|  | // Copyright 2025 The BoringSSL Authors | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #ifndef OPENSSL_HEADER_CRYPTO_MEM_INTERNAL_H | 
|  | #define OPENSSL_HEADER_CRYPTO_MEM_INTERNAL_H | 
|  |  | 
|  | #include <openssl/mem.h> | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <memory> | 
|  | #include <type_traits> | 
|  | #include <utility> | 
|  |  | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/span.h> | 
|  |  | 
|  |  | 
|  | BSSL_NAMESPACE_BEGIN | 
|  |  | 
|  | // Internal allocation-dependent functions. | 
|  | // | 
|  | // This header is separate from crypto/internal.h because there are some files | 
|  | // which must avoid |OPENSSL_malloc|, to avoid a circular dependency, but | 
|  | // need other support routines in crypto/internal.h. (See | 
|  | // |_BORINGSSL_PROHIBIT_OPENSSL_MALLOC|.) | 
|  |  | 
|  |  | 
|  | // Memory allocation. | 
|  |  | 
|  | // New behaves like |new| but uses |OPENSSL_malloc| for memory allocation. It | 
|  | // returns nullptr on allocation error. It only implements single-object | 
|  | // allocation and not new T[n]. | 
|  | // | 
|  | // Note: unlike |new|, this does not support non-public constructors. | 
|  | template <typename T, typename... Args> | 
|  | T *New(Args &&...args) { | 
|  | void *t = OPENSSL_malloc(sizeof(T)); | 
|  | if (t == nullptr) { | 
|  | return nullptr; | 
|  | } | 
|  | return new (t) T(std::forward<Args>(args)...); | 
|  | } | 
|  |  | 
|  | // Delete behaves like |delete| but uses |OPENSSL_free| to release memory. | 
|  | // | 
|  | // Note: unlike |delete| this does not support non-public destructors. | 
|  | template <typename T> | 
|  | void Delete(T *t) { | 
|  | if (t != nullptr) { | 
|  | t->~T(); | 
|  | OPENSSL_free(t); | 
|  | } | 
|  | } | 
|  |  | 
|  | // All types with kAllowUniquePtr set may be used with UniquePtr. Other types | 
|  | // may be C structs which require a |BORINGSSL_MAKE_DELETER| registration. | 
|  | namespace internal { | 
|  | template <typename T> | 
|  | struct DeleterImpl<T, std::enable_if_t<T::kAllowUniquePtr>> { | 
|  | static void Free(T *t) { Delete(t); } | 
|  | }; | 
|  | }  // namespace internal | 
|  |  | 
|  | // MakeUnique behaves like |std::make_unique| but returns nullptr on allocation | 
|  | // error. | 
|  | template <typename T, typename... Args> | 
|  | UniquePtr<T> MakeUnique(Args &&...args) { | 
|  | return UniquePtr<T>(New<T>(std::forward<Args>(args)...)); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Containers. | 
|  |  | 
|  | // Array<T> is an owning array of elements of |T|. | 
|  | template <typename T> | 
|  | class Array { | 
|  | public: | 
|  | // Array's default constructor creates an empty array. | 
|  | Array() {} | 
|  | Array(const Array &) = delete; | 
|  | Array(Array &&other) { *this = std::move(other); } | 
|  |  | 
|  | ~Array() { Reset(); } | 
|  |  | 
|  | Array &operator=(const Array &) = delete; | 
|  | Array &operator=(Array &&other) { | 
|  | Reset(); | 
|  | other.Release(&data_, &size_); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | const T *data() const { return data_; } | 
|  | T *data() { return data_; } | 
|  | size_t size() const { return size_; } | 
|  | bool empty() const { return size_ == 0; } | 
|  |  | 
|  | const T &operator[](size_t i) const { | 
|  | BSSL_CHECK(i < size_); | 
|  | return data_[i]; | 
|  | } | 
|  | T &operator[](size_t i) { | 
|  | BSSL_CHECK(i < size_); | 
|  | return data_[i]; | 
|  | } | 
|  |  | 
|  | T &front() { | 
|  | BSSL_CHECK(size_ != 0); | 
|  | return data_[0]; | 
|  | } | 
|  | const T &front() const { | 
