| // Copyright 2015 The Chromium Authors | 
 | // Use of this source code is governed by a BSD-style license that can be | 
 | // found in the LICENSE file. | 
 |  | 
 | #include "parse_values.h" | 
 |  | 
 | #include <stdlib.h> | 
 |  | 
 | #include <tuple> | 
 |  | 
 | #include <openssl/base.h> | 
 | #include <openssl/bytestring.h> | 
 | #include <openssl/mem.h> | 
 |  | 
 | BSSL_NAMESPACE_BEGIN | 
 | namespace der { | 
 |  | 
 | namespace { | 
 |  | 
 | bool ParseBoolInternal(Input in, bool *out, bool relaxed) { | 
 |   // According to ITU-T X.690 section 8.2, a bool is encoded as a single octet | 
 |   // where the octet of all zeroes is FALSE and a non-zero value for the octet | 
 |   // is TRUE. | 
 |   if (in.size() != 1) { | 
 |     return false; | 
 |   } | 
 |   ByteReader data(in); | 
 |   uint8_t byte; | 
 |   if (!data.ReadByte(&byte)) { | 
 |     return false; | 
 |   } | 
 |   if (byte == 0) { | 
 |     *out = false; | 
 |     return true; | 
 |   } | 
 |   // ITU-T X.690 section 11.1 specifies that for DER, the TRUE value must be | 
 |   // encoded as an octet of all ones. | 
 |   if (byte == 0xff || relaxed) { | 
 |     *out = true; | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | // Reads a positive decimal number with |digits| digits and stores it in | 
 | // |*out|. This function does not check that the type of |*out| is large | 
 | // enough to hold 10^digits - 1; the caller must choose an appropriate type | 
 | // based on the number of digits they wish to parse. | 
 | template <typename UINT> | 
 | bool DecimalStringToUint(ByteReader &in, size_t digits, UINT *out) { | 
 |   UINT value = 0; | 
 |   for (size_t i = 0; i < digits; ++i) { | 
 |     uint8_t digit; | 
 |     if (!in.ReadByte(&digit)) { | 
 |       return false; | 
 |     } | 
 |     if (digit < '0' || digit > '9') { | 
 |       return false; | 
 |     } | 
 |     value = (value * 10) + (digit - '0'); | 
 |   } | 
 |   *out = value; | 
 |   return true; | 
 | } | 
 |  | 
 | // Checks that the values in a GeneralizedTime struct are valid. This involves | 
 | // checking that the year is 4 digits, the month is between 1 and 12, the day | 
 | // is a day that exists in that month (following current leap year rules), | 
 | // hours are between 0 and 23, minutes between 0 and 59, and seconds between | 
 | // 0 and 60 (to allow for leap seconds; no validation is done that a leap | 
 | // second is on a day that could be a leap second). | 
 | bool ValidateGeneralizedTime(const GeneralizedTime &time) { | 
 |   if (time.month < 1 || time.month > 12) { | 
 |     return false; | 
 |   } | 
 |   if (time.day < 1) { | 
 |     return false; | 
 |   } | 
 |   if (time.hours > 23) { | 
 |     return false; | 
 |   } | 
 |   if (time.minutes > 59) { | 
 |     return false; | 
 |   } | 
 |   // Leap seconds are allowed. | 
 |   if (time.seconds > 60) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // validate upper bound for day of month | 
 |   switch (time.month) { | 
 |     case 4: | 
 |     case 6: | 
 |     case 9: | 
 |     case 11: | 
 |       if (time.day > 30) { | 
 |         return false; | 
 |       } | 
 |       break; | 
 |     case 1: | 
 |     case 3: | 
 |     case 5: | 
 |     case 7: | 
 |     case 8: | 
 |     case 10: | 
 |     case 12: | 
 |       if (time.day > 31) { | 
 |         return false; | 
 |       } | 
 |       break; | 
 |     case 2: | 
 |       if (time.year % 4 == 0 && | 
 |           (time.year % 100 != 0 || time.year % 400 == 0)) { | 
 |         if (time.day > 29) { | 
 |           return false; | 
 |         } | 
 |       } else { | 
 |         if (time.day > 28) { | 
 |           return false; | 
 |         } | 
 |       } | 
 |       break; | 
 |     default: | 
 |       abort(); | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | // Returns the number of bytes of numeric precision in a DER encoded INTEGER | 
