MAX_MD_SIZE <= UINT_MAX, "digest too long"); |
| return rsa->meth->sign(hash_nid, digest, (unsigned)digest_len, out, out_len, |
| rsa); |
| } |
| |
| const unsigned rsa_size = RSA_size(rsa); |
| int ret = 0; |
| uint8_t *signed_msg = NULL; |
| size_t signed_msg_len = 0; |
| int signed_msg_is_alloced = 0; |
| size_t size_t_out_len; |
| if (!RSA_add_pkcs1_prefix(&signed_msg, &signed_msg_len, |
| &signed_msg_is_alloced, hash_nid, digest, |
| digest_len) || |
| !rsa_sign_raw_no_self_test(rsa, &size_t_out_len, out, rsa_size, |
| signed_msg, signed_msg_len, |
| RSA_PKCS1_PADDING)) { |
| goto err; |
| } |
| |
| if (size_t_out_len > UINT_MAX) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); |
| goto err; |
| } |
| |
| *out_len = (unsigned)size_t_out_len; |
| ret = 1; |
| |
| err: |
| if (signed_msg_is_alloced) { |
| OPENSSL_free(signed_msg); |
| } |
| return ret; |
| } |
| |
| int RSA_sign(int hash_nid, const uint8_t *digest, size_t digest_len, |
| uint8_t *out, unsigned *out_len, RSA *rsa) { |
| boringssl_ensure_rsa_self_test(); |
| |
| return rsa_sign_no_self_test(hash_nid, digest, digest_len, out, out_len, rsa); |
| } |
| |
| int RSA_sign_pss_mgf1(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, |
| const uint8_t *digest, size_t digest_len, |
| const EVP_MD *md, const EVP_MD *mgf1_md, int salt_len) { |
| if (digest_len != EVP_MD_size(md)) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH); |
| return 0; |
| } |
| |
| size_t padded_len = RSA_size(rsa); |
| uint8_t *padded = OPENSSL_malloc(padded_len); |
| if (padded == NULL) { |
| return 0; |
| } |
| |
| int ret = RSA_padding_add_PKCS1_PSS_mgf1(rsa, padded, digest, md, mgf1_md, |
| salt_len) && |
| RSA_sign_raw(rsa, out_len, out, max_out, padded, padded_len, |
| RSA_NO_PADDING); |
| OPENSSL_free(padded); |
| return ret; |
| } |
| |
| int rsa_verify_no_self_test(int hash_nid, const uint8_t *digest, |
| size_t digest_len, const uint8_t *sig, |
| size_t sig_len, RSA *rsa) { |
| if (rsa->n == NULL || rsa->e == NULL) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); |
| return 0; |
| } |
| |
| const size_t rsa_size = RSA_size(rsa); |
| uint8_t *buf = NULL; |
| int ret = 0; |
| uint8_t *signed_msg = NULL; |
| size_t signed_msg_len = 0, len; |
| int signed_msg_is_alloced = 0; |
| |
| if (hash_nid == NID_md5_sha1 && digest_len != SSL_SIG_LENGTH) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH); |
| return 0; |
| } |
| |
| buf = OPENSSL_malloc(rsa_size); |
| if (!buf) { |
| return 0; |
| } |
| |
| if (!rsa_verify_raw_no_self_test(rsa, &len, buf, rsa_size, sig, sig_len, |
| RSA_PKCS1_PADDING) || |
| !RSA_add_pkcs1_prefix(&signed_msg, &signed_msg_len, |
| &signed_msg_is_alloced, hash_nid, digest, |
| digest_len)) { |
| goto out; |
| } |
| |
| // Check that no other information follows the hash value (FIPS 186-4 Section |
| // 5.5) and it matches the expected hash. |
| if (len != signed_msg_len || OPENSSL_memcmp(buf, signed_msg, len) != 0) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_SIGNATURE); |
| goto out; |
| } |
| |
| ret = 1; |
| |
| out: |
| OPENSSL_free(buf); |
| if (signed_msg_is_alloced) { |
| OPENSSL_free(signed_msg); |
| } |
| return ret; |
| } |
| |
| int RSA_verify(int hash_nid, const uint8_t *digest, size_t digest_len, |
| const uint8_t *sig, size_t sig_len, RSA *rsa) { |
| boringssl_ensure_rsa_self_test(); |
