|  | /* Copyright 2014 The BoringSSL Authors | 
|  | * | 
|  | * Permission to use, copy, modify, and/or distribute this software for any | 
|  | * purpose with or without fee is hereby granted, provided that the above | 
|  | * copyright notice and this permission notice appear in all copies. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | 
|  | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | 
|  | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | 
|  | * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | 
|  | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION | 
|  | * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN | 
|  | * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <limits.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <openssl/aead.h> | 
|  | #include <openssl/cipher.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/hmac.h> | 
|  | #include <openssl/md5.h> | 
|  | #include <openssl/mem.h> | 
|  | #include <openssl/sha.h> | 
|  |  | 
|  | #include "../fipsmodule/cipher/internal.h" | 
|  | #include "../internal.h" | 
|  | #include "internal.h" | 
|  |  | 
|  |  | 
|  | typedef struct { | 
|  | EVP_CIPHER_CTX cipher_ctx; | 
|  | HMAC_CTX hmac_ctx; | 
|  | // mac_key is the portion of the key used for the MAC. It is retained | 
|  | // separately for the constant-time CBC code. | 
|  | uint8_t mac_key[EVP_MAX_MD_SIZE]; | 
|  | uint8_t mac_key_len; | 
|  | // implicit_iv is one iff this is a pre-TLS-1.1 CBC cipher without an explicit | 
|  | // IV. | 
|  | char implicit_iv; | 
|  | } AEAD_TLS_CTX; | 
|  |  | 
|  | static_assert(EVP_MAX_MD_SIZE < 256, "mac_key_len does not fit in uint8_t"); | 
|  |  | 
|  | static_assert(sizeof(((EVP_AEAD_CTX *)NULL)->state) >= sizeof(AEAD_TLS_CTX), | 
|  | "AEAD state is too small"); | 
|  | static_assert(alignof(union evp_aead_ctx_st_state) >= alignof(AEAD_TLS_CTX), | 
|  | "AEAD state has insufficient alignment"); | 
|  |  | 
|  | static void aead_tls_cleanup(EVP_AEAD_CTX *ctx) { | 
|  | AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state; | 
|  | EVP_CIPHER_CTX_cleanup(&tls_ctx->cipher_ctx); | 
|  | HMAC_CTX_cleanup(&tls_ctx->hmac_ctx); | 
|  | } | 
|  |  | 
|  | static int aead_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, | 
|  | size_t tag_len, enum evp_aead_direction_t dir, | 
|  | const EVP_CIPHER *cipher, const EVP_MD *md, | 
|  | char implicit_iv) { | 
|  | if (tag_len != EVP_AEAD_DEFAULT_TAG_LENGTH && | 
|  | tag_len != EVP_MD_size(md)) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_TAG_SIZE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (key_len != EVP_AEAD_key_length(ctx->aead)) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | size_t mac_key_len = EVP_MD_size(md); | 
|  | size_t enc_key_len = EVP_CIPHER_key_length(cipher); | 
|  | assert(mac_key_len + enc_key_len + | 
|  | (implicit_iv ? EVP_CIPHER_iv_length(cipher) : 0) == key_len); | 
|  |  | 
|  | AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state; | 
|  | EVP_CIPHER_CTX_init(&tls_ctx->cipher_ctx); | 
|  | HMAC_CTX_init(&tls_ctx->hmac_ctx); | 
|  | assert(mac_key_len <= EVP_MAX_MD_SIZE); | 
|  | OPENSSL_memcpy(tls_ctx->mac_key, key, mac_key_len); | 
|  | tls_ctx->mac_key_len = (uint8_t)mac_key_len; | 
|  | tls_ctx->implicit_iv = implicit_iv; | 
|  |  | 
|  | if (!EVP_CipherInit_ex(&tls_ctx->cipher_ctx, cipher, NULL, &key[mac_key_len], | 
|  | implicit_iv ? &key[mac_key_len + enc_key_len] : NULL, | 
|  | dir == evp_aead_seal) || | 
|  | !HMAC_Init_ex(&tls_ctx->hmac_ctx, key, mac_key_len, md, NULL)) { | 
|  | aead_tls_cleanup(ctx); | 
|  | return 0; | 
|  | } | 
|  | EVP_CIPHER_CTX_set_padding(&tls_ctx->cipher_ctx, 0); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static size_t aead_tls_tag_len(const EVP_AEAD_CTX *ctx, const size_t in_len, | 
