| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] */ |
| |
| #include <openssl/cipher.h> |
| #include <openssl/nid.h> |
| |
| |
| #define c2l(c, l) \ |
| do { \ |
| (l) = ((uint32_t)(*((c)++))); \ |
| (l) |= ((uint32_t)(*((c)++))) << 8L; \ |
| (l) |= ((uint32_t)(*((c)++))) << 16L; \ |
| (l) |= ((uint32_t)(*((c)++))) << 24L; \ |
| } while (0) |
| |
| #define c2ln(c, l1, l2, n) \ |
| do { \ |
| (c) += (n); \ |
| (l1) = (l2) = 0; \ |
| switch (n) { \ |
| case 8: \ |
| (l2) = ((uint32_t)(*(--(c)))) << 24L; \ |
| OPENSSL_FALLTHROUGH; \ |
| case 7: \ |
| (l2) |= ((uint32_t)(*(--(c)))) << 16L; \ |
| OPENSSL_FALLTHROUGH; \ |
| case 6: \ |
| (l2) |= ((uint32_t)(*(--(c)))) << 8L; \ |
| OPENSSL_FALLTHROUGH; \ |
| case 5: \ |
| (l2) |= ((uint32_t)(*(--(c)))); \ |
| OPENSSL_FALLTHROUGH; \ |
| case 4: \ |
| (l1) = ((uint32_t)(*(--(c)))) << 24L; \ |
| OPENSSL_FALLTHROUGH; \ |
| case 3: \ |
| (l1) |= ((uint32_t)(*(--(c)))) << 16L; \ |
| OPENSSL_FALLTHROUGH; \ |
| case 2: \ |
| (l1) |= ((uint32_t)(*(--(c)))) << 8L; \ |
| OPENSSL_FALLTHROUGH; \ |
| case 1: \ |
| (l1) |= ((uint32_t)(*(--(c)))); \ |
| } \ |
| } while (0) |
| |
| #define l2c(l, c) \ |
| do { \ |
| *((c)++) = (uint8_t)(((l)) & 0xff); \ |
| *((c)++) = (uint8_t)(((l) >> 8L) & 0xff); \ |
| *((c)++) = (uint8_t)(((l) >> 16L) & 0xff); \ |
| *((c)++) = (uint8_t)(((l) >> 24L) & 0xff); \ |
| } while (0) |
| |
| #define l2cn(l1, l2, c, n) \ |
| do { \ |
| (c) += (n); \ |
| switch (n) { \ |
| case 8: \ |
| *(--(c)) = (uint8_t)(((l2) >> 24L) & 0xff); \ |
| OPENSSL_FALLTHROUGH; \ |
| case 7: \ |
| *(--(c)) = (uint8_t)(((l2) >> 16L) & 0xff); \ |
| OPENSSL_FALLTHROUGH; \ |
| case 6: \ |
| *(--(c)) = (uint8_t)(((l2) >> 8L) & 0xff); \ |
| OPENSSL_FALLTHROUGH; \ |
| case 5: \ |
| *(--(c)) = (uint8_t)(((l2)) & 0xff); \ |
| OPENSSL_FALLTHROUGH; \ |
| case 4: \ |
| *(--(c)) = (uint8_t)(((l1) >> 24L) & 0xff); \ |
| OPENSSL_FALLTHROUGH; \ |
| case 3: \ |
| *(--(c)) = (uint8_t)(((l1) >> 16L) & 0xff); \ |
| OPENSSL_FALLTHROUGH; \ |
| case 2: \ |
| *(--(c)) = (uint8_t)(((l1) >> 8L) & 0xff); \ |
| OPENSSL_FALLTHROUGH; \ |
| case 1: \ |
| *(--(c)) = (uint8_t)(((l1)) & 0xff); \ |
| } \ |
| } while (0) |
| |
| typedef struct rc2_key_st { uint16_t data[64]; } RC2_KEY; |
| |
| static void RC2_encrypt(uint32_t *d, RC2_KEY *key) { |
| int i, n; |
| uint16_t *p0, *p1; |
| uint16_t x0, x1, x2, x3, t; |
| uint32_t l; |
| |
| l = d[0]; |
| x0 = (uint16_t)l & 0xffff; |
| x1 = (uint16_t)(l >> 16L); |
| l = d[1]; |
| x2 = (uint16_t)l & 0xffff; |
| x3 = (uint16_t)(l >> 16L); |
| |
| n = 3; |
| i = 5; |
| |
| p0 = p1 = &key->data[0]; |
| for (;;) { |
| t = (x0 + (x1 & ~x3) + (x2 & x3) + *(p0++)) & 0xffff; |
| x0 = (t << 1) | (t >> 15); |
| t = (x1 + (x2 & ~x0) + (x3 & x0) + *(p0++)) & 0xffff; |
