blob: f43cdc3aeb4977cf98cc5e5998cc42d87851de88 [file] [log] [blame]
/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
* project 2006.
*/
/* ====================================================================
* Copyright (c) 2006 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com). */
#include <openssl/evp.h>
#include <openssl/asn1.h>
#include <openssl/asn1t.h>
#include <openssl/digest.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/obj.h>
#include <openssl/rsa.h>
#include <openssl/x509.h>
#include "../rsa/internal.h"
#include "internal.h"
static int rsa_pub_encode(X509_PUBKEY *pk, const EVP_PKEY *pkey) {
uint8_t *encoded = NULL;
int len;
len = i2d_RSAPublicKey(pkey->pkey.rsa, &encoded);
if (len <= 0) {
return 0;
}
if (!X509_PUBKEY_set0_param(pk, OBJ_nid2obj(EVP_PKEY_RSA), V_ASN1_NULL, NULL,
encoded, len)) {
OPENSSL_free(encoded);
return 0;
}
return 1;
}
static int rsa_pub_decode(EVP_PKEY *pkey, X509_PUBKEY *pubkey) {
const uint8_t *p;
int pklen;
RSA *rsa;
if (!X509_PUBKEY_get0_param(NULL, &p, &pklen, NULL, pubkey)) {
return 0;
}
rsa = d2i_RSAPublicKey(NULL, &p, pklen);
if (rsa == NULL) {
OPENSSL_PUT_ERROR(EVP, rsa_pub_decode, ERR_R_RSA_LIB);
return 0;
}
EVP_PKEY_assign_RSA(pkey, rsa);
return 1;
}
static int rsa_pub_cmp(const EVP_PKEY *a, const EVP_PKEY *b) {
return BN_cmp(b->pkey.rsa->n, a->pkey.rsa->n) == 0 &&
BN_cmp(b->pkey.rsa->e, a->pkey.rsa->e) == 0;
}
static int rsa_priv_encode(PKCS8_PRIV_KEY_INFO *p8, const EVP_PKEY *pkey) {
uint8_t *rk = NULL;
int rklen;
rklen = i2d_RSAPrivateKey(pkey->pkey.rsa, &rk);
if (rklen <= 0) {
OPENSSL_PUT_ERROR(EVP, rsa_priv_encode, ERR_R_MALLOC_FAILURE);
return 0;
}
/* TODO(fork): const correctness in next line. */
if (!PKCS8_pkey_set0(p8, (ASN1_OBJECT *)OBJ_nid2obj(NID_rsaEncryption), 0,
V_ASN1_NULL, NULL, rk, rklen)) {
OPENSSL_PUT_ERROR(EVP, rsa_priv_encode, ERR_R_MALLOC_FAILURE);
return 0;
}
return 1;
}
static int rsa_priv_decode(EVP_PKEY *pkey, PKCS8_PRIV_KEY_INFO *p8) {
const uint8_t *p;
int pklen;
RSA *rsa;
if (!PKCS8_pkey_get0(NULL, &p, &pklen, NULL, p8)) {
OPENSSL_PUT_ERROR(EVP, rsa_priv_decode, ERR_R_MALLOC_FAILURE);
return 0;
}
rsa = d2i_RSAPrivateKey(NULL, &p, pklen);
if (rsa == NULL) {
OPENSSL_PUT_ERROR(EVP, rsa_priv_decode, ERR_R_RSA_LIB);
return 0;
}
EVP_PKEY_assign_RSA(pkey, rsa);
return 1;
}
static int int_rsa_size(const EVP_PKEY *pkey) {
return RSA_size(pkey->pkey.rsa);
}
static int rsa_bits(const EVP_PKEY *pkey) {
return BN_num_bits(pkey->pkey.rsa->n);
}
static void int_rsa_free(EVP_PKEY *pkey) { RSA_free(pkey->pkey.rsa); }
