| // Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. | 
 | // | 
 | // Licensed under the Apache License, Version 2.0 (the "License"); | 
 | // you may not use this file except in compliance with the License. | 
 | // You may obtain a copy of the License at | 
 | // | 
 | //     https://www.apache.org/licenses/LICENSE-2.0 | 
 | // | 
 | // Unless required by applicable law or agreed to in writing, software | 
 | // distributed under the License is distributed on an "AS IS" BASIS, | 
 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 | // See the License for the specific language governing permissions and | 
 | // limitations under the License. | 
 |  | 
 | #include <openssl/base.h> | 
 |  | 
 | #include <limits.h> | 
 |  | 
 | #include <openssl/bn.h> | 
 | #include <openssl/err.h> | 
 | #include <openssl/evp.h> | 
 | #include <openssl/mem.h> | 
 | #include <openssl/rand.h> | 
 | #include <openssl/rsa.h> | 
 |  | 
 | #include "../fipsmodule/bn/internal.h" | 
 | #include "../fipsmodule/rsa/internal.h" | 
 | #include "../internal.h" | 
 | #include "internal.h" | 
 |  | 
 |  | 
 | static void rand_nonzero(uint8_t *out, size_t len) { | 
 |   RAND_bytes(out, len); | 
 |  | 
 |   for (size_t i = 0; i < len; i++) { | 
 |     // Zero values are replaced, and the distribution of zero and non-zero bytes | 
 |     // is public, so leaking this is safe. | 
 |     while (constant_time_declassify_int(out[i] == 0)) { | 
 |       RAND_bytes(out + i, 1); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | int RSA_padding_add_PKCS1_OAEP_mgf1(uint8_t *to, size_t to_len, | 
 |                                     const uint8_t *from, size_t from_len, | 
 |                                     const uint8_t *param, size_t param_len, | 
 |                                     const EVP_MD *md, const EVP_MD *mgf1md) { | 
 |   if (md == NULL) { | 
 |     md = EVP_sha1(); | 
 |   } | 
 |   if (mgf1md == NULL) { | 
 |     mgf1md = md; | 
 |   } | 
 |  | 
 |   size_t mdlen = EVP_MD_size(md); | 
 |  | 
 |   if (to_len < 2 * mdlen + 2) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   size_t emlen = to_len - 1; | 
 |   if (from_len > emlen - 2 * mdlen - 1) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (emlen < 2 * mdlen + 1) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   to[0] = 0; | 
 |   uint8_t *seed = to + 1; | 
 |   uint8_t *db = to + mdlen + 1; | 
 |  | 
 |   uint8_t *dbmask = NULL; | 
 |   int ret = 0; | 
 |   if (!EVP_Digest(param, param_len, db, NULL, md, NULL)) { | 
 |     goto out; | 
 |   } | 
 |   OPENSSL_memset(db + mdlen, 0, emlen - from_len - 2 * mdlen - 1); | 
 |   db[emlen - from_len - mdlen - 1] = 0x01; | 
 |   OPENSSL_memcpy(db + emlen - from_len - mdlen, from, from_len); | 
 |   if (!RAND_bytes(seed, mdlen)) { | 
 |     goto out; | 
 |   } | 
 |  | 
 |   dbmask = reinterpret_cast<uint8_t *>(OPENSSL_malloc(emlen - mdlen)); | 
 |   if (dbmask == NULL) { | 
 |     goto out; | 
 |   } | 
 |  | 
 |   if (!PKCS1_MGF1(dbmask, emlen - mdlen, seed, mdlen, mgf1md)) { | 
 |     goto out; | 
 |   } | 
 |   for (size_t i = 0; i < emlen - mdlen; i++) { | 
 |     db[i] ^= dbmask[i]; | 
 |   } | 
 |  | 
 |   uint8_t seedmask[EVP_MAX_MD_SIZE]; | 
 |   if (!PKCS1_MGF1(seedmask, mdlen, db, emlen - mdlen, mgf1md)) { | 
 |     goto out; | 
 |   } | 
 |   for (size_t i = 0; i < mdlen; i++) { | 
 |     seed[i] ^= seedmask[i]; | 
 |   } | 
 |   ret = 1; | 
 |  | 
 | out: | 
 |   OPENSSL_free(dbmask); | 
 |   return ret; | 
 | } | 
 |  | 
