| /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL |
| * project 2006. |
| */ |
| /* ==================================================================== |
| * Copyright (c) 2006 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * licensing@OpenSSL.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). */ |
| |
| #include <openssl/evp.h> |
| |
| #include <openssl/asn1.h> |
| #include <openssl/asn1t.h> |
| #include <openssl/digest.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| #include <openssl/obj.h> |
| #include <openssl/rsa.h> |
| #include <openssl/x509.h> |
| |
| #include "../rsa/internal.h" |
| #include "internal.h" |
| |
| |
| static int rsa_pub_encode(X509_PUBKEY *pk, const EVP_PKEY *pkey) { |
| uint8_t *encoded = NULL; |
| int len; |
| len = i2d_RSAPublicKey(pkey->pkey.rsa, &encoded); |
| |
| if (len <= 0) { |
| return 0; |
| } |
| |
| if (!X509_PUBKEY_set0_param(pk, OBJ_nid2obj(EVP_PKEY_RSA), V_ASN1_NULL, NULL, |
| encoded, len)) { |
| OPENSSL_free(encoded); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static int rsa_pub_decode(EVP_PKEY *pkey, X509_PUBKEY *pubkey) { |
| const uint8_t *p; |
| int pklen; |
| RSA *rsa; |
| |
| if (!X509_PUBKEY_get0_param(NULL, &p, &pklen, NULL, pubkey)) { |
| return 0; |
| } |
| rsa = d2i_RSAPublicKey(NULL, &p, pklen); |
| if (rsa == NULL) { |
| OPENSSL_PUT_ERROR(EVP, rsa_pub_decode, ERR_R_RSA_LIB); |
| return 0; |
| } |
| EVP_PKEY_assign_RSA(pkey, rsa); |
| return 1; |
| } |
| |
| static int rsa_pub_cmp(const EVP_PKEY *a, const EVP_PKEY *b) { |
| return BN_cmp(b->pkey.rsa->n, a->pkey.rsa->n) == 0 && |
| BN_cmp(b->pkey.rsa->e, a->pkey.rsa->e) == 0; |
| } |
| |
| static int rsa_priv_encode(PKCS8_PRIV_KEY_INFO *p8, const EVP_PKEY *pkey) { |
| uint8_t *rk = NULL; |
| int rklen; |
| |
| rklen = i2d_RSAPrivateKey(pkey->pkey.rsa, &rk); |
| |
| if (rklen <= 0) { |
| OPENSSL_PUT_ERROR(EVP, rsa_priv_encode, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| |
| /* TODO(fork): const correctness in next line. */ |
| if (!PKCS8_pkey_set0(p8, (ASN1_OBJECT *)OBJ_nid2obj(NID_rsaEncryption), 0, |
| V_ASN1_NULL, NULL, rk, rklen)) { |
| OPENSSL_PUT_ERROR(EVP, rsa_priv_encode, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static int rsa_priv_decode(EVP_PKEY *pkey, PKCS8_PRIV_KEY_INFO *p8) { |
| const uint8_t *p; |
| int pklen; |
| RSA *rsa; |
| |
| if (!PKCS8_pkey_get0(NULL, &p, &pklen, NULL, p8)) { |
| OPENSSL_PUT_ERROR(EVP, rsa_priv_decode, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| |
| rsa = d2i_RSAPrivateKey(NULL, &p, pklen); |
| if (rsa == NULL) { |
| OPENSSL_PUT_ERROR(EVP, rsa_priv_decode, ERR_R_RSA_LIB); |
| return 0; |
| } |
| |
| EVP_PKEY_assign_RSA(pkey, rsa); |
| return 1; |
| } |
| |
| static int int_rsa_size(const EVP_PKEY *pkey) { |
| return RSA_size(pkey->pkey.rsa); |
| } |
| |
| static int rsa_bits(const EVP_PKEY *pkey) { |
| return BN_num_bits(pkey->pkey.rsa->n); |
| } |
| |
| static void int_rsa_free(EVP_PKEY *pkey) { RSA_free(pkey->pkey.rsa); } |