static void update_buflen(const BIGNUM *b, size_t *pbuflen) {
size_t i;
if (!b) {
return;
}
i = BN_num_bytes(b);
if (*pbuflen < i) {
*pbuflen = i;
}
}
static int do_rsa_print(BIO *out, const RSA *rsa, int off,
int include_private) {
char *str;
const char *s;
uint8_t *m = NULL;
int ret = 0, mod_len = 0;
size_t buf_len = 0;
update_buflen(rsa->n, &buf_len);
update_buflen(rsa->e, &buf_len);
if (include_private) {
update_buflen(rsa->d, &buf_len);
update_buflen(rsa->p, &buf_len);
update_buflen(rsa->q, &buf_len);
update_buflen(rsa->dmp1, &buf_len);
update_buflen(rsa->dmq1, &buf_len);
update_buflen(rsa->iqmp, &buf_len);
}
m = (uint8_t *)OPENSSL_malloc(buf_len + 10);
if (m == NULL) {
OPENSSL_PUT_ERROR(EVP, do_rsa_print, ERR_R_MALLOC_FAILURE);
goto err;
}
if (rsa->n != NULL) {
mod_len = BN_num_bits(rsa->n);
}
if (!BIO_indent(out, off, 128)) {
goto err;
}
if (include_private && rsa->d) {
if (BIO_printf(out, "Private-Key: (%d bit)\n", mod_len) <= 0) {
goto err;
}
str = "modulus:";
s = "publicExponent:";
} else {
if (BIO_printf(out, "Public-Key: (%d bit)\n", mod_len) <= 0) {
goto err;
}
str = "Modulus:";
s = "Exponent:";
}
if (!ASN1_bn_print(out, str, rsa->n, m, off) ||
!ASN1_bn_print(out, s, rsa->e, m, off)) {
goto err;
}
if (include_private) {
if (!ASN1_bn_print(out, "privateExponent:", rsa->d, m, off) ||
!ASN1_bn_print(out, "prime1:", rsa->p, m, off) ||
!ASN1_bn_print(out, "prime2:", rsa->q, m, off) ||
!ASN1_bn_print(out, "exponent1:", rsa->dmp1, m, off) ||
!ASN1_bn_print(out, "exponent2:", rsa->dmq1, m, off) ||
!ASN1_bn_print(out, "coefficient:", rsa->iqmp, m, off)) {
goto err;
}
}
ret = 1;
err:
if (m != NULL) {
OPENSSL_free(m);
}
return ret;
}
static int rsa_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent,
ASN1_PCTX *ctx) {
return do_rsa_print(bp, pkey->pkey.rsa, indent, 0);
}
static int rsa_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent,
ASN1_PCTX *ctx) {
return do_rsa_print(bp, pkey->pkey.rsa, indent, 1);
}
/* Given an MGF1 Algorithm ID decode to an Algorithm Identifier */
static X509_ALGOR *rsa_mgf1_decode(X509_ALGOR *alg) {
const uint8_t *p;
int plen;
if (alg == NULL ||
OBJ_obj2nid(alg->algorithm) != NID_mgf1 ||
alg->parameter->type != V_ASN1_SEQUENCE) {
return NULL;
}
p = alg->parameter->value.sequence->data;
plen = alg->parameter->value.sequence->length;
return d2i_X509_ALGOR(NULL, &p, plen);
}
static RSA_PSS_PARAMS *rsa_pss_decode(const X509_ALGOR *alg,
X509_ALGOR **pmaskHash) {
const uint8_t *p;
int plen;
RSA_PSS_PARAMS *pss;
