|  | // Copyright 2015 The BoringSSL Authors | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include <openssl/ssl.h> | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <openssl/aead.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/rand.h> | 
|  |  | 
|  | #include "../crypto/internal.h" | 
|  | #include "internal.h" | 
|  |  | 
|  |  | 
|  | BSSL_NAMESPACE_BEGIN | 
|  |  | 
|  | SSLAEADContext::SSLAEADContext(const SSL_CIPHER *cipher_arg) | 
|  | : cipher_(cipher_arg), | 
|  | variable_nonce_included_in_record_(false), | 
|  | random_variable_nonce_(false), | 
|  | xor_fixed_nonce_(false), | 
|  | omit_length_in_ad_(false), | 
|  | ad_is_header_(false) {} | 
|  |  | 
|  | SSLAEADContext::~SSLAEADContext() {} | 
|  |  | 
|  | UniquePtr<SSLAEADContext> SSLAEADContext::CreateNullCipher() { | 
|  | return MakeUnique<SSLAEADContext>(/*cipher=*/nullptr); | 
|  | } | 
|  |  | 
|  | UniquePtr<SSLAEADContext> SSLAEADContext::Create( | 
|  | enum evp_aead_direction_t direction, uint16_t version, | 
|  | const SSL_CIPHER *cipher, Span<const uint8_t> enc_key, | 
|  | Span<const uint8_t> mac_key, Span<const uint8_t> fixed_iv) { | 
|  | const EVP_AEAD *aead; | 
|  | uint16_t protocol_version; | 
|  | size_t expected_mac_key_len, expected_fixed_iv_len; | 
|  | if (!ssl_protocol_version_from_wire(&protocol_version, version) || | 
|  | !ssl_cipher_get_evp_aead(&aead, &expected_mac_key_len, | 
|  | &expected_fixed_iv_len, cipher, | 
|  | protocol_version) || | 
|  | // Ensure the caller returned correct key sizes. | 
|  | expected_fixed_iv_len != fixed_iv.size() || | 
|  | expected_mac_key_len != mac_key.size()) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | UniquePtr<SSLAEADContext> aead_ctx = MakeUnique<SSLAEADContext>(cipher); | 
|  | if (!aead_ctx) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | uint8_t merged_key[EVP_AEAD_MAX_KEY_LENGTH]; | 
|  | assert(EVP_AEAD_nonce_length(aead) <= EVP_AEAD_MAX_NONCE_LENGTH); | 
|  | static_assert(EVP_AEAD_MAX_NONCE_LENGTH < 256, | 
|  | "variable_nonce_len doesn't fit in uint8_t"); | 
|  | aead_ctx->variable_nonce_len_ = (uint8_t)EVP_AEAD_nonce_length(aead); | 
|  | if (mac_key.empty()) { | 
|  | // This is an actual AEAD. | 
|  | aead_ctx->fixed_nonce_.CopyFrom(fixed_iv); | 
|  |  | 
|  | if (protocol_version >= TLS1_3_VERSION || | 
|  | cipher->algorithm_enc & SSL_CHACHA20POLY1305) { | 
|  | // TLS 1.3, and TLS 1.2 ChaCha20-Poly1305, XOR the fixed IV with the | 
|  | // sequence number to form the nonce. | 
|  | aead_ctx->xor_fixed_nonce_ = true; | 
|  | aead_ctx->variable_nonce_len_ = 8; | 
|  | assert(fixed_iv.size() >= aead_ctx->variable_nonce_len_); | 
|  | } else { | 
|  | // TLS 1.2 AES-GCM prepends the fixed IV to an explicit nonce. | 
|  | assert(fixed_iv.size() <= aead_ctx->variable_nonce_len_); | 
|  | assert(cipher->algorithm_enc & (SSL_AES128GCM | SSL_AES256GCM)); | 
|  | aead_ctx->variable_nonce_len_ -= fixed_iv.size(); | 
|  | aead_ctx->variable_nonce_included_in_record_ = true; | 
|  | } | 
|  |  | 
|  | // Starting TLS 1.3, the AAD is the whole record header. | 
|  | if (protocol_version >= TLS1_3_VERSION) { | 
|  | aead_ctx->ad_is_header_ = true; | 
|  | } | 
|  | } else { | 
|  | // This is a CBC cipher suite that implements the |EVP_AEAD| interface. The | 
|  | // |EVP_AEAD| takes the MAC key, encryption key, and fixed IV concatenated | 
|  | // as its input key. | 
|  | assert(protocol_version < TLS1_3_VERSION); | 
|  | BSSL_CHECK(mac_key.size() + enc_key.size() + fixed_iv.size() <= | 
|  | sizeof(merged_key)); | 
|  | OPENSSL_memcpy(merged_key, mac_key.data(), mac_key.size()); | 
|  | OPENSSL_memcpy(merged_key + mac_key.size(), enc_key.data(), enc_key.size()); | 
|  | OPENSSL_memcpy(merged_key + mac_key.size() + enc_key.size(), | 
|  | fixed_iv.data(), fixed_iv.size()); | 
|  | enc_key = | 