 | int RSA_padding_check_PKCS1_OAEP_mgf1(uint8_t *out, size_t *out_len, | 
 |                                       size_t max_out, const uint8_t *from, | 
 |                                       size_t from_len, const uint8_t *param, | 
 |                                       size_t param_len, const EVP_MD *md, | 
 |                                       const EVP_MD *mgf1md) { | 
 |   uint8_t *db = NULL; | 
 |  | 
 |   { | 
 |     if (md == NULL) { | 
 |       md = EVP_sha1(); | 
 |     } | 
 |     if (mgf1md == NULL) { | 
 |       mgf1md = md; | 
 |     } | 
 |  | 
 |     size_t mdlen = EVP_MD_size(md); | 
 |  | 
 |     // The encoded message is one byte smaller than the modulus to ensure that | 
 |     // it doesn't end up greater than the modulus. Thus there's an extra "+1" | 
 |     // here compared to https://tools.ietf.org/html/rfc2437#section-9.1.1.2. | 
 |     if (from_len < 1 + 2 * mdlen + 1) { | 
 |       // 'from_len' is the length of the modulus, i.e. does not depend on the | 
 |       // particular ciphertext. | 
 |       goto decoding_err; | 
 |     } | 
 |  | 
 |     size_t dblen = from_len - mdlen - 1; | 
 |     db = reinterpret_cast<uint8_t *>(OPENSSL_malloc(dblen)); | 
 |     if (db == NULL) { | 
 |       goto err; | 
 |     } | 
 |  | 
 |     const uint8_t *maskedseed = from + 1; | 
 |     const uint8_t *maskeddb = from + 1 + mdlen; | 
 |  | 
 |     uint8_t seed[EVP_MAX_MD_SIZE]; | 
 |     if (!PKCS1_MGF1(seed, mdlen, maskeddb, dblen, mgf1md)) { | 
 |       goto err; | 
 |     } | 
 |     for (size_t i = 0; i < mdlen; i++) { | 
 |       seed[i] ^= maskedseed[i]; | 
 |     } | 
 |  | 
 |     if (!PKCS1_MGF1(db, dblen, seed, mdlen, mgf1md)) { | 
 |       goto err; | 
 |     } | 
 |     for (size_t i = 0; i < dblen; i++) { | 
 |       db[i] ^= maskeddb[i]; | 
 |     } | 
 |  | 
 |     uint8_t phash[EVP_MAX_MD_SIZE]; | 
 |     if (!EVP_Digest(param, param_len, phash, NULL, md, NULL)) { | 
 |       goto err; | 
 |     } | 
 |  | 
 |     crypto_word_t bad = | 
 |         ~constant_time_is_zero_w(CRYPTO_memcmp(db, phash, mdlen)); | 
 |     bad |= ~constant_time_is_zero_w(from[0]); | 
 |  | 
 |     crypto_word_t looking_for_one_byte = CONSTTIME_TRUE_W; | 
 |     size_t one_index = 0; | 
 |     for (size_t i = mdlen; i < dblen; i++) { | 
 |       crypto_word_t equals1 = constant_time_eq_w(db[i], 1); | 
 |       crypto_word_t equals0 = constant_time_eq_w(db[i], 0); | 
 |       one_index = | 
 |           constant_time_select_w(looking_for_one_byte & equals1, i, one_index); | 
 |       looking_for_one_byte = | 
 |           constant_time_select_w(equals1, 0, looking_for_one_byte); | 
 |       bad |= looking_for_one_byte & ~equals0; | 
 |     } | 
 |  | 
 |     bad |= looking_for_one_byte; | 
 |  | 
 |     // Whether the overall padding was valid or not in OAEP is public. | 
 |     if (constant_time_declassify_w(bad)) { | 
 |       goto decoding_err; | 
 |     } | 
 |  | 
 |     // Once the padding is known to be valid, the output length is also public. | 
 |     static_assert(sizeof(size_t) <= sizeof(crypto_word_t), | 
 |                   "size_t does not fit in crypto_word_t"); | 
 |     one_index = constant_time_declassify_w(one_index); | 
 |  | 
 |     one_index++; | 
 |     size_t mlen = dblen - one_index; | 
 |     if (max_out < mlen) { | 
 |       OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE); | 
 |       goto err; | 
 |     } | 
 |  | 
 |     OPENSSL_memcpy(out, db + one_index, mlen); | 
 |     *out_len = mlen; | 
 |     OPENSSL_free(db); | 