*pmaskHash = NULL;
if (!alg->parameter || alg->parameter->type != V_ASN1_SEQUENCE) {
return NULL;
}
p = alg->parameter->value.sequence->data;
plen = alg->parameter->value.sequence->length;
pss = d2i_RSA_PSS_PARAMS(NULL, &p, plen);
if (!pss) {
return NULL;
}
*pmaskHash = rsa_mgf1_decode(pss->maskGenAlgorithm);
return pss;
}
static int rsa_pss_param_print(BIO *bp, RSA_PSS_PARAMS *pss,
X509_ALGOR *maskHash, int indent) {
int rv = 0;
if (!pss) {
if (BIO_puts(bp, " (INVALID PSS PARAMETERS)\n") <= 0) {
return 0;
}
return 1;
}
if (BIO_puts(bp, "\n") <= 0 ||
!BIO_indent(bp, indent, 128) ||
BIO_puts(bp, "Hash Algorithm: ") <= 0) {
goto err;
}
if (pss->hashAlgorithm) {
if (i2a_ASN1_OBJECT(bp, pss->hashAlgorithm->algorithm) <= 0) {
goto err;
}
} else if (BIO_puts(bp, "sha1 (default)") <= 0) {
goto err;
}
if (BIO_puts(bp, "\n") <= 0 ||
!BIO_indent(bp, indent, 128) ||
BIO_puts(bp, "Mask Algorithm: ") <= 0) {
goto err;
}
if (pss->maskGenAlgorithm) {
if (i2a_ASN1_OBJECT(bp, pss->maskGenAlgorithm->algorithm) <= 0 ||
BIO_puts(bp, " with ") <= 0) {
goto err;
}
if (maskHash) {
if (i2a_ASN1_OBJECT(bp, maskHash->algorithm) <= 0) {
goto err;
}
} else if (BIO_puts(bp, "INVALID") <= 0) {
goto err;
}
} else if (BIO_puts(bp, "mgf1 with sha1 (default)") <= 0) {
goto err;
}
BIO_puts(bp, "\n");
if (!BIO_indent(bp, indent, 128) ||
BIO_puts(bp, "Salt Length: 0x") <= 0) {
goto err;
}
if (pss->saltLength) {
if (i2a_ASN1_INTEGER(bp, pss->saltLength) <= 0) {
goto err;
}
} else if (BIO_puts(bp, "14 (default)") <= 0) {
goto err;
}
BIO_puts(bp, "\n");
if (!BIO_indent(bp, indent, 128) ||
BIO_puts(bp, "Trailer Field: 0x") <= 0) {
goto err;
}
if (pss->trailerField) {
if (i2a_ASN1_INTEGER(bp, pss->trailerField) <= 0) {
goto err;
}
} else if (BIO_puts(bp, "BC (default)") <= 0) {
goto err;
}
BIO_puts(bp, "\n");
rv = 1;
err:
return rv;
}
static int rsa_sig_print(BIO *bp, const X509_ALGOR *sigalg,
const ASN1_STRING *sig, int indent, ASN1_PCTX *pctx) {
if (OBJ_obj2nid(sigalg->algorithm) == NID_rsassaPss) {
int rv;
RSA_PSS_PARAMS *pss;
X509_ALGOR *maskHash;
pss = rsa_pss_decode(sigalg, &maskHash);
rv = rsa_pss_param_print(bp, pss, maskHash, indent);
if (pss) {
RSA_PSS_PARAMS_free(pss);
}
if (maskHash) {
X509_ALGOR_free(maskHash);
}
if (!rv) {
return 0;
}
} else if (!sig && BIO_puts(bp, "\n") <= 0) {
return 0;
}
if (sig) {
return X509_signature_dump(bp, sig, indent);
}
return 1;
}
static int rsa_pkey_ctrl(EVP_PKEY *pkey, int op, long arg1, void *arg2) {
X509_ALGOR *alg = NULL;
switch (op) {
case ASN1_PKEY_CTRL_DEFAULT_MD_NID:
