blob: ac6eb17c71e1a2c1df3e493c9755804273fdb776 [file] [log] [blame]
// This file is generated from a similarly-named Perl script in the BoringSSL
// source tree. Do not edit by hand.
#include <openssl/asm_base.h>
#if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_AARCH64) && defined(_WIN32)
#include "openssl/arm_arch.h"
.text
.globl beeu_mod_inverse_vartime
.align 4
beeu_mod_inverse_vartime:
// Reserve enough space for 14 8-byte registers on the stack
// in the first stp call for x29, x30.
// Then store the remaining callee-saved registers.
//
// | x29 | x30 | x19 | x20 | ... | x27 | x28 | x0 | x2 |
// ^ ^
// sp <------------------- 112 bytes ----------------> old sp
// x29 (FP)
//
AARCH64_SIGN_LINK_REGISTER
stp x29,x30,[sp,#-112]!
add x29,sp,#0
stp x19,x20,[sp,#16]
stp x21,x22,[sp,#32]
stp x23,x24,[sp,#48]
stp x25,x26,[sp,#64]
stp x27,x28,[sp,#80]
stp x0,x2,[sp,#96]
// B = b3..b0 := a
ldp x25,x26,[x1]
ldp x27,x28,[x1,#16]
// n3..n0 := n
// Note: the value of input params are changed in the following.
ldp x0,x1,[x2]
ldp x2,x30,[x2,#16]
// A = a3..a0 := n
mov x21, x0
mov x22, x1
mov x23, x2
mov x24, x30
// X = x4..x0 := 1
mov x3, #1
eor x4, x4, x4
eor x5, x5, x5
eor x6, x6, x6
eor x7, x7, x7
// Y = y4..y0 := 0
eor x8, x8, x8
eor x9, x9, x9
eor x10, x10, x10
eor x11, x11, x11
eor x12, x12, x12
Lbeeu_loop:
// if B == 0, jump to .Lbeeu_loop_end
orr x14, x25, x26
orr x14, x14, x27
// reverse the bit order of x25. This is needed for clz after this macro
rbit x15, x25
orr x14, x14, x28
cbz x14,Lbeeu_loop_end
// 0 < B < |n|,
// 0 < A <= |n|,
// (1) X*a == B (mod |n|),
// (2) (-1)*Y*a == A (mod |n|)
// Now divide B by the maximum possible power of two in the
// integers, and divide X by the same value mod |n|.
// When we're done, (1) still holds.
// shift := number of trailing 0s in x25
// ( = number of leading 0s in x15; see the "rbit" instruction in TEST_B_ZERO)
clz x13, x15
// If there is no shift, goto shift_A_Y
cbz x13, Lbeeu_shift_A_Y
// Shift B right by "x13" bits
neg x14, x13
lsr x25, x25, x13
lsl x15, x26, x14
lsr x26, x26, x13
lsl x19, x27, x14
orr x25, x25, x15
lsr x27, x27, x13
lsl x20, x28, x14
orr x26, x26, x19
lsr x28, x28, x13
orr x27, x27, x20
// Shift X right by "x13" bits, adding n whenever X becomes odd.
// x13--;
// x14 := 0; needed in the addition to the most significant word in SHIFT1
eor x14, x14, x14
Lbeeu_shift_loop_X:
tbz x3, #0, Lshift1_0
adds x3, x3, x0
adcs x4, x4, x1
adcs x5, x5, x2
adcs x6, x6, x30
adc x7, x7, x14
Lshift1_0:
// var0 := [var1|var0]<64..1>;
// i.e. concatenate var1 and var0,
// extract bits <64..1> from the resulting 128-bit value
// and put them in var0
extr x3, x4, x3, #1
extr x4, x5, x4, #1
extr x5, x6, x5, #1
extr x6, x7, x6, #1
lsr x7, x7, #1
subs x13, x13, #1
bne Lbeeu_shift_loop_X
// Note: the steps above perform the same sequence as in p256_beeu-x86_64-asm.pl
// with the following differences:
// - "x13" is set directly to the number of trailing 0s in B
// (using rbit and clz instructions)
// - The loop is only used to call SHIFT1(X)
// and x13 is decreased while executing the X loop.