 |     return 1; | 
 |   } | 
 |  | 
 | decoding_err: | 
 |   // To avoid chosen ciphertext attacks, the error message should not reveal | 
 |   // which kind of decoding error happened. | 
 |   OPENSSL_PUT_ERROR(RSA, RSA_R_OAEP_DECODING_ERROR); | 
 | err: | 
 |   OPENSSL_free(db); | 
 |   return 0; | 
 | } | 
 |  | 
 | static int rsa_padding_add_PKCS1_type_2(uint8_t *to, size_t to_len, | 
 |                                         const uint8_t *from, size_t from_len) { | 
 |   // See RFC 8017, section 7.2.1. | 
 |   if (to_len < RSA_PKCS1_PADDING_SIZE) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (from_len > to_len - RSA_PKCS1_PADDING_SIZE) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   to[0] = 0; | 
 |   to[1] = 2; | 
 |  | 
 |   size_t padding_len = to_len - 3 - from_len; | 
 |   rand_nonzero(to + 2, padding_len); | 
 |   to[2 + padding_len] = 0; | 
 |   OPENSSL_memcpy(to + to_len - from_len, from, from_len); | 
 |   return 1; | 
 | } | 
 |  | 
 | static int rsa_padding_check_PKCS1_type_2(uint8_t *out, size_t *out_len, | 
 |                                           size_t max_out, const uint8_t *from, | 
 |                                           size_t from_len) { | 
 |   if (from_len == 0) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_EMPTY_PUBLIC_KEY); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // PKCS#1 v1.5 decryption. See "PKCS #1 v2.2: RSA Cryptography | 
 |   // Standard", section 7.2.2. | 
 |   if (from_len < RSA_PKCS1_PADDING_SIZE) { | 
 |     // |from| is zero-padded to the size of the RSA modulus, a public value, so | 
 |     // this can be rejected in non-constant time. | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   crypto_word_t first_byte_is_zero = constant_time_eq_w(from[0], 0); | 
 |   crypto_word_t second_byte_is_two = constant_time_eq_w(from[1], 2); | 
 |  | 
 |   crypto_word_t zero_index = 0, looking_for_index = CONSTTIME_TRUE_W; | 
 |   for (size_t i = 2; i < from_len; i++) { | 
 |     crypto_word_t equals0 = constant_time_is_zero_w(from[i]); | 
 |     zero_index = | 
 |         constant_time_select_w(looking_for_index & equals0, i, zero_index); | 
 |     looking_for_index = constant_time_select_w(equals0, 0, looking_for_index); | 
 |   } | 
 |  | 
 |   // The input must begin with 00 02. | 
 |   crypto_word_t valid_index = first_byte_is_zero; | 
 |   valid_index &= second_byte_is_two; | 
 |  | 
 |   // We must have found the end of PS. | 
 |   valid_index &= ~looking_for_index; | 
 |  | 
 |   // PS must be at least 8 bytes long, and it starts two bytes into |from|. | 
 |   valid_index &= constant_time_ge_w(zero_index, 2 + 8); | 
 |  | 
 |   // Skip the zero byte. | 
 |   zero_index++; | 
 |  | 
 |   // NOTE: Although this logic attempts to be constant time, the API contracts | 
 |   // of this function and |RSA_decrypt| with |RSA_PKCS1_PADDING| make it | 
 |   // impossible to completely avoid Bleichenbacher's attack. Consumers should | 
 |   // use |RSA_PADDING_NONE| and perform the padding check in constant-time | 
 |   // combined with a swap to a random session key or other mitigation. | 
 |   CONSTTIME_DECLASSIFY(&valid_index, sizeof(valid_index)); | 
 |   CONSTTIME_DECLASSIFY(&zero_index, sizeof(zero_index)); | 
 |  | 
 |   if (!valid_index) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_PKCS_DECODING_ERROR); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   const size_t msg_len = from_len - zero_index; | 
 |   if (msg_len > max_out) { | 