 | // value. |in| must be a valid DER encoding of an INTEGER for this to work. | 
 | // | 
 | // Normally the precision of the number is exactly in.size(). However when | 
 | // encoding positive numbers using DER it is possible to have a leading zero | 
 | // (to prevent number from being interpreted as negative). | 
 | // | 
 | // For instance a 160-bit positive number might take 21 bytes to encode. This | 
 | // function will return 20 in such a case. | 
 | size_t GetUnsignedIntegerLength(Input in) { | 
 |   der::ByteReader reader(in); | 
 |   uint8_t first_byte; | 
 |   if (!reader.ReadByte(&first_byte)) { | 
 |     return 0;  // Not valid DER  as |in| was empty. | 
 |   } | 
 |  | 
 |   if (first_byte == 0 && in.size() > 1) { | 
 |     return in.size() - 1; | 
 |   } | 
 |   return in.size(); | 
 | } | 
 |  | 
 | }  // namespace | 
 |  | 
 | bool ParseBool(Input in, bool *out) { | 
 |   return ParseBoolInternal(in, out, false /* relaxed */); | 
 | } | 
 |  | 
 | // BER interprets any non-zero value as true, while DER requires a bool to | 
 | // have either all bits zero (false) or all bits one (true). To support | 
 | // malformed certs, we recognized the BER encoding instead of failing to | 
 | // parse. | 
 | bool ParseBoolRelaxed(Input in, bool *out) { | 
 |   return ParseBoolInternal(in, out, true /* relaxed */); | 
 | } | 
 |  | 
 | // ITU-T X.690 section 8.3.2 specifies that an integer value must be encoded | 
 | // in the smallest number of octets. If the encoding consists of more than | 
 | // one octet, then the bits of the first octet and the most significant bit | 
 | // of the second octet must not be all zeroes or all ones. | 
 | bool IsValidInteger(Input in, bool *negative) { | 
 |   CBS cbs; | 
 |   CBS_init(&cbs, in.data(), in.size()); | 
 |   int negative_int; | 
 |   if (!CBS_is_valid_asn1_integer(&cbs, &negative_int)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   *negative = !!negative_int; | 
 |   return true; | 
 | } | 
 |  | 
 | bool ParseUint64(Input in, uint64_t *out) { | 
 |   // Reject non-minimally encoded numbers and negative numbers. | 
 |   bool negative; | 
 |   if (!IsValidInteger(in, &negative) || negative) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Reject (non-negative) integers whose value would overflow the output type. | 
 |   if (GetUnsignedIntegerLength(in) > sizeof(*out)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   ByteReader reader(in); | 
 |   uint8_t data; | 
 |   uint64_t value = 0; | 
 |  | 
 |   while (reader.ReadByte(&data)) { | 
 |     value <<= 8; | 
 |     value |= data; | 
 |   } | 
 |   *out = value; | 
 |   return true; | 
 | } | 
 |  | 
 | bool ParseUint8(Input in, uint8_t *out) { | 
 |   // TODO(eroman): Implement this more directly. | 
 |   uint64_t value; | 
 |   if (!ParseUint64(in, &value)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (value > 0xFF) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   *out = static_cast<uint8_t>(value); | 
 |   return true; | 
 | } | 
 |  | 
 | BitString::BitString(Input bytes, uint8_t unused_bits) | 
 |     : bytes_(bytes), unused_bits_(unused_bits) { | 
 |   BSSL_CHECK(unused_bits < 8); | 
 |   BSSL_CHECK(unused_bits == 0 || !bytes.empty()); | 
 |   // The unused bits must be zero. | 
 |   BSSL_CHECK(bytes.empty() || (bytes.back() & ((1u << unused_bits) - 1)) == 0); | 
 | } | 
 |  | 
 | bool BitString::AssertsBit(size_t bit_index) const { | 
 |   // Index of the byte that contains the bit. | 
 |   size_t byte_index = bit_index / 8; | 
 |  | 
 |   // If the bit is outside of the bitstring, by definition it is not | 
 |   // asserted. | 
 |   if (byte_index >= bytes_.size()) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Within a byte, bits are ordered from most significant to least significant. | 
 |   // Convert |bit_index| to an index within the |byte_index| byte, measured from | 