| |
| static void update_buflen(const BIGNUM *b, size_t *pbuflen) { |
| size_t i; |
| |
| if (!b) { |
| return; |
| } |
| |
| i = BN_num_bytes(b); |
| if (*pbuflen < i) { |
| *pbuflen = i; |
| } |
| } |
| |
| static int do_rsa_print(BIO *out, const RSA *rsa, int off, |
| int include_private) { |
| char *str; |
| const char *s; |
| uint8_t *m = NULL; |
| int ret = 0, mod_len = 0; |
| size_t buf_len = 0; |
| |
| update_buflen(rsa->n, &buf_len); |
| update_buflen(rsa->e, &buf_len); |
| |
| if (include_private) { |
| update_buflen(rsa->d, &buf_len); |
| update_buflen(rsa->p, &buf_len); |
| update_buflen(rsa->q, &buf_len); |
| update_buflen(rsa->dmp1, &buf_len); |
| update_buflen(rsa->dmq1, &buf_len); |
| update_buflen(rsa->iqmp, &buf_len); |
| } |
| |
| m = (uint8_t *)OPENSSL_malloc(buf_len + 10); |
| if (m == NULL) { |
| OPENSSL_PUT_ERROR(EVP, do_rsa_print, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| if (rsa->n != NULL) { |
| mod_len = BN_num_bits(rsa->n); |
| } |
| |
| if (!BIO_indent(out, off, 128)) { |
| goto err; |
| } |
| |
| if (include_private && rsa->d) { |
| if (BIO_printf(out, "Private-Key: (%d bit)\n", mod_len) <= 0) { |
| goto err; |
| } |
| str = "modulus:"; |
| s = "publicExponent:"; |
| } else { |
| if (BIO_printf(out, "Public-Key: (%d bit)\n", mod_len) <= 0) { |
| goto err; |
| } |
| str = "Modulus:"; |
| s = "Exponent:"; |
| } |
| if (!ASN1_bn_print(out, str, rsa->n, m, off) || |
| !ASN1_bn_print(out, s, rsa->e, m, off)) { |
| goto err; |
| } |
| |
| if (include_private) { |
| if (!ASN1_bn_print(out, "privateExponent:", rsa->d, m, off) || |
| !ASN1_bn_print(out, "prime1:", rsa->p, m, off) || |
| !ASN1_bn_print(out, "prime2:", rsa->q, m, off) || |
| !ASN1_bn_print(out, "exponent1:", rsa->dmp1, m, off) || |
| !ASN1_bn_print(out, "exponent2:", rsa->dmq1, m, off) || |
| !ASN1_bn_print(out, "coefficient:", rsa->iqmp, m, off)) { |
| goto err; |
| } |
| } |
| ret = 1; |
| |
| err: |
| if (m != NULL) { |
| OPENSSL_free(m); |
| } |
| return ret; |
| } |
| |
| static int rsa_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent, |
| ASN1_PCTX *ctx) { |
| return do_rsa_print(bp, pkey->pkey.rsa, indent, 0); |
| } |
| |
| |
| static int rsa_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent, |
| ASN1_PCTX *ctx) { |
| return do_rsa_print(bp, pkey->pkey.rsa, indent, 1); |
| } |
| |
| /* Given an MGF1 Algorithm ID decode to an Algorithm Identifier */ |
| static X509_ALGOR *rsa_mgf1_decode(X509_ALGOR *alg) { |
| const uint8_t *p; |
| int plen; |
| |
| if (alg == NULL || |
| OBJ_obj2nid(alg->algorithm) != NID_mgf1 || |
| alg->parameter->type != V_ASN1_SEQUENCE) { |
| return NULL; |
| } |
| |
| p = alg->parameter->value.sequence->data; |
| plen = alg->parameter->value.sequence->length; |
| return d2i_X509_ALGOR(NULL, &p, plen); |
| } |
| |
| static RSA_PSS_PARAMS *rsa_pss_decode(const X509_ALGOR *alg, |
| X509_ALGOR **pmaskHash) { |
| const uint8_t *p; |
| int plen; |
| RSA_PSS_PARAMS *pss; |
| |
| *pmaskHash = NULL; |