 |     // This shouldn't happen because this function is always called with | 
 |     // |max_out| as the key size and |from_len| is bounded by the key size. | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_PKCS_DECODING_ERROR); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   OPENSSL_memcpy(out, &from[zero_index], msg_len); | 
 |   *out_len = msg_len; | 
 |   return 1; | 
 | } | 
 |  | 
 | int RSA_public_encrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, | 
 |                        int padding) { | 
 |   size_t out_len; | 
 |  | 
 |   if (!RSA_encrypt(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) { | 
 |     return -1; | 
 |   } | 
 |  | 
 |   if (out_len > INT_MAX) { | 
 |     OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); | 
 |     return -1; | 
 |   } | 
 |   return (int)out_len; | 
 | } | 
 |  | 
 | int RSA_private_encrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, | 
 |                         int padding) { | 
 |   size_t out_len; | 
 |  | 
 |   if (!RSA_sign_raw(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) { | 
 |     return -1; | 
 |   } | 
 |  | 
 |   if (out_len > INT_MAX) { | 
 |     OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); | 
 |     return -1; | 
 |   } | 
 |   return (int)out_len; | 
 | } | 
 |  | 
 | int RSA_encrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, | 
 |                 const uint8_t *in, size_t in_len, int padding) { | 
 |   if (rsa->n == NULL || rsa->e == NULL) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (!rsa_check_public_key(rsa)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   const unsigned rsa_size = RSA_size(rsa); | 
 |   if (max_out < rsa_size) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new()); | 
 |   if (ctx == nullptr) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   bssl::BN_CTXScope scope(ctx.get()); | 
 |   BIGNUM *f = BN_CTX_get(ctx.get()); | 
 |   BIGNUM *result = BN_CTX_get(ctx.get()); | 
 |   uint8_t *buf = reinterpret_cast<uint8_t *>(OPENSSL_malloc(rsa_size)); | 
 |   int i, ret = 0; | 
 |   if (!f || !result || !buf) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   switch (padding) { | 
 |     case RSA_PKCS1_PADDING: | 
 |       i = rsa_padding_add_PKCS1_type_2(buf, rsa_size, in, in_len); | 
 |       break; | 
 |     case RSA_PKCS1_OAEP_PADDING: | 
 |       // Use the default parameters: SHA-1 for both hashes and no label. | 
 |       i = RSA_padding_add_PKCS1_OAEP_mgf1(buf, rsa_size, in, in_len, nullptr, 0, | 
 |                                           nullptr, nullptr); | 
 |       break; | 
 |     case RSA_NO_PADDING: | 
 |       i = RSA_padding_add_none(buf, rsa_size, in, in_len); | 
 |       break; | 
 |     default: | 
 |       OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE); | 
 |       goto err; | 
 |   } | 
 |  | 
 |   if (i <= 0) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   if (BN_bin2bn(buf, rsa_size, f) == nullptr) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   if (BN_ucmp(f, rsa->n) >= 0) { | 
 |     // usually the padding functions would catch this | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   if (!BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx.get()) || | 
 |       !BN_mod_exp_mont(result, f, rsa->e, &rsa->mont_n->N, ctx.get(), | 
 |                        rsa->mont_n)) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   // put in leading 0 bytes if the number is less than the length of the | 
 |   // modulus | 
 |   if (!BN_bn2bin_padded(out, rsa_size, result)) { | 