| return rsa_verify_no_self_test(hash_nid, digest, digest_len, sig, sig_len, |
| rsa); |
| } |
| |
| int RSA_verify_pss_mgf1(RSA *rsa, const uint8_t *digest, size_t digest_len, |
| const EVP_MD *md, const EVP_MD *mgf1_md, int salt_len, |
| const uint8_t *sig, size_t sig_len) { |
| if (digest_len != EVP_MD_size(md)) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH); |
| return 0; |
| } |
| |
| size_t em_len = RSA_size(rsa); |
| uint8_t *em = OPENSSL_malloc(em_len); |
| if (em == NULL) { |
| return 0; |
| } |
| |
| int ret = 0; |
| if (!RSA_verify_raw(rsa, &em_len, em, em_len, sig, sig_len, RSA_NO_PADDING)) { |
| goto err; |
| } |
| |
| if (em_len != RSA_size(rsa)) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| |
| ret = RSA_verify_PKCS1_PSS_mgf1(rsa, digest, md, mgf1_md, em, salt_len); |
| |
| err: |
| OPENSSL_free(em); |
| return ret; |
| } |
| |
| static int check_mod_inverse(int *out_ok, const BIGNUM *a, const BIGNUM *ainv, |
| const BIGNUM *m, unsigned m_min_bits, |
| BN_CTX *ctx) { |
| if (BN_is_negative(ainv) || |
| constant_time_declassify_int(BN_cmp(ainv, m) >= 0)) { |
| *out_ok = 0; |
| return 1; |
| } |
| |
| // Note |bn_mul_consttime| and |bn_div_consttime| do not scale linearly, but |
| // checking |ainv| is in range bounds the running time, assuming |m|'s bounds |
| // were checked by the caller. |
| BN_CTX_start(ctx); |
| BIGNUM *tmp = BN_CTX_get(ctx); |
| int ret = tmp != NULL && |
| bn_mul_consttime(tmp, a, ainv, ctx) && |
| bn_div_consttime(NULL, tmp, tmp, m, m_min_bits, ctx); |
| if (ret) { |
| *out_ok = constant_time_declassify_int(BN_is_one(tmp)); |
| } |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| int RSA_check_key(const RSA *key) { |
| // TODO(davidben): RSA key initialization is spread across |
| // |rsa_check_public_key|, |RSA_check_key|, |freeze_private_key|, and |
| // |BN_MONT_CTX_set_locked| as a result of API issues. See |
| // https://crbug.com/boringssl/316. As a result, we inconsistently check RSA |
| // invariants. We should fix this and integrate that logic. |
| |
| if (RSA_is_opaque(key)) { |
| // Opaque keys can't be checked. |
| return 1; |
| } |
| |
| if (!rsa_check_public_key(key)) { |
| return 0; |
| } |
| |
| if ((key->p != NULL) != (key->q != NULL)) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_ONLY_ONE_OF_P_Q_GIVEN); |
| return 0; |
| } |
| |
| // |key->d| must be bounded by |key->n|. This ensures bounds on |RSA_bits| |
| // translate to bounds on the running time of private key operations. |
| if (key->d != NULL && |
| (BN_is_negative(key->d) || BN_cmp(key->d, key->n) >= 0)) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_D_OUT_OF_RANGE); |
| return 0; |
| } |
| |
| if (key->d == NULL || key->p == NULL) { |
| // For a public key, or without p and q, there's nothing that can be |
| // checked. |
| return 1; |
| } |
| |
| BN_CTX *ctx = BN_CTX_new(); |
| if (ctx == NULL) { |
| return 0; |
| } |
| |
| BIGNUM tmp, de, pm1, qm1, dmp1, dmq1; |
| int ok = 0; |
| BN_init(&tmp); |
| BN_init(&de); |
| BN_init(&pm1); |
| BN_init(&qm1); |
| BN_init(&dmp1); |
| BN_init(&dmq1); |
| |
| // Check that p * q == n. Before we multiply, we check that p and q are in |
| // bounds, to avoid a DoS vector in |bn_mul_consttime| below. Note that |
| // n was bound by |rsa_check_public_key|. This also implicitly checks p and q |
| // are odd, which is a necessary condition for Montgomery reduction. |