| |
| if (!alg->parameter || alg->parameter->type != V_ASN1_SEQUENCE) { |
| return NULL; |
| } |
| p = alg->parameter->value.sequence->data; |
| plen = alg->parameter->value.sequence->length; |
| pss = d2i_RSA_PSS_PARAMS(NULL, &p, plen); |
| |
| if (!pss) { |
| return NULL; |
| } |
| |
| *pmaskHash = rsa_mgf1_decode(pss->maskGenAlgorithm); |
| |
| return pss; |
| } |
| |
| static int rsa_pss_param_print(BIO *bp, RSA_PSS_PARAMS *pss, |
| X509_ALGOR *maskHash, int indent) { |
| int rv = 0; |
| |
| if (!pss) { |
| if (BIO_puts(bp, " (INVALID PSS PARAMETERS)\n") <= 0) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| if (BIO_puts(bp, "\n") <= 0 || |
| !BIO_indent(bp, indent, 128) || |
| BIO_puts(bp, "Hash Algorithm: ") <= 0) { |
| goto err; |
| } |
| |
| if (pss->hashAlgorithm) { |
| if (i2a_ASN1_OBJECT(bp, pss->hashAlgorithm->algorithm) <= 0) { |
| goto err; |
| } |
| } else if (BIO_puts(bp, "sha1 (default)") <= 0) { |
| goto err; |
| } |
| |
| if (BIO_puts(bp, "\n") <= 0 || |
| !BIO_indent(bp, indent, 128) || |
| BIO_puts(bp, "Mask Algorithm: ") <= 0) { |
| goto err; |
| } |
| |
| if (pss->maskGenAlgorithm) { |
| if (i2a_ASN1_OBJECT(bp, pss->maskGenAlgorithm->algorithm) <= 0 || |
| BIO_puts(bp, " with ") <= 0) { |
| goto err; |
| } |
| |
| if (maskHash) { |
| if (i2a_ASN1_OBJECT(bp, maskHash->algorithm) <= 0) { |
| goto err; |
| } |
| } else if (BIO_puts(bp, "INVALID") <= 0) { |
| goto err; |
| } |
| } else if (BIO_puts(bp, "mgf1 with sha1 (default)") <= 0) { |
| goto err; |
| } |
| BIO_puts(bp, "\n"); |
| |
| if (!BIO_indent(bp, indent, 128) || |
| BIO_puts(bp, "Salt Length: 0x") <= 0) { |
| goto err; |
| } |
| |
| if (pss->saltLength) { |
| if (i2a_ASN1_INTEGER(bp, pss->saltLength) <= 0) { |
| goto err; |
| } |
| } else if (BIO_puts(bp, "14 (default)") <= 0) { |
| goto err; |
| } |
| BIO_puts(bp, "\n"); |
| |
| if (!BIO_indent(bp, indent, 128) || |
| BIO_puts(bp, "Trailer Field: 0x") <= 0) { |
| goto err; |
| } |
| |
| if (pss->trailerField) { |
| if (i2a_ASN1_INTEGER(bp, pss->trailerField) <= 0) { |
| goto err; |
| } |
| } else if (BIO_puts(bp, "BC (default)") <= 0) { |
| goto err; |
| } |
| BIO_puts(bp, "\n"); |
| |
| rv = 1; |
| |
| err: |
| return rv; |
| } |
| |
| static int rsa_sig_print(BIO *bp, const X509_ALGOR *sigalg, |
| const ASN1_STRING *sig, int indent, ASN1_PCTX *pctx) { |
| if (OBJ_obj2nid(sigalg->algorithm) == NID_rsassaPss) { |
| int rv; |
| RSA_PSS_PARAMS *pss; |
| X509_ALGOR *maskHash; |
| |
| pss = rsa_pss_decode(sigalg, &maskHash); |
| rv = rsa_pss_param_print(bp, pss, maskHash, indent); |
| if (pss) { |
| RSA_PSS_PARAMS_free(pss); |
| } |
| if (maskHash) { |
| X509_ALGOR_free(maskHash); |
| } |
| if (!rv) { |
| return 0; |
| } |
| } else if (!sig && BIO_puts(bp, "\n") <= 0) { |
| return 0; |
| } |
| |
| if (sig) { |
| return X509_signature_dump(bp, sig, indent); |
| } |
| return 1; |
| } |
| |
| static int rsa_pkey_ctrl(EVP_PKEY *pkey, int op, long arg1, void *arg2) { |
| X509_ALGOR *alg = NULL; |