|  | Span(merged_key, enc_key.size() + mac_key.size() + fixed_iv.size()); | 
|  |  | 
|  | // The |EVP_AEAD|'s per-encryption nonce, if any, is actually the CBC IV. It | 
|  | // must be generated randomly and prepended to the record. | 
|  | aead_ctx->variable_nonce_included_in_record_ = true; | 
|  | aead_ctx->random_variable_nonce_ = true; | 
|  | aead_ctx->omit_length_in_ad_ = true; | 
|  | } | 
|  |  | 
|  | if (!EVP_AEAD_CTX_init_with_direction( | 
|  | aead_ctx->ctx_.get(), aead, enc_key.data(), enc_key.size(), | 
|  | EVP_AEAD_DEFAULT_TAG_LENGTH, direction)) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | return aead_ctx; | 
|  | } | 
|  |  | 
|  | UniquePtr<SSLAEADContext> SSLAEADContext::CreatePlaceholderForQUIC( | 
|  | const SSL_CIPHER *cipher) { | 
|  | return MakeUnique<SSLAEADContext>(cipher); | 
|  | } | 
|  |  | 
|  | size_t SSLAEADContext::ExplicitNonceLen() const { | 
|  | if (!CRYPTO_fuzzer_mode_enabled() && variable_nonce_included_in_record_) { | 
|  | return variable_nonce_len_; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bool SSLAEADContext::SuffixLen(size_t *out_suffix_len, const size_t in_len, | 
|  | const size_t extra_in_len) const { | 
|  | if (is_null_cipher() || CRYPTO_fuzzer_mode_enabled()) { | 
|  | *out_suffix_len = extra_in_len; | 
|  | return true; | 
|  | } | 
|  | return !!EVP_AEAD_CTX_tag_len(ctx_.get(), out_suffix_len, in_len, | 
|  | extra_in_len); | 
|  | } | 
|  |  | 
|  | bool SSLAEADContext::CiphertextLen(size_t *out_len, const size_t in_len, | 
|  | const size_t extra_in_len) const { | 
|  | size_t len; | 
|  | if (!SuffixLen(&len, in_len, extra_in_len)) { | 
|  | return false; | 
|  | } | 
|  | len += ExplicitNonceLen(); | 
|  | len += in_len; | 
|  | if (len < in_len || len >= 0xffff) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); | 
|  | return false; | 
|  | } | 
|  | *out_len = len; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | size_t SSLAEADContext::MaxOverhead() const { | 
|  | return ExplicitNonceLen() + | 
|  | (is_null_cipher() || CRYPTO_fuzzer_mode_enabled() | 
|  | ? 0 | 
|  | : EVP_AEAD_max_overhead(EVP_AEAD_CTX_aead(ctx_.get()))); | 
|  | } | 
|  |  | 
|  | size_t SSLAEADContext::MaxSealInputLen(size_t max_out) const { | 
|  | size_t explicit_nonce_len = ExplicitNonceLen(); | 
|  | if (max_out <= explicit_nonce_len) { | 
|  | return 0; | 
|  | } | 
|  | max_out -= explicit_nonce_len; | 
|  | if (is_null_cipher() || CRYPTO_fuzzer_mode_enabled()) { | 
|  | return max_out; | 
|  | } | 
|  | // TODO(crbug.com/42290602): This should be part of |EVP_AEAD_CTX|. | 
|  | size_t overhead = EVP_AEAD_max_overhead(EVP_AEAD_CTX_aead(ctx_.get())); | 
|  | if (SSL_CIPHER_is_block_cipher(cipher())) { | 
|  | size_t block_size; | 
|  | switch (cipher()->algorithm_enc) { | 
|  | case SSL_AES128: | 
|  | case SSL_AES256: | 
|  | block_size = 16; | 
|  | break; | 
|  | case SSL_3DES: | 
|  | block_size = 8; | 
|  | break; | 
|  | default: | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | // The output for a CBC cipher is always a whole number of blocks. Round the | 
|  | // remaining capacity down. | 
|  | max_out &= ~(block_size - 1); | 
|  | // The maximum overhead is a full block of padding and the MAC, but the | 
|  | // minimum overhead is one byte of padding, once we know the output is | 
|  | // rounded down. | 
|  | assert(overhead > block_size); | 
|  | overhead -= block_size - 1; | 
|  | } | 
|  | return max_out <= overhead ? 0 : max_out - overhead; | 
|  | } | 
|  |  | 
|  | Span<const uint8_t> SSLAEADContext::GetAdditionalData( | 
|  | uint8_t storage[13], uint8_t type, uint16_t record_version, uint64_t seqnum, | 
|  | size_t plaintext_len, Span<const uint8_t> header) { | 
|  | if (ad_is_header_) { | 
|  | return header; | 
|  | } | 
|  |  | 
|  | CRYPTO_store_u64_be(storage, seqnum); | 