| if (BN_is_negative(key->p) || |
| constant_time_declassify_int(BN_cmp(key->p, key->n) >= 0) || |
| BN_is_negative(key->q) || |
| constant_time_declassify_int(BN_cmp(key->q, key->n) >= 0)) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_N_NOT_EQUAL_P_Q); |
| goto out; |
| } |
| if (!bn_mul_consttime(&tmp, key->p, key->q, ctx)) { |
| OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN); |
| goto out; |
| } |
| if (BN_cmp(&tmp, key->n) != 0) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_N_NOT_EQUAL_P_Q); |
| goto out; |
| } |
| |
| // d must be an inverse of e mod the Carmichael totient, lcm(p-1, q-1), but it |
| // may be unreduced because other implementations use the Euler totient. We |
| // simply check that d * e is one mod p-1 and mod q-1. Note d and e were bound |
| // by earlier checks in this function. |
| if (!bn_usub_consttime(&pm1, key->p, BN_value_one()) || |
| !bn_usub_consttime(&qm1, key->q, BN_value_one())) { |
| OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN); |
| goto out; |
| } |
| const unsigned pm1_bits = BN_num_bits(&pm1); |
| const unsigned qm1_bits = BN_num_bits(&qm1); |
| if (!bn_mul_consttime(&de, key->d, key->e, ctx) || |
| !bn_div_consttime(NULL, &tmp, &de, &pm1, pm1_bits, ctx) || |
| !bn_div_consttime(NULL, &de, &de, &qm1, qm1_bits, ctx)) { |
| OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN); |
| goto out; |
| } |
| |
| if (constant_time_declassify_int(!BN_is_one(&tmp)) || |
| constant_time_declassify_int(!BN_is_one(&de))) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_D_E_NOT_CONGRUENT_TO_1); |
| goto out; |
| } |
| |
| int has_crt_values = key->dmp1 != NULL; |
| if (has_crt_values != (key->dmq1 != NULL) || |
| has_crt_values != (key->iqmp != NULL)) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_INCONSISTENT_SET_OF_CRT_VALUES); |
| goto out; |
| } |
| |
| if (has_crt_values) { |
| int dmp1_ok, dmq1_ok, iqmp_ok; |
| if (!check_mod_inverse(&dmp1_ok, key->e, key->dmp1, &pm1, pm1_bits, ctx) || |
| !check_mod_inverse(&dmq1_ok, key->e, key->dmq1, &qm1, qm1_bits, ctx) || |
| // |p| is odd, so |pm1| and |p| have the same bit width. If they didn't, |
| // we only need a lower bound anyway. |
| !check_mod_inverse(&iqmp_ok, key->q, key->iqmp, key->p, pm1_bits, |
| ctx)) { |
| OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN); |
| goto out; |
| } |
| |
| if (!dmp1_ok || !dmq1_ok || !iqmp_ok) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_CRT_VALUES_INCORRECT); |
| goto out; |
| } |
| } |
| |
| ok = 1; |
| |
| out: |
| BN_free(&tmp); |
| BN_free(&de); |
| BN_free(&pm1); |
| BN_free(&qm1); |
| BN_free(&dmp1); |
| BN_free(&dmq1); |
| BN_CTX_free(ctx); |
| |
| return ok; |
| } |
| |
| |
| // This is the product of the 132 smallest odd primes, from 3 to 751. |
| static const BN_ULONG kSmallFactorsLimbs[] = { |
| TOBN(0xc4309333, 0x3ef4e3e1), TOBN(0x71161eb6, 0xcd2d655f), |
| TOBN(0x95e2238c, 0x0bf94862), TOBN(0x3eb233d3, 0x24f7912b), |
| TOBN(0x6b55514b, 0xbf26c483), TOBN(0x0a84d817, 0x5a144871), |
| TOBN(0x77d12fee, 0x9b82210a), TOBN(0xdb5b93c2, 0x97f050b3), |
| TOBN(0x4acad6b9, 0x4d6c026b), TOBN(0xeb7751f3, 0x54aec893), |
| TOBN(0xdba53368, 0x36bc85c4), TOBN(0xd85a1b28, 0x7f5ec78e), |
| TOBN(0x2eb072d8, 0x6b322244), TOBN(0xbba51112, 0x5e2b3aea), |
| TOBN(0x36ed1a6c, 0x0e2486bf), TOBN(0x5f270460, 0xec0c5727), |
| 0x000017b1 |
| }; |
| |