| x1 = (t << 2) | (t >> 14); |
| t = (x2 + (x3 & ~x1) + (x0 & x1) + *(p0++)) & 0xffff; |
| x2 = (t << 3) | (t >> 13); |
| t = (x3 + (x0 & ~x2) + (x1 & x2) + *(p0++)) & 0xffff; |
| x3 = (t << 5) | (t >> 11); |
| |
| if (--i == 0) { |
| if (--n == 0) { |
| break; |
| } |
| i = (n == 2) ? 6 : 5; |
| |
| x0 += p1[x3 & 0x3f]; |
| x1 += p1[x0 & 0x3f]; |
| x2 += p1[x1 & 0x3f]; |
| x3 += p1[x2 & 0x3f]; |
| } |
| } |
| |
| d[0] = (uint32_t)(x0 & 0xffff) | ((uint32_t)(x1 & 0xffff) << 16L); |
| d[1] = (uint32_t)(x2 & 0xffff) | ((uint32_t)(x3 & 0xffff) << 16L); |
| } |
| |
| static void RC2_decrypt(uint32_t *d, RC2_KEY *key) { |
| int i, n; |
| uint16_t *p0, *p1; |
| uint16_t x0, x1, x2, x3, t; |
| uint32_t l; |
| |
| l = d[0]; |
| x0 = (uint16_t)l & 0xffff; |
| x1 = (uint16_t)(l >> 16L); |
| l = d[1]; |
| x2 = (uint16_t)l & 0xffff; |
| x3 = (uint16_t)(l >> 16L); |
| |
| n = 3; |
| i = 5; |
| |
| p0 = &key->data[63]; |
| p1 = &key->data[0]; |
| for (;;) { |
| t = ((x3 << 11) | (x3 >> 5)) & 0xffff; |
| x3 = (t - (x0 & ~x2) - (x1 & x2) - *(p0--)) & 0xffff; |
| t = ((x2 << 13) | (x2 >> 3)) & 0xffff; |
| x2 = (t - (x3 & ~x1) - (x0 & x1) - *(p0--)) & 0xffff; |
| t = ((x1 << 14) | (x1 >> 2)) & 0xffff; |
| x1 = (t - (x2 & ~x0) - (x3 & x0) - *(p0--)) & 0xffff; |
| t = ((x0 << 15) | (x0 >> 1)) & 0xffff; |
| x0 = (t - (x1 & ~x3) - (x2 & x3) - *(p0--)) & 0xffff; |
| |
| if (--i == 0) { |
| if (--n == 0) { |
| break; |
| } |
| i = (n == 2) ? 6 : 5; |
| |
| x3 = (x3 - p1[x2 & 0x3f]) & 0xffff; |
| x2 = (x2 - p1[x1 & 0x3f]) & 0xffff; |
| x1 = (x1 - p1[x0 & 0x3f]) & 0xffff; |
| x0 = (x0 - p1[x3 & 0x3f]) & 0xffff; |
| } |
| } |
| |
| d[0] = (uint32_t)(x0 & 0xffff) | ((uint32_t)(x1 & 0xffff) << 16L); |
| d[1] = (uint32_t)(x2 & 0xffff) | ((uint32_t)(x3 & 0xffff) << 16L); |
| } |
| |
| static void RC2_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, |
| RC2_KEY *ks, uint8_t *iv, int encrypt) { |
| uint32_t tin0, tin1; |
| uint32_t tout0, tout1, xor0, xor1; |
| long l = length; |
| uint32_t tin[2]; |
| |
| if (encrypt) { |
| c2l(iv, tout0); |
| c2l(iv, tout1); |
| iv -= 8; |
| for (l -= 8; l >= 0; l -= 8) { |
| c2l(in, tin0); |
| c2l(in, tin1); |
| tin0 ^= tout0; |
| tin1 ^= tout1; |
| tin[0] = tin0; |
| tin[1] = tin1; |
| RC2_encrypt(tin, ks); |
| tout0 = tin[0]; |
| l2c(tout0, out); |
| tout1 = tin[1]; |
| l2c(tout1, out); |
| } |
| if (l != -8) { |
| c2ln(in, tin0, tin1, l + 8); |
| tin0 ^= tout0; |
| tin1 ^= tout1; |
| tin[0] = tin0; |
| tin[1] = tin1; |
| RC2_encrypt(tin, ks); |
| tout0 = tin[0]; |
| l2c(tout0, out); |
| tout1 = tin[1]; |
| l2c(tout1, out); |
| } |
| l2c(tout0, iv); |
| l2c(tout1, iv); |
| } else { |
| c2l(iv, xor0); |
| c2l(iv, xor1); |
| iv -= 8; |