|  | BSSL_CHECK(size_ != 0); | 
|  | return data_[0]; | 
|  | } | 
|  | T &back() { | 
|  | BSSL_CHECK(size_ != 0); | 
|  | return data_[size_ - 1]; | 
|  | } | 
|  | const T &back() const { | 
|  | BSSL_CHECK(size_ != 0); | 
|  | return data_[size_ - 1]; | 
|  | } | 
|  |  | 
|  | T *begin() { return data_; } | 
|  | const T *begin() const { return data_; } | 
|  | T *end() { return data_ + size_; } | 
|  | const T *end() const { return data_ + size_; } | 
|  |  | 
|  | void Reset() { Reset(nullptr, 0); } | 
|  |  | 
|  | // Reset releases the current contents of the array and takes ownership of the | 
|  | // raw pointer supplied by the caller. | 
|  | void Reset(T *new_data, size_t new_size) { | 
|  | std::destroy_n(data_, size_); | 
|  | OPENSSL_free(data_); | 
|  | data_ = new_data; | 
|  | size_ = new_size; | 
|  | } | 
|  |  | 
|  | // Release releases ownership of the array to a raw pointer supplied by the | 
|  | // caller. | 
|  | void Release(T **out, size_t *out_size) { | 
|  | *out = data_; | 
|  | *out_size = size_; | 
|  | data_ = nullptr; | 
|  | size_ = 0; | 
|  | } | 
|  |  | 
|  | // Init replaces the array with a newly-allocated array of |new_size| | 
|  | // value-constructed copies of |T|. It returns true on success and false on | 
|  | // error. If |T| is a primitive type like |uint8_t|, value-construction means | 
|  | // it will be zero-initialized. | 
|  | [[nodiscard]] bool Init(size_t new_size) { | 
|  | if (!InitUninitialized(new_size)) { | 
|  | return false; | 
|  | } | 
|  | std::uninitialized_value_construct_n(data_, size_); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // InitForOverwrite behaves like |Init| but it default-constructs each element | 
|  | // instead. This means that, if |T| is a primitive type, the array will be | 
|  | // uninitialized and thus must be filled in by the caller. | 
|  | [[nodiscard]] bool InitForOverwrite(size_t new_size) { | 
|  | if (!InitUninitialized(new_size)) { | 
|  | return false; | 
|  | } | 
|  | std::uninitialized_default_construct_n(data_, size_); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // CopyFrom replaces the array with a newly-allocated copy of |in|. It returns | 
|  | // true on success and false on error. | 
|  | [[nodiscard]] bool CopyFrom(Span<const T> in) { | 
|  | if (!InitUninitialized(in.size())) { | 
|  | return false; | 
|  | } | 
|  | std::uninitialized_copy(in.begin(), in.end(), data_); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Shrink shrinks the stored size of the array to |new_size|. It crashes if | 
|  | // the new size is larger. Note this does not shrink the allocation itself. | 
|  | void Shrink(size_t new_size) { | 
|  | if (new_size > size_) { | 
|  | abort(); | 
|  | } | 
|  | std::destroy_n(data_ + new_size, size_ - new_size); | 
|  | size_ = new_size; | 
|  | } | 
|  |  | 
|  | private: | 
|  | // InitUninitialized replaces the array with a newly-allocated array of | 
|  | // |new_size| elements, but whose constructor has not yet run. On success, the | 
|  | // elements must be constructed before returning control to the caller. | 
|  | bool InitUninitialized(size_t new_size) { | 
|  | Reset(); | 
|  | if (new_size == 0) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (new_size > SIZE_MAX / sizeof(T)) { | 
|  | OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW); | 
|  | return false; | 
|  | } | 
|  | data_ = reinterpret_cast<T *>(OPENSSL_malloc(new_size * sizeof(T))); | 
|  | if (data_ == nullptr) { | 
|  | return false; | 
|  | } | 