| DEFINE_LOCAL_DATA(BIGNUM, g_small_factors) { |
| out->d = (BN_ULONG *) kSmallFactorsLimbs; |
| out->width = OPENSSL_ARRAY_SIZE(kSmallFactorsLimbs); |
| out->dmax = out->width; |
| out->neg = 0; |
| out->flags = BN_FLG_STATIC_DATA; |
| } |
| |
| int RSA_check_fips(RSA *key) { |
| if (RSA_is_opaque(key)) { |
| // Opaque keys can't be checked. |
| OPENSSL_PUT_ERROR(RSA, RSA_R_PUBLIC_KEY_VALIDATION_FAILED); |
| return 0; |
| } |
| |
| if (!RSA_check_key(key)) { |
| return 0; |
| } |
| |
| BN_CTX *ctx = BN_CTX_new(); |
| if (ctx == NULL) { |
| return 0; |
| } |
| |
| BIGNUM small_gcd; |
| BN_init(&small_gcd); |
| |
| int ret = 1; |
| |
| // Perform partial public key validation of RSA keys (SP 800-89 5.3.3). |
| // Although this is not for primality testing, SP 800-89 cites an RSA |
| // primality testing algorithm, so we use |BN_prime_checks_for_generation| to |
| // match. This is only a plausibility test and we expect the value to be |
| // composite, so too few iterations will cause us to reject the key, not use |
| // an implausible one. |
| enum bn_primality_result_t primality_result; |
| if (BN_num_bits(key->e) <= 16 || |
| BN_num_bits(key->e) > 256 || |
| !BN_is_odd(key->n) || |
| !BN_is_odd(key->e) || |
| !BN_gcd(&small_gcd, key->n, g_small_factors(), ctx) || |
| !BN_is_one(&small_gcd) || |
| !BN_enhanced_miller_rabin_primality_test(&primality_result, key->n, |
| BN_prime_checks_for_generation, |
| ctx, NULL) || |
| primality_result != bn_non_prime_power_composite) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_PUBLIC_KEY_VALIDATION_FAILED); |
| ret = 0; |
| } |
| |
| BN_free(&small_gcd); |
| BN_CTX_free(ctx); |
| |
| if (!ret || key->d == NULL || key->p == NULL) { |
| // On a failure or on only a public key, there's nothing else can be |
| // checked. |
| return ret; |
| } |
| |
| // FIPS pairwise consistency test (FIPS 140-2 4.9.2). Per FIPS 140-2 IG, |
| // section 9.9, it is not known whether |rsa| will be used for signing or |
| // encryption, so either pair-wise consistency self-test is acceptable. We |
| // perform a signing test. |
| uint8_t data[32] = {0}; |
| unsigned sig_len = RSA_size(key); |
| uint8_t *sig = OPENSSL_malloc(sig_len); |
| if (sig == NULL) { |
| return 0; |
| } |
| |
| if (!RSA_sign(NID_sha256, data, sizeof(data), sig, &sig_len, key)) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
| ret = 0; |
| goto cleanup; |
| } |
| if (boringssl_fips_break_test("RSA_PWCT")) { |
| data[0] = ~data[0]; |
| } |
| if (!RSA_verify(NID_sha256, data, sizeof(data), sig, sig_len, key)) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
| ret = 0; |
| } |
| |
| cleanup: |
| OPENSSL_free(sig); |
| |
| return ret; |
| } |
| |
| int rsa_private_transform_no_self_test(RSA *rsa, uint8_t *out, |
| const uint8_t *in, size_t len) { |
| if (rsa->meth->private_transform) { |
| return rsa->meth->private_transform(rsa, out, in, len); |
| } |
| |
| return rsa_default_private_transform(rsa, out, in, len); |
| } |
| |
| int rsa_private_transform(RSA *rsa, uint8_t *out, const uint8_t *in, |
| size_t len) { |
| boringssl_ensure_rsa_self_test(); |
| return rsa_private_transform_no_self_test(rsa, out, in, len); |
| } |
| |
| int RSA_flags(const RSA *rsa) { return rsa->flags; } |
| |
| int RSA_test_flags(const RSA *rsa, int flags) { return rsa->flags & flags; } |
| |
| int RSA_blinding_on(RSA *rsa, BN_CTX *ctx) { |
| return 1; |
| } |