|  | const size_t extra_in_len) { | 
|  | assert(extra_in_len == 0); | 
|  | const AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state; | 
|  |  | 
|  | const size_t hmac_len = HMAC_size(&tls_ctx->hmac_ctx); | 
|  | if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) != EVP_CIPH_CBC_MODE) { | 
|  | // The NULL cipher. | 
|  | return hmac_len; | 
|  | } | 
|  |  | 
|  | const size_t block_size = EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx); | 
|  | // An overflow of |in_len + hmac_len| doesn't affect the result mod | 
|  | // |block_size|, provided that |block_size| is a smaller power of two. | 
|  | assert(block_size != 0 && (block_size & (block_size - 1)) == 0); | 
|  | const size_t pad_len = block_size - (in_len + hmac_len) % block_size; | 
|  | return hmac_len + pad_len; | 
|  | } | 
|  |  | 
|  | static int aead_tls_seal_scatter(const EVP_AEAD_CTX *ctx, uint8_t *out, | 
|  | uint8_t *out_tag, size_t *out_tag_len, | 
|  | const size_t max_out_tag_len, | 
|  | const uint8_t *nonce, const size_t nonce_len, | 
|  | const uint8_t *in, const size_t in_len, | 
|  | const uint8_t *extra_in, | 
|  | const size_t extra_in_len, const uint8_t *ad, | 
|  | const size_t ad_len) { | 
|  | AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state; | 
|  |  | 
|  | if (!tls_ctx->cipher_ctx.encrypt) { | 
|  | // Unlike a normal AEAD, a TLS AEAD may only be used in one direction. | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_OPERATION); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (in_len > INT_MAX) { | 
|  | // EVP_CIPHER takes int as input. | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (max_out_tag_len < aead_tls_tag_len(ctx, in_len, extra_in_len)) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (ad_len != 13 - 2 /* length bytes */) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_AD_SIZE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // To allow for CBC mode which changes cipher length, |ad| doesn't include the | 
|  | // length for legacy ciphers. | 
|  | uint8_t ad_extra[2]; | 
|  | ad_extra[0] = (uint8_t)(in_len >> 8); | 
|  | ad_extra[1] = (uint8_t)(in_len & 0xff); | 
|  |  | 
|  | // Compute the MAC. This must be first in case the operation is being done | 
|  | // in-place. | 
|  | uint8_t mac[EVP_MAX_MD_SIZE]; | 
|  | unsigned mac_len; | 
|  | if (!HMAC_Init_ex(&tls_ctx->hmac_ctx, NULL, 0, NULL, NULL) || | 
|  | !HMAC_Update(&tls_ctx->hmac_ctx, ad, ad_len) || | 
|  | !HMAC_Update(&tls_ctx->hmac_ctx, ad_extra, sizeof(ad_extra)) || | 
|  | !HMAC_Update(&tls_ctx->hmac_ctx, in, in_len) || | 
|  | !HMAC_Final(&tls_ctx->hmac_ctx, mac, &mac_len)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Configure the explicit IV. | 
|  | if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE && | 
|  | !tls_ctx->implicit_iv && | 
|  | !EVP_EncryptInit_ex(&tls_ctx->cipher_ctx, NULL, NULL, NULL, nonce)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Encrypt the input. | 
|  | int len; | 
|  | if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out, &len, in, (int)in_len)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned block_size = EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx); | 
|  |  | 
|  | // Feed the MAC into the cipher in two steps. First complete the final partial | 
|  | // block from encrypting the input and split the result between |out| and | 
|  | // |out_tag|. Then feed the rest. | 
|  |  | 
|  | const size_t early_mac_len = (block_size - (in_len % block_size)) % block_size; | 
|  | if (early_mac_len != 0) { | 
|  | assert(len + block_size - early_mac_len == in_len); | 
|  | uint8_t buf[EVP_MAX_BLOCK_LENGTH]; | 
|  | int buf_len; | 
|  | if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, buf, &buf_len, mac, | 