*(int *)arg2 = NID_sha1;
return 1;
default:
return -2;
}
if (alg) {
X509_ALGOR_set0(alg, OBJ_nid2obj(NID_rsaEncryption), V_ASN1_NULL, 0);
}
return 1;
}
static int old_rsa_priv_decode(EVP_PKEY *pkey, const unsigned char **pder,
int derlen) {
RSA *rsa = d2i_RSAPrivateKey(NULL, pder, derlen);
if (rsa == NULL) {
OPENSSL_PUT_ERROR(EVP, old_rsa_priv_decode, ERR_R_RSA_LIB);
return 0;
}
EVP_PKEY_assign_RSA(pkey, rsa);
return 1;
}
static int old_rsa_priv_encode(const EVP_PKEY *pkey, unsigned char **pder) {
return i2d_RSAPrivateKey(pkey->pkey.rsa, pder);
}
/* allocate and set algorithm ID from EVP_MD, default SHA1 */
static int rsa_md_to_algor(X509_ALGOR **palg, const EVP_MD *md) {
if (EVP_MD_type(md) == NID_sha1) {
return 1;
}
*palg = X509_ALGOR_new();
if (!*palg) {
return 0;
}
X509_ALGOR_set_md(*palg, md);
return 1;
}
/* Allocate and set MGF1 algorithm ID from EVP_MD */
static int rsa_md_to_mgf1(X509_ALGOR **palg, const EVP_MD *mgf1md) {
X509_ALGOR *algtmp = NULL;
ASN1_STRING *stmp = NULL;
*palg = NULL;
if (EVP_MD_type(mgf1md) == NID_sha1) {
return 1;
}
/* need to embed algorithm ID inside another */
if (!rsa_md_to_algor(&algtmp, mgf1md) ||
!ASN1_item_pack(algtmp, ASN1_ITEM_rptr(X509_ALGOR), &stmp)) {
goto err;
}
*palg = X509_ALGOR_new();
if (!*palg) {
goto err;
}
X509_ALGOR_set0(*palg, OBJ_nid2obj(NID_mgf1), V_ASN1_SEQUENCE, stmp);
stmp = NULL;
err:
if (stmp)
ASN1_STRING_free(stmp);
if (algtmp)
X509_ALGOR_free(algtmp);
if (*palg)
return 1;
return 0;
}
/* convert algorithm ID to EVP_MD, default SHA1 */
static const EVP_MD *rsa_algor_to_md(X509_ALGOR *alg) {
const EVP_MD *md;
if (!alg) {
return EVP_sha1();
}
md = EVP_get_digestbyobj(alg->algorithm);
if (md == NULL) {
OPENSSL_PUT_ERROR(EVP, rsa_algor_to_md, EVP_R_UNKNOWN_DIGEST);
}
return md;
}
/* convert MGF1 algorithm ID to EVP_MD, default SHA1 */
static const EVP_MD *rsa_mgf1_to_md(X509_ALGOR *alg, X509_ALGOR *maskHash) {
const EVP_MD *md;
if (!alg) {
return EVP_sha1();
}
/* Check mask and lookup mask hash algorithm */
if (OBJ_obj2nid(alg->algorithm) != NID_mgf1) {
OPENSSL_PUT_ERROR(EVP, rsa_mgf1_to_md, EVP_R_UNSUPPORTED_MASK_ALGORITHM);
return NULL;
}
if (!maskHash) {
OPENSSL_PUT_ERROR(EVP, rsa_mgf1_to_md, EVP_R_UNSUPPORTED_MASK_PARAMETER);
return NULL;
}
md = EVP_get_digestbyobj(maskHash->algorithm);
if (md == NULL) {
OPENSSL_PUT_ERROR(EVP, rsa_mgf1_to_md, EVP_R_UNKNOWN_MASK_DIGEST);
return NULL;
}
return md;
}
/* rsa_ctx_to_pss converts EVP_PKEY_CTX in PSS mode into corresponding
* algorithm parameter, suitable for setting as an AlgorithmIdentifier. */