|  | size_t len = 8; | 
|  | storage[len++] = type; | 
|  | storage[len++] = static_cast<uint8_t>((record_version >> 8)); | 
|  | storage[len++] = static_cast<uint8_t>(record_version); | 
|  | if (!omit_length_in_ad_) { | 
|  | storage[len++] = static_cast<uint8_t>((plaintext_len >> 8)); | 
|  | storage[len++] = static_cast<uint8_t>(plaintext_len); | 
|  | } | 
|  | return Span(storage, len); | 
|  | } | 
|  |  | 
|  | bool SSLAEADContext::Open(Span<uint8_t> *out, uint8_t type, | 
|  | uint16_t record_version, uint64_t seqnum, | 
|  | Span<const uint8_t> header, Span<uint8_t> in) { | 
|  | if (is_null_cipher() || CRYPTO_fuzzer_mode_enabled()) { | 
|  | // Handle the initial NULL cipher. | 
|  | *out = in; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // TLS 1.2 AEADs include the length in the AD and are assumed to have fixed | 
|  | // overhead. Otherwise the parameter is unused. | 
|  | size_t plaintext_len = 0; | 
|  | if (!omit_length_in_ad_) { | 
|  | size_t overhead = MaxOverhead(); | 
|  | if (in.size() < overhead) { | 
|  | // Publicly invalid. | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_PACKET_LENGTH); | 
|  | return false; | 
|  | } | 
|  | plaintext_len = in.size() - overhead; | 
|  | } | 
|  |  | 
|  | uint8_t ad_storage[13]; | 
|  | Span<const uint8_t> ad = GetAdditionalData(ad_storage, type, record_version, | 
|  | seqnum, plaintext_len, header); | 
|  |  | 
|  | // Assemble the nonce. | 
|  | uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH]; | 
|  | size_t nonce_len = 0; | 
|  |  | 
|  | // Prepend the fixed nonce, or left-pad with zeros if XORing. | 
|  | if (xor_fixed_nonce_) { | 
|  | nonce_len = fixed_nonce_.size() - variable_nonce_len_; | 
|  | OPENSSL_memset(nonce, 0, nonce_len); | 
|  | } else { | 
|  | OPENSSL_memcpy(nonce, fixed_nonce_.data(), fixed_nonce_.size()); | 
|  | nonce_len += fixed_nonce_.size(); | 
|  | } | 
|  |  | 
|  | // Add the variable nonce. | 
|  | if (variable_nonce_included_in_record_) { | 
|  | if (in.size() < variable_nonce_len_) { | 
|  | // Publicly invalid. | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_PACKET_LENGTH); | 
|  | return false; | 
|  | } | 
|  | OPENSSL_memcpy(nonce + nonce_len, in.data(), variable_nonce_len_); | 
|  | in = in.subspan(variable_nonce_len_); | 
|  | } else { | 
|  | assert(variable_nonce_len_ == 8); | 
|  | CRYPTO_store_u64_be(nonce + nonce_len, seqnum); | 
|  | } | 
|  | nonce_len += variable_nonce_len_; | 
|  |  | 
|  | // XOR the fixed nonce, if necessary. | 
|  | if (xor_fixed_nonce_) { | 
|  | assert(nonce_len == fixed_nonce_.size()); | 
|  | for (size_t i = 0; i < fixed_nonce_.size(); i++) { | 
|  | nonce[i] ^= fixed_nonce_[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Decrypt in-place. | 
|  | size_t len; | 
|  | if (!EVP_AEAD_CTX_open(ctx_.get(), in.data(), &len, in.size(), nonce, | 
|  | nonce_len, in.data(), in.size(), ad.data(), | 
|  | ad.size())) { | 
|  | return false; | 
|  | } | 
|  | *out = in.subspan(0, len); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SSLAEADContext::SealScatter(uint8_t *out_prefix, uint8_t *out, | 
|  | uint8_t *out_suffix, uint8_t type, | 
|  | uint16_t record_version, uint64_t seqnum, | 
|  | Span<const uint8_t> header, const uint8_t *in, | 
|  | size_t in_len, const uint8_t *extra_in, | 
|  | size_t extra_in_len) { | 
|  | const size_t prefix_len = ExplicitNonceLen(); | 
|  | size_t suffix_len; | 
|  | if (!SuffixLen(&suffix_len, in_len, extra_in_len)) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE); | 
|  | return false; | 
|  | } | 
|  | if ((in != out && buffers_alias(in, in_len, out, in_len)) || | 
|  | buffers_alias(in, in_len, out_prefix, prefix_len) || | 
|  | buffers_alias(in, in_len, out_suffix, suffix_len)) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_OUTPUT_ALIASES_INPUT); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (is_null_cipher() || CRYPTO_fuzzer_mode_enabled()) { | 