|  | size_ = new_size; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | T *data_ = nullptr; | 
|  | size_t size_ = 0; | 
|  | }; | 
|  |  | 
|  | // Vector<T> is a resizable array of elements of |T|. | 
|  | template <typename T> | 
|  | class Vector { | 
|  | public: | 
|  | Vector() = default; | 
|  | Vector(const Vector &) = delete; | 
|  | Vector(Vector &&other) { *this = std::move(other); } | 
|  | ~Vector() { clear(); } | 
|  |  | 
|  | Vector &operator=(const Vector &) = delete; | 
|  | Vector &operator=(Vector &&other) { | 
|  | clear(); | 
|  | std::swap(data_, other.data_); | 
|  | std::swap(size_, other.size_); | 
|  | std::swap(capacity_, other.capacity_); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | const T *data() const { return data_; } | 
|  | T *data() { return data_; } | 
|  | size_t size() const { return size_; } | 
|  | bool empty() const { return size_ == 0; } | 
|  |  | 
|  | const T &operator[](size_t i) const { | 
|  | BSSL_CHECK(i < size_); | 
|  | return data_[i]; | 
|  | } | 
|  | T &operator[](size_t i) { | 
|  | BSSL_CHECK(i < size_); | 
|  | return data_[i]; | 
|  | } | 
|  |  | 
|  | T &front() { | 
|  | BSSL_CHECK(size_ != 0); | 
|  | return data_[0]; | 
|  | } | 
|  | const T &front() const { | 
|  | BSSL_CHECK(size_ != 0); | 
|  | return data_[0]; | 
|  | } | 
|  | T &back() { | 
|  | BSSL_CHECK(size_ != 0); | 
|  | return data_[size_ - 1]; | 
|  | } | 
|  | const T &back() const { | 
|  | BSSL_CHECK(size_ != 0); | 
|  | return data_[size_ - 1]; | 
|  | } | 
|  |  | 
|  | T *begin() { return data_; } | 
|  | const T *begin() const { return data_; } | 
|  | T *end() { return data_ + size_; } | 
|  | const T *end() const { return data_ + size_; } | 
|  |  | 
|  | void clear() { | 
|  | std::destroy_n(data_, size_); | 
|  | OPENSSL_free(data_); | 
|  | data_ = nullptr; | 
|  | size_ = 0; | 
|  | capacity_ = 0; | 
|  | } | 
|  |  | 
|  | void pop_back() { | 
|  | BSSL_CHECK(size_ != 0); | 
|  | std::destroy_at(&data_[size_ - 1]); | 
|  | size_--; | 
|  | } | 
|  |  | 
|  | // Push adds |elem| at the end of the internal array, growing if necessary. It | 
|  | // returns false when allocation fails. | 
|  | [[nodiscard]] bool Push(T elem) { | 
|  | if (!MaybeGrow()) { | 
|  | return false; | 
|  | } | 
|  | new (&data_[size_]) T(std::move(elem)); | 
|  | size_++; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // CopyFrom replaces the contents of the array with a copy of |in|. It returns | 
|  | // true on success and false on allocation error. | 
|  | [[nodiscard]] bool CopyFrom(Span<const T> in) { | 
|  | Array<T> copy; | 
|  | if (!copy.CopyFrom(in)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | clear(); | 
|  | copy.Release(&data_, &size_); | 
|  | capacity_ = size_; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | private: | 
|  | // If there is no room for one more element, creates a new backing array with | 
|  | // double the size of the old one and copies elements over. | 
|  | bool MaybeGrow() { | 
|  | // No need to grow if we have room for one more T. | 
|  | if (size_ < capacity_) { | 
|  | return true; | 
|  | } | 
|  | size_t new_capacity = kDefaultSize; | 
|  | if (capacity_ > 0) { | 
|  | // Double the array's size if it's safe to do so. | 
|  | if (capacity_ > SIZE_MAX / 2) { | 
|  | OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW); | 
|  | return false; | 
|  | } | 
|  | new_capacity = capacity_ * 2; | 
|  | } | 
|  | if (new_capacity > SIZE_MAX / sizeof(T)) { | 
|  | OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW); | 
|  | return false; | 
|  | } | 
|  | T *new_data = | 