|  | (int)early_mac_len)) { | 
|  | return 0; | 
|  | } | 
|  | assert(buf_len == (int)block_size); | 
|  | OPENSSL_memcpy(out + len, buf, block_size - early_mac_len); | 
|  | OPENSSL_memcpy(out_tag, buf + block_size - early_mac_len, early_mac_len); | 
|  | } | 
|  | size_t tag_len = early_mac_len; | 
|  |  | 
|  | if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out_tag + tag_len, &len, | 
|  | mac + tag_len, mac_len - tag_len)) { | 
|  | return 0; | 
|  | } | 
|  | tag_len += len; | 
|  |  | 
|  | if (block_size > 1) { | 
|  | assert(block_size <= 256); | 
|  | assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE); | 
|  |  | 
|  | // Compute padding and feed that into the cipher. | 
|  | uint8_t padding[256]; | 
|  | unsigned padding_len = block_size - ((in_len + mac_len) % block_size); | 
|  | OPENSSL_memset(padding, padding_len - 1, padding_len); | 
|  | if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out_tag + tag_len, &len, | 
|  | padding, (int)padding_len)) { | 
|  | return 0; | 
|  | } | 
|  | tag_len += len; | 
|  | } | 
|  |  | 
|  | if (!EVP_EncryptFinal_ex(&tls_ctx->cipher_ctx, out_tag + tag_len, &len)) { | 
|  | return 0; | 
|  | } | 
|  | assert(len == 0);  // Padding is explicit. | 
|  | assert(tag_len == aead_tls_tag_len(ctx, in_len, extra_in_len)); | 
|  |  | 
|  | *out_tag_len = tag_len; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int aead_tls_open(const EVP_AEAD_CTX *ctx, uint8_t *out, size_t *out_len, | 
|  | size_t max_out_len, const uint8_t *nonce, | 
|  | size_t nonce_len, const uint8_t *in, size_t in_len, | 
|  | const uint8_t *ad, size_t ad_len) { | 
|  | AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state; | 
|  |  | 
|  | if (tls_ctx->cipher_ctx.encrypt) { | 
|  | // Unlike a normal AEAD, a TLS AEAD may only be used in one direction. | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_OPERATION); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (in_len < HMAC_size(&tls_ctx->hmac_ctx)) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (max_out_len < in_len) { | 
|  | // This requires that the caller provide space for the MAC, even though it | 
|  | // will always be removed on return. | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (ad_len != 13 - 2 /* length bytes */) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_AD_SIZE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (in_len > INT_MAX) { | 
|  | // EVP_CIPHER takes int as input. | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Configure the explicit IV. | 
|  | if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE && | 
|  | !tls_ctx->implicit_iv && | 
|  | !EVP_DecryptInit_ex(&tls_ctx->cipher_ctx, NULL, NULL, NULL, nonce)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Decrypt to get the plaintext + MAC + padding. | 
|  | size_t total = 0; | 
|  | int len; | 
|  | if (!EVP_DecryptUpdate(&tls_ctx->cipher_ctx, out, &len, in, (int)in_len)) { | 
|  | return 0; | 
|  | } | 
|  | total += len; | 
|  | if (!EVP_DecryptFinal_ex(&tls_ctx->cipher_ctx, out + total, &len)) { | 
|  | return 0; | 
|  | } | 
|  | total += len; | 
|  | assert(total == in_len); | 
|  |  | 
|  | CONSTTIME_SECRET(out, total); | 
|  |  | 
|  | // Remove CBC padding. Code from here on is timing-sensitive with respect to | 
|  | // |padding_ok| and |data_plus_mac_len| for CBC ciphers. | 
|  | size_t data_plus_mac_len; | 
|  | crypto_word_t padding_ok; | 
|  | if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE) { | 
|  | if (!EVP_tls_cbc_remove_padding( | 
|  | &padding_ok, &data_plus_mac_len, out, total, | 
|  | EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx), | 
|  | HMAC_size(&tls_ctx->hmac_ctx))) { | 