| switch (op) { |
| case ASN1_PKEY_CTRL_DEFAULT_MD_NID: |
| *(int *)arg2 = NID_sha1; |
| return 1; |
| |
| default: |
| return -2; |
| } |
| |
| if (alg) { |
| X509_ALGOR_set0(alg, OBJ_nid2obj(NID_rsaEncryption), V_ASN1_NULL, 0); |
| } |
| |
| return 1; |
| } |
| |
| static int old_rsa_priv_decode(EVP_PKEY *pkey, const unsigned char **pder, |
| int derlen) { |
| RSA *rsa = d2i_RSAPrivateKey(NULL, pder, derlen); |
| if (rsa == NULL) { |
| OPENSSL_PUT_ERROR(EVP, old_rsa_priv_decode, ERR_R_RSA_LIB); |
| return 0; |
| } |
| EVP_PKEY_assign_RSA(pkey, rsa); |
| return 1; |
| } |
| |
| static int old_rsa_priv_encode(const EVP_PKEY *pkey, unsigned char **pder) { |
| return i2d_RSAPrivateKey(pkey->pkey.rsa, pder); |
| } |
| |
| /* allocate and set algorithm ID from EVP_MD, default SHA1 */ |
| static int rsa_md_to_algor(X509_ALGOR **palg, const EVP_MD *md) { |
| if (EVP_MD_type(md) == NID_sha1) { |
| return 1; |
| } |
| *palg = X509_ALGOR_new(); |
| if (!*palg) { |
| return 0; |
| } |
| X509_ALGOR_set_md(*palg, md); |
| return 1; |
| } |
| |
| /* Allocate and set MGF1 algorithm ID from EVP_MD */ |
| static int rsa_md_to_mgf1(X509_ALGOR **palg, const EVP_MD *mgf1md) { |
| X509_ALGOR *algtmp = NULL; |
| ASN1_STRING *stmp = NULL; |
| *palg = NULL; |
| |
| if (EVP_MD_type(mgf1md) == NID_sha1) { |
| return 1; |
| } |
| /* need to embed algorithm ID inside another */ |
| if (!rsa_md_to_algor(&algtmp, mgf1md) || |
| !ASN1_item_pack(algtmp, ASN1_ITEM_rptr(X509_ALGOR), &stmp)) { |
| goto err; |
| } |
| *palg = X509_ALGOR_new(); |
| if (!*palg) { |
| goto err; |
| } |
| X509_ALGOR_set0(*palg, OBJ_nid2obj(NID_mgf1), V_ASN1_SEQUENCE, stmp); |
| stmp = NULL; |
| |
| err: |
| if (stmp) |
| ASN1_STRING_free(stmp); |
| if (algtmp) |
| X509_ALGOR_free(algtmp); |
| if (*palg) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* convert algorithm ID to EVP_MD, default SHA1 */ |
| static const EVP_MD *rsa_algor_to_md(X509_ALGOR *alg) { |
| const EVP_MD *md; |
| if (!alg) { |
| return EVP_sha1(); |
| } |
| md = EVP_get_digestbyobj(alg->algorithm); |
| if (md == NULL) { |
| OPENSSL_PUT_ERROR(EVP, rsa_algor_to_md, EVP_R_UNKNOWN_DIGEST); |
| } |
| return md; |
| } |
| |
| /* convert MGF1 algorithm ID to EVP_MD, default SHA1 */ |
| static const EVP_MD *rsa_mgf1_to_md(X509_ALGOR *alg, X509_ALGOR *maskHash) { |
| const EVP_MD *md; |
| if (!alg) { |
| return EVP_sha1(); |
| } |
| /* Check mask and lookup mask hash algorithm */ |
| if (OBJ_obj2nid(alg->algorithm) != NID_mgf1) { |
| OPENSSL_PUT_ERROR(EVP, rsa_mgf1_to_md, EVP_R_UNSUPPORTED_MASK_ALGORITHM); |
| return NULL; |
| } |
| if (!maskHash) { |
| OPENSSL_PUT_ERROR(EVP, rsa_mgf1_to_md, EVP_R_UNSUPPORTED_MASK_PARAMETER); |
| return NULL; |
| } |
| md = EVP_get_digestbyobj(maskHash->algorithm); |
| if (md == NULL) { |
| OPENSSL_PUT_ERROR(EVP, rsa_mgf1_to_md, EVP_R_UNKNOWN_MASK_DIGEST); |
| return NULL; |
| } |
| return md; |
| } |
| |
| /* rsa_ctx_to_pss converts EVP_PKEY_CTX in PSS mode into corresponding |