|  | reinterpret_cast<T *>(OPENSSL_malloc(new_capacity * sizeof(T))); | 
|  | if (new_data == nullptr) { | 
|  | return false; | 
|  | } | 
|  | size_t new_size = size_; | 
|  | std::uninitialized_move(begin(), end(), new_data); | 
|  | clear(); | 
|  | data_ = new_data; | 
|  | size_ = new_size; | 
|  | capacity_ = new_capacity; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // data_ is a pointer to |capacity_| objects of size |T|, the first |size_| of | 
|  | // which are constructed. | 
|  | T *data_ = nullptr; | 
|  | // |size_| is the number of elements stored in this Vector. | 
|  | size_t size_ = 0; | 
|  | // |capacity_| is the number of elements allocated in this Vector. | 
|  | size_t capacity_ = 0; | 
|  | // |kDefaultSize| is the default initial size of the backing array. | 
|  | static constexpr size_t kDefaultSize = 16; | 
|  | }; | 
|  |  | 
|  | // A PackedSize is an integer that can store values from 0 to N, represented as | 
|  | // a minimal-width integer. | 
|  | template <size_t N> | 
|  | using PackedSize = std::conditional_t< | 
|  | N <= 0xff, uint8_t, | 
|  | std::conditional_t<N <= 0xffff, uint16_t, | 
|  | std::conditional_t<N <= 0xffffffff, uint32_t, size_t>>>; | 
|  |  | 
|  | // An InplaceVector is like a Vector, but stores up to N elements inline in the | 
|  | // object. It is inspired by std::inplace_vector in C++26. | 
|  | template <typename T, size_t N> | 
|  | class InplaceVector { | 
|  | public: | 
|  | InplaceVector() = default; | 
|  | InplaceVector(const InplaceVector &other) { *this = other; } | 
|  | InplaceVector(InplaceVector &&other) { *this = std::move(other); } | 
|  | ~InplaceVector() { clear(); } | 
|  | InplaceVector &operator=(const InplaceVector &other) { | 
|  | if (this != &other) { | 
|  | CopyFrom(other); | 
|  | } | 
|  | return *this; | 
|  | } | 
|  | InplaceVector &operator=(InplaceVector &&other) { | 
|  | clear(); | 
|  | std::uninitialized_move(other.begin(), other.end(), data()); | 
|  | size_ = other.size(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | const T *data() const { return reinterpret_cast<const T *>(storage_); } | 
|  | T *data() { return reinterpret_cast<T *>(storage_); } | 
|  | size_t size() const { return size_; } | 
|  | static constexpr size_t capacity() { return N; } | 
|  | bool empty() const { return size_ == 0; } | 
|  |  | 
|  | const T &operator[](size_t i) const { | 
|  | BSSL_CHECK(i < size_); | 
|  | return data()[i]; | 
|  | } | 
|  | T &operator[](size_t i) { | 
|  | BSSL_CHECK(i < size_); | 
|  | return data()[i]; | 
|  | } | 
|  |  | 
|  | T &front() { | 
|  | BSSL_CHECK(size_ != 0); | 
|  | return data()[0]; | 
|  | } | 
|  | const T &front() const { | 
|  | BSSL_CHECK(size_ != 0); | 
|  | return data()[0]; | 
|  | } | 
|  | T &back() { | 
|  | BSSL_CHECK(size_ != 0); | 
|  | return data()[size_ - 1]; | 
|  | } | 
|  | const T &back() const { | 
|  | BSSL_CHECK(size_ != 0); | 
|  | return data()[size_ - 1]; | 
|  | } | 
|  |  | 
|  | T *begin() { return data(); } | 
|  | const T *begin() const { return data(); } | 
|  | T *end() { return data() + size_; } | 
|  | const T *end() const { return data() + size_; } | 
|  |  | 
|  | void clear() { Shrink(0); } | 
|  |  | 
|  | void pop_back() { | 
|  | BSSL_CHECK(size_ != 0); | 
|  | Shrink(size_ - 1); | 
|  | } | 
|  |  | 
|  | // Shrink resizes the vector to |new_size|, which must not be larger than the | 
|  | // current size. Unlike |Resize|, this can be called when |T| is not | 
|  | // default-constructible. | 
|  | void Shrink(size_t new_size) { | 