|  | // Publicly invalid. This can be rejected in non-constant time. | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); | 
|  | return 0; | 
|  | } | 
|  | } else { | 
|  | padding_ok = CONSTTIME_TRUE_W; | 
|  | data_plus_mac_len = total; | 
|  | // |data_plus_mac_len| = |total| = |in_len| at this point. |in_len| has | 
|  | // already been checked against the MAC size at the top of the function. | 
|  | assert(data_plus_mac_len >= HMAC_size(&tls_ctx->hmac_ctx)); | 
|  | } | 
|  | size_t data_len = data_plus_mac_len - HMAC_size(&tls_ctx->hmac_ctx); | 
|  |  | 
|  | // At this point, if the padding is valid, the first |data_plus_mac_len| bytes | 
|  | // after |out| are the plaintext and MAC. Otherwise, |data_plus_mac_len| is | 
|  | // still large enough to extract a MAC, but it will be irrelevant. | 
|  |  | 
|  | // To allow for CBC mode which changes cipher length, |ad| doesn't include the | 
|  | // length for legacy ciphers. | 
|  | uint8_t ad_fixed[13]; | 
|  | OPENSSL_memcpy(ad_fixed, ad, 11); | 
|  | ad_fixed[11] = (uint8_t)(data_len >> 8); | 
|  | ad_fixed[12] = (uint8_t)(data_len & 0xff); | 
|  | ad_len += 2; | 
|  |  | 
|  | // Compute the MAC and extract the one in the record. | 
|  | uint8_t mac[EVP_MAX_MD_SIZE]; | 
|  | size_t mac_len; | 
|  | uint8_t record_mac_tmp[EVP_MAX_MD_SIZE]; | 
|  | uint8_t *record_mac; | 
|  | if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE && | 
|  | EVP_tls_cbc_record_digest_supported(tls_ctx->hmac_ctx.md)) { | 
|  | if (!EVP_tls_cbc_digest_record(tls_ctx->hmac_ctx.md, mac, &mac_len, | 
|  | ad_fixed, out, data_len, total, | 
|  | tls_ctx->mac_key, tls_ctx->mac_key_len)) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); | 
|  | return 0; | 
|  | } | 
|  | assert(mac_len == HMAC_size(&tls_ctx->hmac_ctx)); | 
|  |  | 
|  | record_mac = record_mac_tmp; | 
|  | EVP_tls_cbc_copy_mac(record_mac, mac_len, out, data_plus_mac_len, total); | 
|  | } else { | 
|  | // We should support the constant-time path for all CBC-mode ciphers | 
|  | // implemented. | 
|  | assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) != EVP_CIPH_CBC_MODE); | 
|  |  | 
|  | unsigned mac_len_u; | 
|  | if (!HMAC_Init_ex(&tls_ctx->hmac_ctx, NULL, 0, NULL, NULL) || | 
|  | !HMAC_Update(&tls_ctx->hmac_ctx, ad_fixed, ad_len) || | 
|  | !HMAC_Update(&tls_ctx->hmac_ctx, out, data_len) || | 
|  | !HMAC_Final(&tls_ctx->hmac_ctx, mac, &mac_len_u)) { | 
|  | return 0; | 
|  | } | 
|  | mac_len = mac_len_u; | 
|  |  | 
|  | assert(mac_len == HMAC_size(&tls_ctx->hmac_ctx)); | 
|  | record_mac = &out[data_len]; | 
|  | } | 
|  |  | 
|  | // Perform the MAC check and the padding check in constant-time. It should be | 
|  | // safe to simply perform the padding check first, but it would not be under a | 
|  | // different choice of MAC location on padding failure. See | 
|  | // EVP_tls_cbc_remove_padding. | 
|  | crypto_word_t good = | 
|  | constant_time_eq_int(CRYPTO_memcmp(record_mac, mac, mac_len), 0); | 
|  | good &= padding_ok; | 
|  | CONSTTIME_DECLASSIFY(&good, sizeof(good)); | 
|  | if (!good) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | CONSTTIME_DECLASSIFY(&data_len, sizeof(data_len)); | 
|  | CONSTTIME_DECLASSIFY(out, data_len); | 
|  |  | 
|  | // End of timing-sensitive code. | 
|  |  | 
|  | *out_len = data_len; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int aead_aes_128_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, | 
|  | size_t key_len, size_t tag_len, | 
|  | enum evp_aead_direction_t dir) { | 
|  | return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(), | 
|  | EVP_sha1(), 0); | 
|  | } | 
|  |  | 
|  | static int aead_aes_128_cbc_sha1_tls_implicit_iv_init( | 
|  | EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len, | 
|  | enum evp_aead_direction_t dir) { | 