static ASN1_STRING *rsa_ctx_to_pss(EVP_PKEY_CTX *pkctx) {
const EVP_MD *sigmd, *mgf1md;
RSA_PSS_PARAMS *pss = NULL;
ASN1_STRING *os = NULL;
EVP_PKEY *pk = EVP_PKEY_CTX_get0_pkey(pkctx);
int saltlen, rv = 0;
if (EVP_PKEY_CTX_get_signature_md(pkctx, &sigmd) <= 0 ||
EVP_PKEY_CTX_get_rsa_mgf1_md(pkctx, &mgf1md) <= 0 ||
!EVP_PKEY_CTX_get_rsa_pss_saltlen(pkctx, &saltlen)) {
goto err;
}
if (saltlen == -1) {
saltlen = EVP_MD_size(sigmd);
} else if (saltlen == -2) {
saltlen = EVP_PKEY_size(pk) - EVP_MD_size(sigmd) - 2;
if (((EVP_PKEY_bits(pk) - 1) & 0x7) == 0) {
saltlen--;
}
} else {
goto err;
}
pss = RSA_PSS_PARAMS_new();
if (!pss) {
goto err;
}
if (saltlen != 20) {
pss->saltLength = ASN1_INTEGER_new();
if (!pss->saltLength ||
!ASN1_INTEGER_set(pss->saltLength, saltlen)) {
goto err;
}
}
if (!rsa_md_to_algor(&pss->hashAlgorithm, sigmd) ||
!rsa_md_to_mgf1(&pss->maskGenAlgorithm, mgf1md)) {
goto err;
}
/* Finally create string with pss parameter encoding. */
if (!ASN1_item_pack(pss, ASN1_ITEM_rptr(RSA_PSS_PARAMS), &os)) {
goto err;
}
rv = 1;
err:
if (pss)
RSA_PSS_PARAMS_free(pss);
if (rv)
return os;
if (os)
ASN1_STRING_free(os);
return NULL;
}
/* From PSS AlgorithmIdentifier set public key parameters. If pkey
* isn't NULL then the EVP_MD_CTX is setup and initalised. If it
* is NULL parameters are passed to pkctx instead. */
static int rsa_pss_to_ctx(EVP_MD_CTX *ctx, EVP_PKEY_CTX *pkctx,
X509_ALGOR *sigalg, EVP_PKEY *pkey) {
int ret = -1;
int saltlen;
const EVP_MD *mgf1md = NULL, *md = NULL;
RSA_PSS_PARAMS *pss;
X509_ALGOR *maskHash;
/* Sanity check: make sure it is PSS */
if (OBJ_obj2nid(sigalg->algorithm) != NID_rsassaPss) {
OPENSSL_PUT_ERROR(EVP, rsa_pss_to_ctx, EVP_R_UNSUPPORTED_SIGNATURE_TYPE);
return -1;
}
/* Decode PSS parameters */
pss = rsa_pss_decode(sigalg, &maskHash);
if (pss == NULL) {
OPENSSL_PUT_ERROR(EVP, rsa_pss_to_ctx, EVP_R_INVALID_PSS_PARAMETERS);
goto err;
}
mgf1md = rsa_mgf1_to_md(pss->maskGenAlgorithm, maskHash);
if (!mgf1md) {
goto err;
}
md = rsa_algor_to_md(pss->hashAlgorithm);
if (!md) {
goto err;
}
saltlen = 20;
if (pss->saltLength) {
saltlen = ASN1_INTEGER_get(pss->saltLength);
/* Could perform more salt length sanity checks but the main
* RSA routines will trap other invalid values anyway. */
if (saltlen < 0) {
OPENSSL_PUT_ERROR(EVP, rsa_pss_to_ctx, EVP_R_INVALID_SALT_LENGTH);
goto err;
}
}
/* low-level routines support only trailer field 0xbc (value 1)
* and PKCS#1 says we should reject any other value anyway. */