|  | BSSL_CHECK(new_size <= size_); | 
|  | std::destroy_n(data() + new_size, size_ - new_size); | 
|  | size_ = static_cast<PackedSize<N>>(new_size); | 
|  | } | 
|  |  | 
|  | // TryResize resizes the vector to |new_size| and returns true, or returns | 
|  | // false if |new_size| is too large. Any newly-added elements are | 
|  | // value-initialized. | 
|  | [[nodiscard]] bool TryResize(size_t new_size) { | 
|  | if (new_size <= size_) { | 
|  | Shrink(new_size); | 
|  | return true; | 
|  | } | 
|  | if (new_size > capacity()) { | 
|  | return false; | 
|  | } | 
|  | std::uninitialized_value_construct_n(data() + size_, new_size - size_); | 
|  | size_ = static_cast<PackedSize<N>>(new_size); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // TryResizeForOverwrite behaves like |TryResize|, but newly-added elements | 
|  | // are default-initialized, so POD types may contain uninitialized values that | 
|  | // the caller is responsible for filling in. | 
|  | [[nodiscard]] bool TryResizeForOverwrite(size_t new_size) { | 
|  | if (new_size <= size_) { | 
|  | Shrink(new_size); | 
|  | return true; | 
|  | } | 
|  | if (new_size > capacity()) { | 
|  | return false; | 
|  | } | 
|  | std::uninitialized_default_construct_n(data() + size_, new_size - size_); | 
|  | size_ = static_cast<PackedSize<N>>(new_size); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // TryCopyFrom sets the vector to a copy of |in| and returns true, or returns | 
|  | // false if |in| is too large. | 
|  | [[nodiscard]] bool TryCopyFrom(Span<const T> in) { | 
|  | if (in.size() > capacity()) { | 
|  | return false; | 
|  | } | 
|  | clear(); | 
|  | std::uninitialized_copy(in.begin(), in.end(), data()); | 
|  | size_ = in.size(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // TryPushBack appends |val| to the vector and returns a pointer to the | 
|  | // newly-inserted value, or nullptr if the vector is at capacity. | 
|  | [[nodiscard]] T *TryPushBack(T val) { | 
|  | if (size() >= capacity()) { | 
|  | return nullptr; | 
|  | } | 
|  | T *ret = &data()[size_]; | 
|  | new (ret) T(std::move(val)); | 
|  | size_++; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | // The following methods behave like their |Try*| counterparts, but abort the | 
|  | // program on failure. | 
|  | void Resize(size_t size) { BSSL_CHECK(TryResize(size)); } | 
|  | void ResizeForOverwrite(size_t size) { | 
|  | BSSL_CHECK(TryResizeForOverwrite(size)); | 
|  | } | 
|  | void CopyFrom(Span<const T> in) { BSSL_CHECK(TryCopyFrom(in)); } | 
|  | T &PushBack(T val) { | 
|  | T *ret = TryPushBack(std::move(val)); | 
|  | BSSL_CHECK(ret != nullptr); | 
|  | return *ret; | 
|  | } | 
|  |  | 
|  | template <typename Pred> | 
|  | void EraseIf(Pred pred) { | 
|  | // See if anything needs to be erased at all. This avoids a self-move. | 
|  | auto iter = std::find_if(begin(), end(), pred); | 
|  | if (iter == end()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Elements before the first to be erased may be left as-is. | 
|  | size_t new_size = iter - begin(); | 
|  | // Swap all subsequent elements in if they are to be kept. | 
|  | for (size_t i = new_size + 1; i < size(); i++) { | 
|  | if (!pred((*this)[i])) { | 
|  | (*this)[new_size] = std::move((*this)[i]); | 
|  | new_size++; | 
|  | } | 
|  | } | 
|  |  | 
|  | Shrink(new_size); | 
|  | } | 
|  |  | 
|  | private: | 
|  | alignas(T) char storage_[sizeof(T[N])]; | 
|  | PackedSize<N> size_ = 0; | 
|  | }; | 
|  |  | 
|  |  | 
|  | BSSL_NAMESPACE_END | 
|  |  | 
|  | #endif  // OPENSSL_HEADER_CRYPTO_MEM_INTERNAL_H |