 |   // its least significant bit. | 
 |   uint8_t bit_index_in_byte = 7 - (bit_index - byte_index * 8); | 
 |  | 
 |   // BIT STRING parsing already guarantees that unused bits in a byte are zero | 
 |   // (otherwise it wouldn't be valid DER). Therefore it isn't necessary to check | 
 |   // |unused_bits_| | 
 |   uint8_t byte = bytes_[byte_index]; | 
 |   return 0 != (byte & (1 << bit_index_in_byte)); | 
 | } | 
 |  | 
 | std::optional<BitString> ParseBitString(Input in) { | 
 |   ByteReader reader(in); | 
 |  | 
 |   // From ITU-T X.690, section 8.6.2.2 (applies to BER, CER, DER): | 
 |   // | 
 |   // The initial octet shall encode, as an unsigned binary integer with | 
 |   // bit 1 as the least significant bit, the number of unused bits in the final | 
 |   // subsequent octet. The number shall be in the range zero to seven. | 
 |   uint8_t unused_bits; | 
 |   if (!reader.ReadByte(&unused_bits)) { | 
 |     return std::nullopt; | 
 |   } | 
 |   if (unused_bits > 7) { | 
 |     return std::nullopt; | 
 |   } | 
 |  | 
 |   Input bytes; | 
 |   if (!reader.ReadBytes(reader.BytesLeft(), &bytes)) { | 
 |     return std::nullopt;  // Not reachable. | 
 |   } | 
 |  | 
 |   // Ensure that unused bits in the last byte are set to 0. | 
 |   if (unused_bits > 0) { | 
 |     // From ITU-T X.690, section 8.6.2.3 (applies to BER, CER, DER): | 
 |     // | 
 |     // If the bitstring is empty, there shall be no subsequent octets, | 
 |     // and the initial octet shall be zero. | 
 |     if (bytes.empty()) { | 
 |       return std::nullopt; | 
 |     } | 
 |     uint8_t last_byte = bytes.back(); | 
 |  | 
 |     // From ITU-T X.690, section 11.2.1 (applies to CER and DER, but not BER): | 
 |     // | 
 |     // Each unused bit in the final octet of the encoding of a bit string value | 
 |     // shall be set to zero. | 
 |     uint8_t mask = 0xFF >> (8 - unused_bits); | 
 |     if ((mask & last_byte) != 0) { | 
 |       return std::nullopt; | 
 |     } | 
 |   } | 
 |  | 
 |   return BitString(bytes, unused_bits); | 
 | } | 
 |  | 
 | bool GeneralizedTime::InUTCTimeRange() const { | 
 |   return 1950 <= year && year < 2050; | 
 | } | 
 |  | 
 | bool operator<(const GeneralizedTime &lhs, const GeneralizedTime &rhs) { | 
 |   return std::tie(lhs.year, lhs.month, lhs.day, lhs.hours, lhs.minutes, | 
 |                   lhs.seconds) < std::tie(rhs.year, rhs.month, rhs.day, | 
 |                                           rhs.hours, rhs.minutes, rhs.seconds); | 
 | } | 
 |  | 
 | bool operator>(const GeneralizedTime &lhs, const GeneralizedTime &rhs) { | 
 |   return rhs < lhs; | 
 | } | 
 |  | 
 | bool operator<=(const GeneralizedTime &lhs, const GeneralizedTime &rhs) { | 
 |   return !(lhs > rhs); | 
 | } | 
 |  | 
 | bool operator>=(const GeneralizedTime &lhs, const GeneralizedTime &rhs) { | 
 |   return !(lhs < rhs); | 
 | } | 
 |  | 
 | bool ParseUTCTime(Input in, GeneralizedTime *value) { | 
 |   ByteReader reader(in); | 
 |   GeneralizedTime time; | 
 |   if (!DecimalStringToUint(reader, 2, &time.year) || | 
 |       !DecimalStringToUint(reader, 2, &time.month) || | 
 |       !DecimalStringToUint(reader, 2, &time.day) || | 
 |       !DecimalStringToUint(reader, 2, &time.hours) || | 
 |       !DecimalStringToUint(reader, 2, &time.minutes) || | 
 |       !DecimalStringToUint(reader, 2, &time.seconds)) { | 
 |     return false; | 
 |   } | 
 |   uint8_t zulu; | 
 |   if (!reader.ReadByte(&zulu) || zulu != 'Z' || reader.HasMore()) { | 
 |     return false; | 
 |   } | 
 |   if (time.year < 50) { | 
 |     time.year += 2000; | 
 |   } else { | 
 |     time.year += 1900; | 
 |   } | 
 |   if (!ValidateGeneralizedTime(time)) { | 
 |     return false; | 
 |   } | 
 |   *value = time; | 
 |   return true; | 
 | } | 
 |  | 
 | bool ParseGeneralizedTime(Input in, GeneralizedTime *value) { | 
 |   ByteReader reader(in); | 