|  | // Handle the initial NULL cipher. | 
|  | OPENSSL_memmove(out, in, in_len); | 
|  | OPENSSL_memmove(out_suffix, extra_in, extra_in_len); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | uint8_t ad_storage[13]; | 
|  | Span<const uint8_t> ad = GetAdditionalData(ad_storage, type, record_version, | 
|  | seqnum, in_len, header); | 
|  |  | 
|  | // Assemble the nonce. | 
|  | uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH]; | 
|  | size_t nonce_len = 0; | 
|  |  | 
|  | // Prepend the fixed nonce, or left-pad with zeros if XORing. | 
|  | if (xor_fixed_nonce_) { | 
|  | nonce_len = fixed_nonce_.size() - variable_nonce_len_; | 
|  | OPENSSL_memset(nonce, 0, nonce_len); | 
|  | } else { | 
|  | OPENSSL_memcpy(nonce, fixed_nonce_.data(), fixed_nonce_.size()); | 
|  | nonce_len += fixed_nonce_.size(); | 
|  | } | 
|  |  | 
|  | // Select the variable nonce. | 
|  | if (random_variable_nonce_) { | 
|  | assert(variable_nonce_included_in_record_); | 
|  | if (!RAND_bytes(nonce + nonce_len, variable_nonce_len_)) { | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | // When sending we use the sequence number as the variable part of the | 
|  | // nonce. | 
|  | assert(variable_nonce_len_ == 8); | 
|  | CRYPTO_store_u64_be(nonce + nonce_len, seqnum); | 
|  | } | 
|  | nonce_len += variable_nonce_len_; | 
|  |  | 
|  | // Emit the variable nonce if included in the record. | 
|  | if (variable_nonce_included_in_record_) { | 
|  | assert(!xor_fixed_nonce_); | 
|  | if (buffers_alias(in, in_len, out_prefix, variable_nonce_len_)) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_OUTPUT_ALIASES_INPUT); | 
|  | return false; | 
|  | } | 
|  | OPENSSL_memcpy(out_prefix, nonce + fixed_nonce_.size(), | 
|  | variable_nonce_len_); | 
|  | } | 
|  |  | 
|  | // XOR the fixed nonce, if necessary. | 
|  | if (xor_fixed_nonce_) { | 
|  | assert(nonce_len == fixed_nonce_.size()); | 
|  | for (size_t i = 0; i < fixed_nonce_.size(); i++) { | 
|  | nonce[i] ^= fixed_nonce_[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t written_suffix_len; | 
|  | bool result = !!EVP_AEAD_CTX_seal_scatter( | 
|  | ctx_.get(), out, out_suffix, &written_suffix_len, suffix_len, nonce, | 
|  | nonce_len, in, in_len, extra_in, extra_in_len, ad.data(), ad.size()); | 
|  | assert(!result || written_suffix_len == suffix_len); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | bool SSLAEADContext::Seal(uint8_t *out, size_t *out_len, size_t max_out_len, | 
|  | uint8_t type, uint16_t record_version, | 
|  | uint64_t seqnum, Span<const uint8_t> header, | 
|  | const uint8_t *in, size_t in_len) { | 
|  | const size_t prefix_len = ExplicitNonceLen(); | 
|  | size_t suffix_len; | 
|  | if (!SuffixLen(&suffix_len, in_len, 0)) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE); | 
|  | return false; | 
|  | } | 
|  | if (in_len + prefix_len < in_len || | 
|  | in_len + prefix_len + suffix_len < in_len + prefix_len) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, SSL_R_RECORD_TOO_LARGE); | 
|  | return false; | 
|  | } | 
|  | if (in_len + prefix_len + suffix_len > max_out_len) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFER_TOO_SMALL); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!SealScatter(out, out + prefix_len, out + prefix_len + in_len, type, | 
|  | record_version, seqnum, header, in, in_len, 0, 0)) { | 
|  | return false; | 
|  | } | 
|  | *out_len = prefix_len + in_len + suffix_len; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SSLAEADContext::GetIV(const uint8_t **out_iv, size_t *out_iv_len) const { | 
|  | return !is_null_cipher() && | 
|  | EVP_AEAD_CTX_get_iv(ctx_.get(), out_iv, out_iv_len); | 
|  | } | 
|  |  | 
|  | BSSL_NAMESPACE_END |