| for (l -= 8; l >= 0; l -= 8) { |
| c2l(in, tin0); |
| tin[0] = tin0; |
| c2l(in, tin1); |
| tin[1] = tin1; |
| RC2_decrypt(tin, ks); |
| tout0 = tin[0] ^ xor0; |
| tout1 = tin[1] ^ xor1; |
| l2c(tout0, out); |
| l2c(tout1, out); |
| xor0 = tin0; |
| xor1 = tin1; |
| } |
| if (l != -8) { |
| c2l(in, tin0); |
| tin[0] = tin0; |
| c2l(in, tin1); |
| tin[1] = tin1; |
| RC2_decrypt(tin, ks); |
| tout0 = tin[0] ^ xor0; |
| tout1 = tin[1] ^ xor1; |
| l2cn(tout0, tout1, out, l + 8); |
| xor0 = tin0; |
| xor1 = tin1; |
| } |
| l2c(xor0, iv); |
| l2c(xor1, iv); |
| } |
| tin[0] = tin[1] = 0; |
| } |
| |
| static const uint8_t key_table[256] = { |
| 0xd9, 0x78, 0xf9, 0xc4, 0x19, 0xdd, 0xb5, 0xed, 0x28, 0xe9, 0xfd, 0x79, |
| 0x4a, 0xa0, 0xd8, 0x9d, 0xc6, 0x7e, 0x37, 0x83, 0x2b, 0x76, 0x53, 0x8e, |
| 0x62, 0x4c, 0x64, 0x88, 0x44, 0x8b, 0xfb, 0xa2, 0x17, 0x9a, 0x59, 0xf5, |
| 0x87, 0xb3, 0x4f, 0x13, 0x61, 0x45, 0x6d, 0x8d, 0x09, 0x81, 0x7d, 0x32, |
| 0xbd, 0x8f, 0x40, 0xeb, 0x86, 0xb7, 0x7b, 0x0b, 0xf0, 0x95, 0x21, 0x22, |
| 0x5c, 0x6b, 0x4e, 0x82, 0x54, 0xd6, 0x65, 0x93, 0xce, 0x60, 0xb2, 0x1c, |
| 0x73, 0x56, 0xc0, 0x14, 0xa7, 0x8c, 0xf1, 0xdc, 0x12, 0x75, 0xca, 0x1f, |
| 0x3b, 0xbe, 0xe4, 0xd1, 0x42, 0x3d, 0xd4, 0x30, 0xa3, 0x3c, 0xb6, 0x26, |
| 0x6f, 0xbf, 0x0e, 0xda, 0x46, 0x69, 0x07, 0x57, 0x27, 0xf2, 0x1d, 0x9b, |
| 0xbc, 0x94, 0x43, 0x03, 0xf8, 0x11, 0xc7, 0xf6, 0x90, 0xef, 0x3e, 0xe7, |
| 0x06, 0xc3, 0xd5, 0x2f, 0xc8, 0x66, 0x1e, 0xd7, 0x08, 0xe8, 0xea, 0xde, |
| 0x80, 0x52, 0xee, 0xf7, 0x84, 0xaa, 0x72, 0xac, 0x35, 0x4d, 0x6a, 0x2a, |
| 0x96, 0x1a, 0xd2, 0x71, 0x5a, 0x15, 0x49, 0x74, 0x4b, 0x9f, 0xd0, 0x5e, |
| 0x04, 0x18, 0xa4, 0xec, 0xc2, 0xe0, 0x41, 0x6e, 0x0f, 0x51, 0xcb, 0xcc, |
| 0x24, 0x91, 0xaf, 0x50, 0xa1, 0xf4, 0x70, 0x39, 0x99, 0x7c, 0x3a, 0x85, |
| 0x23, 0xb8, 0xb4, 0x7a, 0xfc, 0x02, 0x36, 0x5b, 0x25, 0x55, 0x97, 0x31, |
| 0x2d, 0x5d, 0xfa, 0x98, 0xe3, 0x8a, 0x92, 0xae, 0x05, 0xdf, 0x29, 0x10, |
| 0x67, 0x6c, 0xba, 0xc9, 0xd3, 0x00, 0xe6, 0xcf, 0xe1, 0x9e, 0xa8, 0x2c, |
| 0x63, 0x16, 0x01, 0x3f, 0x58, 0xe2, 0x89, 0xa9, 0x0d, 0x38, 0x34, 0x1b, |
| 0xab, 0x33, 0xff, 0xb0, 0xbb, 0x48, 0x0c, 0x5f, 0xb9, 0xb1, 0xcd, 0x2e, |
| 0xc5, 0xf3, 0xdb, 0x47, 0xe5, 0xa5, 0x9c, 0x77, 0x0a, 0xa6, 0x20, 0x68, |
| 0xfe, 0x7f, 0xc1, 0xad, |
| }; |
| |
| static void RC2_set_key(RC2_KEY *key, int len, const uint8_t *data, int bits) { |
| int i, j; |
| uint8_t *k; |
| uint16_t *ki; |
| unsigned int c, d; |
| |
| k = (uint8_t *)&key->data[0]; |
| *k = 0; // for if there is a zero length key |
| |
| if (len > 128) { |
| len = 128; |
| } |
| if (bits <= 0) { |
| bits = 1024; |
| } |
| if (bits > 1024) { |
| bits = 1024; |
| } |
| |
| for (i = 0; i < len; i++) { |
| k[i] = data[i]; |
| } |
| |