 |     OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   *out_len = rsa_size; | 
 |   ret = 1; | 
 |  | 
 | err: | 
 |   OPENSSL_free(buf); | 
 |   return ret; | 
 | } | 
 |  | 
 | static int rsa_default_decrypt(RSA *rsa, size_t *out_len, uint8_t *out, | 
 |                                size_t max_out, const uint8_t *in, size_t in_len, | 
 |                                int padding) { | 
 |   const unsigned rsa_size = RSA_size(rsa); | 
 |   uint8_t *buf = NULL; | 
 |   int ret = 0; | 
 |  | 
 |   if (max_out < rsa_size) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (padding == RSA_NO_PADDING) { | 
 |     buf = out; | 
 |   } else { | 
 |     // Allocate a temporary buffer to hold the padded plaintext. | 
 |     buf = reinterpret_cast<uint8_t *>(OPENSSL_malloc(rsa_size)); | 
 |     if (buf == NULL) { | 
 |       goto err; | 
 |     } | 
 |   } | 
 |  | 
 |   if (in_len != rsa_size) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_LEN_NOT_EQUAL_TO_MOD_LEN); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   if (!rsa_private_transform(rsa, buf, in, rsa_size)) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   switch (padding) { | 
 |     case RSA_PKCS1_PADDING: | 
 |       ret = | 
 |           rsa_padding_check_PKCS1_type_2(out, out_len, rsa_size, buf, rsa_size); | 
 |       break; | 
 |     case RSA_PKCS1_OAEP_PADDING: | 
 |       // Use the default parameters: SHA-1 for both hashes and no label. | 
 |       ret = RSA_padding_check_PKCS1_OAEP_mgf1(out, out_len, rsa_size, buf, | 
 |                                               rsa_size, NULL, 0, NULL, NULL); | 
 |       break; | 
 |     case RSA_NO_PADDING: | 
 |       *out_len = rsa_size; | 
 |       ret = 1; | 
 |       break; | 
 |     default: | 
 |       OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE); | 
 |       goto err; | 
 |   } | 
 |  | 
 |   CONSTTIME_DECLASSIFY(&ret, sizeof(ret)); | 
 |   if (!ret) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_PADDING_CHECK_FAILED); | 
 |   } else { | 
 |     CONSTTIME_DECLASSIFY(out, *out_len); | 
 |   } | 
 |  | 
 | err: | 
 |   if (padding != RSA_NO_PADDING) { | 
 |     OPENSSL_free(buf); | 
 |   } | 
 |  | 
 |   return ret; | 
 | } | 
 |  | 
 | int RSA_decrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, | 
 |                 const uint8_t *in, size_t in_len, int padding) { | 
 |   if (rsa->meth->decrypt) { | 
 |     return rsa->meth->decrypt(rsa, out_len, out, max_out, in, in_len, padding); | 
 |   } | 
 |  | 
 |   return rsa_default_decrypt(rsa, out_len, out, max_out, in, in_len, padding); | 
 | } | 
 |  | 
 | int RSA_private_decrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, | 
 |                         int padding) { | 
 |   size_t out_len; | 
 |   if (!RSA_decrypt(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) { | 
 |     return -1; | 
 |   } | 
 |  | 
 |   if (out_len > INT_MAX) { | 
 |     OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); | 
 |     return -1; | 
 |   } | 
 |   return (int)out_len; | 
 | } | 
 |  | 
 | int RSA_public_decrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, | 
 |                        int padding) { | 
 |   size_t out_len; | 
 |   if (!RSA_verify_raw(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) { | 
 |     return -1; | 
 |   } | 
 |  | 
 |   if (out_len > INT_MAX) { | 
 |     OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); | 
 |     return -1; | 
 |   } | 
 |   return (int)out_len; | 
 | } |