|  | return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(), | 
|  | EVP_sha1(), 1); | 
|  | } | 
|  |  | 
|  | static int aead_aes_128_cbc_sha256_tls_init(EVP_AEAD_CTX *ctx, | 
|  | const uint8_t *key, size_t key_len, | 
|  | size_t tag_len, | 
|  | enum evp_aead_direction_t dir) { | 
|  | return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(), | 
|  | EVP_sha256(), 0); | 
|  | } | 
|  |  | 
|  | static int aead_aes_256_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, | 
|  | size_t key_len, size_t tag_len, | 
|  | enum evp_aead_direction_t dir) { | 
|  | return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(), | 
|  | EVP_sha1(), 0); | 
|  | } | 
|  |  | 
|  | static int aead_aes_256_cbc_sha1_tls_implicit_iv_init( | 
|  | EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len, | 
|  | enum evp_aead_direction_t dir) { | 
|  | return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(), | 
|  | EVP_sha1(), 1); | 
|  | } | 
|  |  | 
|  | static int aead_des_ede3_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, | 
|  | const uint8_t *key, size_t key_len, | 
|  | size_t tag_len, | 
|  | enum evp_aead_direction_t dir) { | 
|  | return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_des_ede3_cbc(), | 
|  | EVP_sha1(), 0); | 
|  | } | 
|  |  | 
|  | static int aead_des_ede3_cbc_sha1_tls_implicit_iv_init( | 
|  | EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len, | 
|  | enum evp_aead_direction_t dir) { | 
|  | return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_des_ede3_cbc(), | 
|  | EVP_sha1(), 1); | 
|  | } | 
|  |  | 
|  | static int aead_tls_get_iv(const EVP_AEAD_CTX *ctx, const uint8_t **out_iv, | 
|  | size_t *out_iv_len) { | 
|  | const AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state; | 
|  | const size_t iv_len = EVP_CIPHER_CTX_iv_length(&tls_ctx->cipher_ctx); | 
|  | if (iv_len <= 1) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | *out_iv = tls_ctx->cipher_ctx.iv; | 
|  | *out_iv_len = iv_len; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static const EVP_AEAD aead_aes_128_cbc_sha1_tls = { | 
|  | SHA_DIGEST_LENGTH + 16,  // key len (SHA1 + AES128) | 
|  | 16,                      // nonce len (IV) | 
|  | 16 + SHA_DIGEST_LENGTH,  // overhead (padding + SHA1) | 
|  | SHA_DIGEST_LENGTH,       // max tag length | 
|  | 0,                       // seal_scatter_supports_extra_in | 
|  |  | 
|  | NULL,  // init | 
|  | aead_aes_128_cbc_sha1_tls_init, | 
|  | aead_tls_cleanup, | 
|  | aead_tls_open, | 
|  | aead_tls_seal_scatter, | 
|  | NULL,  // open_gather | 
|  | NULL,  // get_iv | 
|  | aead_tls_tag_len, | 
|  | }; | 
|  |  | 
|  | static const EVP_AEAD aead_aes_128_cbc_sha1_tls_implicit_iv = { | 
|  | SHA_DIGEST_LENGTH + 16 + 16,  // key len (SHA1 + AES128 + IV) | 
|  | 0,                            // nonce len | 
|  | 16 + SHA_DIGEST_LENGTH,       // overhead (padding + SHA1) | 
|  | SHA_DIGEST_LENGTH,            // max tag length | 
|  | 0,                            // seal_scatter_supports_extra_in | 
|  |  | 
|  | NULL,  // init | 
|  | aead_aes_128_cbc_sha1_tls_implicit_iv_init, | 
|  | aead_tls_cleanup, | 
|  | aead_tls_open, | 
|  | aead_tls_seal_scatter, | 
|  | NULL,             // open_gather | 
|  | aead_tls_get_iv,  // get_iv | 
|  | aead_tls_tag_len, | 
|  | }; | 
|  |  | 
|  | static const EVP_AEAD aead_aes_128_cbc_sha256_tls = { | 
|  | SHA256_DIGEST_LENGTH + 16,  // key len (SHA256 + AES128) | 
|  | 16,                         // nonce len (IV) | 
|  | 16 + SHA256_DIGEST_LENGTH,  // overhead (padding + SHA256) | 
|  | SHA256_DIGEST_LENGTH,       // max tag length | 
|  | 0,                          // seal_scatter_supports_extra_in | 
|  |  | 
|  | NULL,  // init | 