| // expand table |
| d = k[len - 1]; |
| j = 0; |
| for (i = len; i < 128; i++, j++) { |
| d = key_table[(k[j] + d) & 0xff]; |
| k[i] = d; |
| } |
| |
| // hmm.... key reduction to 'bits' bits |
| |
| j = (bits + 7) >> 3; |
| i = 128 - j; |
| c = (0xff >> (-bits & 0x07)); |
| |
| d = key_table[k[i] & c]; |
| k[i] = d; |
| while (i--) { |
| d = key_table[k[i + j] ^ d]; |
| k[i] = d; |
| } |
| |
| // copy from bytes into uint16_t's |
| ki = &(key->data[63]); |
| for (i = 127; i >= 0; i -= 2) { |
| *(ki--) = ((k[i] << 8) | k[i - 1]) & 0xffff; |
| } |
| } |
| |
| typedef struct { |
| int key_bits; // effective key bits |
| RC2_KEY ks; // key schedule |
| } EVP_RC2_KEY; |
| |
| static int rc2_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key, |
| const uint8_t *iv, int enc) { |
| EVP_RC2_KEY *rc2_key = (EVP_RC2_KEY *)ctx->cipher_data; |
| RC2_set_key(&rc2_key->ks, EVP_CIPHER_CTX_key_length(ctx), key, |
| rc2_key->key_bits); |
| return 1; |
| } |
| |
| static int rc2_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, |
| size_t inl) { |
| EVP_RC2_KEY *key = (EVP_RC2_KEY *)ctx->cipher_data; |
| static const size_t kChunkSize = 0x10000; |
| |
| while (inl >= kChunkSize) { |
| RC2_cbc_encrypt(in, out, kChunkSize, &key->ks, ctx->iv, ctx->encrypt); |
| inl -= kChunkSize; |
| in += kChunkSize; |
| out += kChunkSize; |
| } |
| if (inl) { |
| RC2_cbc_encrypt(in, out, inl, &key->ks, ctx->iv, ctx->encrypt); |
| } |
| return 1; |
| } |
| |
| static int rc2_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr) { |
| EVP_RC2_KEY *key = (EVP_RC2_KEY *)ctx->cipher_data; |
| |
| switch (type) { |
| case EVP_CTRL_INIT: |
| key->key_bits = EVP_CIPHER_CTX_key_length(ctx) * 8; |
| return 1; |
| case EVP_CTRL_SET_RC2_KEY_BITS: |
| // Should be overridden by later call to |EVP_CTRL_INIT|, but |
| // people call it, so it may as well work. |
| key->key_bits = arg; |
| return 1; |
| |
| default: |
| return -1; |
| } |
| } |
| |
| static const EVP_CIPHER rc2_40_cbc = { |
| NID_rc2_40_cbc, |
| 8 /* block size */, |
| 5 /* 40 bit */, |
| 8 /* iv len */, |
| sizeof(EVP_RC2_KEY), |
| EVP_CIPH_CBC_MODE | EVP_CIPH_VARIABLE_LENGTH | EVP_CIPH_CTRL_INIT, |
| NULL /* app_data */, |
| rc2_init_key, |
| rc2_cbc_cipher, |
| NULL, |
| rc2_ctrl, |
| }; |
| |
| const EVP_CIPHER *EVP_rc2_40_cbc(void) { |
| return &rc2_40_cbc; |
| } |
| |
| static const EVP_CIPHER rc2_cbc = { |
| NID_rc2_cbc, |
| 8 /* block size */, |
| 16 /* 128 bit */, |
| 8 /* iv len */, |
| sizeof(EVP_RC2_KEY), |
| EVP_CIPH_CBC_MODE | EVP_CIPH_VARIABLE_LENGTH | EVP_CIPH_CTRL_INIT, |
| NULL /* app_data */, |
| rc2_init_key, |
| rc2_cbc_cipher, |
| NULL, |
| rc2_ctrl, |
| }; |
| |
| const EVP_CIPHER *EVP_rc2_cbc(void) { |
| return &rc2_cbc; |
| } |