 |   GeneralizedTime time; | 
 |   if (!DecimalStringToUint(reader, 4, &time.year) || | 
 |       !DecimalStringToUint(reader, 2, &time.month) || | 
 |       !DecimalStringToUint(reader, 2, &time.day) || | 
 |       !DecimalStringToUint(reader, 2, &time.hours) || | 
 |       !DecimalStringToUint(reader, 2, &time.minutes) || | 
 |       !DecimalStringToUint(reader, 2, &time.seconds)) { | 
 |     return false; | 
 |   } | 
 |   uint8_t zulu; | 
 |   if (!reader.ReadByte(&zulu) || zulu != 'Z' || reader.HasMore()) { | 
 |     return false; | 
 |   } | 
 |   if (!ValidateGeneralizedTime(time)) { | 
 |     return false; | 
 |   } | 
 |   *value = time; | 
 |   return true; | 
 | } | 
 |  | 
 | bool ParseIA5String(Input in, std::string *out) { | 
 |   for (uint8_t c : in) { | 
 |     if (c > 127) { | 
 |       return false; | 
 |     } | 
 |   } | 
 |   *out = BytesAsStringView(in); | 
 |   return true; | 
 | } | 
 |  | 
 | bool ParseVisibleString(Input in, std::string *out) { | 
 |   // ITU-T X.680: | 
 |   // VisibleString : "Defining registration number 6" + SPACE | 
 |   // 6 includes all the characters from '!' .. '~' (33 .. 126), space is 32. | 
 |   // Also ITU-T X.691 says it much more clearly: | 
 |   // "for VisibleString [the range] is 32 to 126 ... For VisibleString .. all | 
 |   // the values in the range are present." | 
 |   for (uint8_t c : in) { | 
 |     if (c < 32 || c > 126) { | 
 |       return false; | 
 |     } | 
 |   } | 
 |   *out = BytesAsStringView(in); | 
 |   return true; | 
 | } | 
 |  | 
 | bool ParsePrintableString(Input in, std::string *out) { | 
 |   for (uint8_t c : in) { | 
 |     if (!(OPENSSL_isalpha(c) || c == ' ' || (c >= '\'' && c <= ':') || | 
 |           c == '=' || c == '?')) { | 
 |       return false; | 
 |     } | 
 |   } | 
 |   *out = BytesAsStringView(in); | 
 |   return true; | 
 | } | 
 |  | 
 | bool ParseTeletexStringAsLatin1(Input in, std::string *out) { | 
 |   out->clear(); | 
 |   // Convert from Latin-1 to UTF-8. | 
 |   size_t utf8_length = in.size(); | 
 |   for (size_t i = 0; i < in.size(); i++) { | 
 |     if (in[i] > 0x7f) { | 
 |       utf8_length++; | 
 |     } | 
 |   } | 
 |   out->reserve(utf8_length); | 
 |   for (size_t i = 0; i < in.size(); i++) { | 
 |     uint8_t u = in[i]; | 
 |     if (u <= 0x7f) { | 
 |       out->push_back(u); | 
 |     } else { | 
 |       out->push_back(0xc0 | (u >> 6)); | 
 |       out->push_back(0x80 | (u & 0x3f)); | 
 |     } | 
 |   } | 
 |   BSSL_CHECK(utf8_length == out->size()); | 
 |   return true; | 
 | } | 
 |  | 
 | bool ParseUniversalString(Input in, std::string *out) { | 
 |   if (in.size() % 4 != 0) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   CBS cbs; | 
 |   CBS_init(&cbs, in.data(), in.size()); | 
 |   bssl::ScopedCBB cbb; | 
 |   if (!CBB_init(cbb.get(), in.size())) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   while (CBS_len(&cbs) != 0) { | 
 |     uint32_t c; | 
 |     if (!CBS_get_utf32_be(&cbs, &c) ||  // | 
 |         !CBB_add_utf8(cbb.get(), c)) { | 
 |       return false; | 
 |     } | 
 |   } | 
 |  | 
 |   out->assign(CBB_data(cbb.get()), CBB_data(cbb.get()) + CBB_len(cbb.get())); | 
 |   return true; | 
 | } | 
 |  | 
 | bool ParseBmpString(Input in, std::string *out) { | 
 |   if (in.size() % 2 != 0) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   CBS cbs; | 
 |   CBS_init(&cbs, in.data(), in.size()); | 
 |   bssl::ScopedCBB cbb; | 
 |   if (!CBB_init(cbb.get(), in.size())) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   while (CBS_len(&cbs) != 0) { | 
 |     uint32_t c; | 
 |     if (!CBS_get_ucs2_be(&cbs, &c) ||  // | 
 |         !CBB_add_utf8(cbb.get(), c)) { | 
 |       return false; | 
 |     } | 
 |   } | 
 |  | 
 |   out->assign(CBB_data(cbb.get()), CBB_data(cbb.get()) + CBB_len(cbb.get())); | 
 |   return true; | 
 | } | 
 |  | 
 | }  // namespace der | 
 | BSSL_NAMESPACE_END |