| * algorithm parameter, suitable for setting as an AlgorithmIdentifier. */ |
| static ASN1_STRING *rsa_ctx_to_pss(EVP_PKEY_CTX *pkctx) { |
| const EVP_MD *sigmd, *mgf1md; |
| RSA_PSS_PARAMS *pss = NULL; |
| ASN1_STRING *os = NULL; |
| EVP_PKEY *pk = EVP_PKEY_CTX_get0_pkey(pkctx); |
| int saltlen, rv = 0; |
| |
| if (EVP_PKEY_CTX_get_signature_md(pkctx, &sigmd) <= 0 || |
| EVP_PKEY_CTX_get_rsa_mgf1_md(pkctx, &mgf1md) <= 0 || |
| !EVP_PKEY_CTX_get_rsa_pss_saltlen(pkctx, &saltlen)) { |
| goto err; |
| } |
| |
| if (saltlen == -1) { |
| saltlen = EVP_MD_size(sigmd); |
| } else if (saltlen == -2) { |
| saltlen = EVP_PKEY_size(pk) - EVP_MD_size(sigmd) - 2; |
| if (((EVP_PKEY_bits(pk) - 1) & 0x7) == 0) { |
| saltlen--; |
| } |
| } else { |
| goto err; |
| } |
| |
| pss = RSA_PSS_PARAMS_new(); |
| if (!pss) { |
| goto err; |
| } |
| |
| if (saltlen != 20) { |
| pss->saltLength = ASN1_INTEGER_new(); |
| if (!pss->saltLength || |
| !ASN1_INTEGER_set(pss->saltLength, saltlen)) { |
| goto err; |
| } |
| } |
| |
| if (!rsa_md_to_algor(&pss->hashAlgorithm, sigmd) || |
| !rsa_md_to_mgf1(&pss->maskGenAlgorithm, mgf1md)) { |
| goto err; |
| } |
| |
| /* Finally create string with pss parameter encoding. */ |
| if (!ASN1_item_pack(pss, ASN1_ITEM_rptr(RSA_PSS_PARAMS), &os)) { |
| goto err; |
| } |
| rv = 1; |
| |
| err: |
| if (pss) |
| RSA_PSS_PARAMS_free(pss); |
| if (rv) |
| return os; |
| if (os) |
| ASN1_STRING_free(os); |
| return NULL; |
| } |
| |
| /* From PSS AlgorithmIdentifier set public key parameters. If pkey |
| * isn't NULL then the EVP_MD_CTX is setup and initalised. If it |
| * is NULL parameters are passed to pkctx instead. */ |
| static int rsa_pss_to_ctx(EVP_MD_CTX *ctx, EVP_PKEY_CTX *pkctx, |
| X509_ALGOR *sigalg, EVP_PKEY *pkey) { |
| int ret = -1; |
| int saltlen; |
| const EVP_MD *mgf1md = NULL, *md = NULL; |
| RSA_PSS_PARAMS *pss; |
| X509_ALGOR *maskHash; |
| |
| /* Sanity check: make sure it is PSS */ |
| if (OBJ_obj2nid(sigalg->algorithm) != NID_rsassaPss) { |
| OPENSSL_PUT_ERROR(EVP, rsa_pss_to_ctx, EVP_R_UNSUPPORTED_SIGNATURE_TYPE); |
| return -1; |
| } |
| /* Decode PSS parameters */ |
| pss = rsa_pss_decode(sigalg, &maskHash); |
| if (pss == NULL) { |
| OPENSSL_PUT_ERROR(EVP, rsa_pss_to_ctx, EVP_R_INVALID_PSS_PARAMETERS); |
| goto err; |
| } |
| |
| mgf1md = rsa_mgf1_to_md(pss->maskGenAlgorithm, maskHash); |
| if (!mgf1md) { |
| goto err; |
| } |
| md = rsa_algor_to_md(pss->hashAlgorithm); |
| if (!md) { |
| goto err; |
| } |
| |
| saltlen = 20; |
| if (pss->saltLength) { |
| saltlen = ASN1_INTEGER_get(pss->saltLength); |
| |
| /* Could perform more salt length sanity checks but the main |
| * RSA routines will trap other invalid values anyway. */ |
| if (saltlen < 0) { |
| OPENSSL_PUT_ERROR(EVP, rsa_pss_to_ctx, EVP_R_INVALID_SALT_LENGTH); |
| goto err; |
| } |
| } |
| |
| /* low-level routines support only trailer field 0xbc (value 1) |
| * and PKCS#1 says we should reject any other value anyway. */ |