|  | aead_aes_128_cbc_sha256_tls_init, | 
|  | aead_tls_cleanup, | 
|  | aead_tls_open, | 
|  | aead_tls_seal_scatter, | 
|  | NULL,  // open_gather | 
|  | NULL,  // get_iv | 
|  | aead_tls_tag_len, | 
|  | }; | 
|  |  | 
|  | static const EVP_AEAD aead_aes_256_cbc_sha1_tls = { | 
|  | SHA_DIGEST_LENGTH + 32,  // key len (SHA1 + AES256) | 
|  | 16,                      // nonce len (IV) | 
|  | 16 + SHA_DIGEST_LENGTH,  // overhead (padding + SHA1) | 
|  | SHA_DIGEST_LENGTH,       // max tag length | 
|  | 0,                       // seal_scatter_supports_extra_in | 
|  |  | 
|  | NULL,  // init | 
|  | aead_aes_256_cbc_sha1_tls_init, | 
|  | aead_tls_cleanup, | 
|  | aead_tls_open, | 
|  | aead_tls_seal_scatter, | 
|  | NULL,  // open_gather | 
|  | NULL,  // get_iv | 
|  | aead_tls_tag_len, | 
|  | }; | 
|  |  | 
|  | static const EVP_AEAD aead_aes_256_cbc_sha1_tls_implicit_iv = { | 
|  | SHA_DIGEST_LENGTH + 32 + 16,  // key len (SHA1 + AES256 + IV) | 
|  | 0,                            // nonce len | 
|  | 16 + SHA_DIGEST_LENGTH,       // overhead (padding + SHA1) | 
|  | SHA_DIGEST_LENGTH,            // max tag length | 
|  | 0,                            // seal_scatter_supports_extra_in | 
|  |  | 
|  | NULL,  // init | 
|  | aead_aes_256_cbc_sha1_tls_implicit_iv_init, | 
|  | aead_tls_cleanup, | 
|  | aead_tls_open, | 
|  | aead_tls_seal_scatter, | 
|  | NULL,             // open_gather | 
|  | aead_tls_get_iv,  // get_iv | 
|  | aead_tls_tag_len, | 
|  | }; | 
|  |  | 
|  | static const EVP_AEAD aead_des_ede3_cbc_sha1_tls = { | 
|  | SHA_DIGEST_LENGTH + 24,  // key len (SHA1 + 3DES) | 
|  | 8,                       // nonce len (IV) | 
|  | 8 + SHA_DIGEST_LENGTH,   // overhead (padding + SHA1) | 
|  | SHA_DIGEST_LENGTH,       // max tag length | 
|  | 0,                       // seal_scatter_supports_extra_in | 
|  |  | 
|  | NULL,  // init | 
|  | aead_des_ede3_cbc_sha1_tls_init, | 
|  | aead_tls_cleanup, | 
|  | aead_tls_open, | 
|  | aead_tls_seal_scatter, | 
|  | NULL,  // open_gather | 
|  | NULL,  // get_iv | 
|  | aead_tls_tag_len, | 
|  | }; | 
|  |  | 
|  | static const EVP_AEAD aead_des_ede3_cbc_sha1_tls_implicit_iv = { | 
|  | SHA_DIGEST_LENGTH + 24 + 8,  // key len (SHA1 + 3DES + IV) | 
|  | 0,                           // nonce len | 
|  | 8 + SHA_DIGEST_LENGTH,       // overhead (padding + SHA1) | 
|  | SHA_DIGEST_LENGTH,           // max tag length | 
|  | 0,                           // seal_scatter_supports_extra_in | 
|  |  | 
|  | NULL,  // init | 
|  | aead_des_ede3_cbc_sha1_tls_implicit_iv_init, | 
|  | aead_tls_cleanup, | 
|  | aead_tls_open, | 
|  | aead_tls_seal_scatter, | 
|  | NULL,             // open_gather | 
|  | aead_tls_get_iv,  // get_iv | 
|  | aead_tls_tag_len, | 
|  | }; | 
|  |  | 
|  | const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls(void) { | 
|  | return &aead_aes_128_cbc_sha1_tls; | 
|  | } | 
|  |  | 
|  | const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls_implicit_iv(void) { | 
|  | return &aead_aes_128_cbc_sha1_tls_implicit_iv; | 
|  | } | 
|  |  | 
|  | const EVP_AEAD *EVP_aead_aes_128_cbc_sha256_tls(void) { | 
|  | return &aead_aes_128_cbc_sha256_tls; | 
|  | } | 
|  |  | 
|  | const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls(void) { | 
|  | return &aead_aes_256_cbc_sha1_tls; | 
|  | } | 
|  |  | 
|  | const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls_implicit_iv(void) { | 
|  | return &aead_aes_256_cbc_sha1_tls_implicit_iv; | 
|  | } | 
|  |  | 
|  | const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls(void) { | 
|  | return &aead_des_ede3_cbc_sha1_tls; | 
|  | } | 
|  |  | 
|  | const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv(void) { | 
|  | return &aead_des_ede3_cbc_sha1_tls_implicit_iv; | 
|  | } |