if (pss->trailerField && ASN1_INTEGER_get(pss->trailerField) != 1) {
OPENSSL_PUT_ERROR(EVP, rsa_pss_to_ctx, EVP_R_INVALID_TRAILER);
goto err;
}
if (pkey) {
if (!EVP_DigestVerifyInit(ctx, &pkctx, md, NULL, pkey)) {
goto err;
}
} else {
const EVP_MD *checkmd;
if (EVP_PKEY_CTX_get_signature_md(pkctx, &checkmd) <= 0) {
goto err;
}
if (EVP_MD_type(md) != EVP_MD_type(checkmd)) {
OPENSSL_PUT_ERROR(EVP, rsa_pss_to_ctx, EVP_R_DIGEST_DOES_NOT_MATCH);
goto err;
}
}
if (EVP_PKEY_CTX_set_rsa_padding(pkctx, RSA_PKCS1_PSS_PADDING) <= 0 ||
EVP_PKEY_CTX_set_rsa_pss_saltlen(pkctx, saltlen) <= 0 ||
EVP_PKEY_CTX_set_rsa_mgf1_md(pkctx, mgf1md) <= 0) {
goto err;
}
ret = 1;
err:
RSA_PSS_PARAMS_free(pss);
if (maskHash) {
X509_ALGOR_free(maskHash);
}
return ret;
}
/* Customised RSA item verification routine. This is called
* when a signature is encountered requiring special handling. We
* currently only handle PSS. */
static int rsa_item_verify(EVP_MD_CTX *ctx, const ASN1_ITEM *it, void *asn,
X509_ALGOR *sigalg, ASN1_BIT_STRING *sig,
EVP_PKEY *pkey) {
/* Sanity check: make sure it is PSS */
if (OBJ_obj2nid(sigalg->algorithm) != NID_rsassaPss) {
OPENSSL_PUT_ERROR(EVP, rsa_item_verify, EVP_R_UNSUPPORTED_SIGNATURE_TYPE);
return -1;
}
if (rsa_pss_to_ctx(ctx, NULL, sigalg, pkey)) {
/* Carry on */
return 2;
}
return -1;
}
static int rsa_item_sign(EVP_MD_CTX *ctx, const ASN1_ITEM *it, void *asn,
X509_ALGOR *alg1, X509_ALGOR *alg2,
ASN1_BIT_STRING *sig) {
int pad_mode;
EVP_PKEY_CTX *pkctx = ctx->pctx;
if (EVP_PKEY_CTX_get_rsa_padding(pkctx, &pad_mode) <= 0) {
return 0;
}
if (pad_mode == RSA_PKCS1_PADDING) {
return 2;
}
if (pad_mode == RSA_PKCS1_PSS_PADDING) {
ASN1_STRING *os1 = rsa_ctx_to_pss(pkctx);
if (!os1) {
return 0;
}
/* Duplicate parameters if we have to */
if (alg2) {
ASN1_STRING *os2 = ASN1_STRING_dup(os1);
if (!os2) {
ASN1_STRING_free(os1);
return 0;
}
X509_ALGOR_set0(alg2, OBJ_nid2obj(NID_rsassaPss), V_ASN1_SEQUENCE, os2);
}
X509_ALGOR_set0(alg1, OBJ_nid2obj(NID_rsassaPss), V_ASN1_SEQUENCE, os1);
return 3;
}
return 2;
}
const EVP_PKEY_ASN1_METHOD rsa_asn1_meth = {
EVP_PKEY_RSA,
EVP_PKEY_RSA,
ASN1_PKEY_SIGPARAM_NULL,
"RSA",
"OpenSSL RSA method",
rsa_pub_decode,
rsa_pub_encode,
rsa_pub_cmp,
rsa_pub_print,
rsa_priv_decode,
rsa_priv_encode,
rsa_priv_print,
int_rsa_size,
rsa_bits,
0,0,0,0,0,0,
rsa_sig_print,
int_rsa_free,
rsa_pkey_ctrl,
old_rsa_priv_decode,
old_rsa_priv_encode,
rsa_item_verify,
rsa_item_sign,
};
const EVP_PKEY_ASN1_METHOD rsa_asn1_meth_2 = {
EVP_PKEY_RSA2,
EVP_PKEY_RSA,
ASN1_PKEY_ALIAS,
};