| if (pss->trailerField && ASN1_INTEGER_get(pss->trailerField) != 1) { |
| OPENSSL_PUT_ERROR(EVP, rsa_pss_to_ctx, EVP_R_INVALID_TRAILER); |
| goto err; |
| } |
| |
| if (pkey) { |
| if (!EVP_DigestVerifyInit(ctx, &pkctx, md, NULL, pkey)) { |
| goto err; |
| } |
| } else { |
| const EVP_MD *checkmd; |
| if (EVP_PKEY_CTX_get_signature_md(pkctx, &checkmd) <= 0) { |
| goto err; |
| } |
| if (EVP_MD_type(md) != EVP_MD_type(checkmd)) { |
| OPENSSL_PUT_ERROR(EVP, rsa_pss_to_ctx, EVP_R_DIGEST_DOES_NOT_MATCH); |
| goto err; |
| } |
| } |
| |
| if (EVP_PKEY_CTX_set_rsa_padding(pkctx, RSA_PKCS1_PSS_PADDING) <= 0 || |
| EVP_PKEY_CTX_set_rsa_pss_saltlen(pkctx, saltlen) <= 0 || |
| EVP_PKEY_CTX_set_rsa_mgf1_md(pkctx, mgf1md) <= 0) { |
| goto err; |
| } |
| |
| ret = 1; |
| |
| err: |
| RSA_PSS_PARAMS_free(pss); |
| if (maskHash) { |
| X509_ALGOR_free(maskHash); |
| } |
| return ret; |
| } |
| |
| /* Customised RSA item verification routine. This is called |
| * when a signature is encountered requiring special handling. We |
| * currently only handle PSS. */ |
| static int rsa_item_verify(EVP_MD_CTX *ctx, const ASN1_ITEM *it, void *asn, |
| X509_ALGOR *sigalg, ASN1_BIT_STRING *sig, |
| EVP_PKEY *pkey) { |
| /* Sanity check: make sure it is PSS */ |
| if (OBJ_obj2nid(sigalg->algorithm) != NID_rsassaPss) { |
| OPENSSL_PUT_ERROR(EVP, rsa_item_verify, EVP_R_UNSUPPORTED_SIGNATURE_TYPE); |
| return -1; |
| } |
| if (rsa_pss_to_ctx(ctx, NULL, sigalg, pkey)) { |
| /* Carry on */ |
| return 2; |
| } |
| |
| return -1; |
| } |
| |
| static int rsa_item_sign(EVP_MD_CTX *ctx, const ASN1_ITEM *it, void *asn, |
| X509_ALGOR *alg1, X509_ALGOR *alg2, |
| ASN1_BIT_STRING *sig) { |
| int pad_mode; |
| EVP_PKEY_CTX *pkctx = ctx->pctx; |
| if (EVP_PKEY_CTX_get_rsa_padding(pkctx, &pad_mode) <= 0) { |
| return 0; |
| } |
| if (pad_mode == RSA_PKCS1_PADDING) { |
| return 2; |
| } |
| if (pad_mode == RSA_PKCS1_PSS_PADDING) { |
| ASN1_STRING *os1 = rsa_ctx_to_pss(pkctx); |
| if (!os1) { |
| return 0; |
| } |
| /* Duplicate parameters if we have to */ |
| if (alg2) { |
| ASN1_STRING *os2 = ASN1_STRING_dup(os1); |
| if (!os2) { |
| ASN1_STRING_free(os1); |
| return 0; |
| } |
| X509_ALGOR_set0(alg2, OBJ_nid2obj(NID_rsassaPss), V_ASN1_SEQUENCE, os2); |
| } |
| X509_ALGOR_set0(alg1, OBJ_nid2obj(NID_rsassaPss), V_ASN1_SEQUENCE, os1); |
| return 3; |
| } |
| return 2; |
| } |
| |
| const EVP_PKEY_ASN1_METHOD rsa_asn1_meth = { |
| EVP_PKEY_RSA, |
| EVP_PKEY_RSA, |
| ASN1_PKEY_SIGPARAM_NULL, |
| |
| "RSA", |
| "OpenSSL RSA method", |
| |
| rsa_pub_decode, |
| rsa_pub_encode, |
| rsa_pub_cmp, |
| rsa_pub_print, |
| |
| rsa_priv_decode, |
| rsa_priv_encode, |
| rsa_priv_print, |
| |
| int_rsa_size, |
| rsa_bits, |
| |
| 0,0,0,0,0,0, |
| |
| rsa_sig_print, |
| int_rsa_free, |
| rsa_pkey_ctrl, |
| |
| old_rsa_priv_decode, |
| old_rsa_priv_encode, |
| |
| rsa_item_verify, |
| rsa_item_sign, |
| }; |
| |
| const EVP_PKEY_ASN1_METHOD rsa_asn1_meth_2 = { |
| EVP_PKEY_RSA2, |
| EVP_PKEY_RSA, |
| ASN1_PKEY_ALIAS, |
| }; |