// - SHIFT256(B, x13) is performed before right-shifting X; they are independent
Lbeeu_shift_A_Y:
// Same for A and Y.
// Afterwards, (2) still holds.
// Reverse the bit order of x21
// x13 := number of trailing 0s in x21 (= number of leading 0s in x15)
rbit x15, x21
clz x13, x15
// If there is no shift, goto |B-A|, X+Y update
cbz x13, Lbeeu_update_B_X_or_A_Y
// Shift A right by "x13" bits
neg x14, x13
lsr x21, x21, x13
lsl x15, x22, x14
lsr x22, x22, x13
lsl x19, x23, x14
orr x21, x21, x15
lsr x23, x23, x13
lsl x20, x24, x14
orr x22, x22, x19
lsr x24, x24, x13
orr x23, x23, x20
// Shift Y right by "x13" bits, adding n whenever Y becomes odd.
// x13--;
// x14 := 0; needed in the addition to the most significant word in SHIFT1
eor x14, x14, x14
Lbeeu_shift_loop_Y:
tbz x8, #0, Lshift1_1
adds x8, x8, x0
adcs x9, x9, x1
adcs x10, x10, x2
adcs x11, x11, x30
adc x12, x12, x14
Lshift1_1:
// var0 := [var1|var0]<64..1>;
// i.e. concatenate var1 and var0,
// extract bits <64..1> from the resulting 128-bit value
// and put them in var0
extr x8, x9, x8, #1
extr x9, x10, x9, #1
extr x10, x11, x10, #1
extr x11, x12, x11, #1
lsr x12, x12, #1
subs x13, x13, #1
bne Lbeeu_shift_loop_Y
Lbeeu_update_B_X_or_A_Y:
// Try T := B - A; if cs, continue with B > A (cs: carry set = no borrow)
// Note: this is a case of unsigned arithmetic, where T fits in 4 64-bit words
// without taking a sign bit if generated. The lack of a carry would
// indicate a negative result. See, for example,
// https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/condition-codes-1-condition-flags-and-codes
subs x14, x25, x21
sbcs x15, x26, x22
sbcs x19, x27, x23
sbcs x20, x28, x24
bcs Lbeeu_B_greater_than_A
// Else A > B =>
// A := A - B; Y := Y + X; goto beginning of the loop
subs x21, x21, x25
sbcs x22, x22, x26
sbcs x23, x23, x27
sbcs x24, x24, x28
adds x8, x8, x3
adcs x9, x9, x4
adcs x10, x10, x5
adcs x11, x11, x6
adc x12, x12, x7
b Lbeeu_loop
Lbeeu_B_greater_than_A:
// Continue with B > A =>
// B := B - A; X := X + Y; goto beginning of the loop
mov x25, x14
mov x26, x15
mov x27, x19
mov x28, x20
adds x3, x3, x8
adcs x4, x4, x9
adcs x5, x5, x10
adcs x6, x6, x11
adc x7, x7, x12
b Lbeeu_loop
Lbeeu_loop_end:
// The Euclid's algorithm loop ends when A == gcd(a,n);
// this would be 1, when a and n are co-prime (i.e. do not have a common factor).
// Since (-1)*Y*a == A (mod |n|), Y>0
// then out = -Y mod n
// Verify that A = 1 ==> (-1)*Y*a = A = 1 (mod |n|)
// Is A-1 == 0?
// If not, fail.
sub x14, x21, #1
orr x14, x14, x22
orr x14, x14, x23
orr x14, x14, x24
cbnz x14, Lbeeu_err
// If Y>n ==> Y:=Y-n
Lbeeu_reduction_loop:
// x_i := y_i - n_i (X is no longer needed, use it as temp)
// (x14 = 0 from above)
subs x3, x8, x0
sbcs x4, x9, x1
sbcs x5, x10, x2
sbcs x6, x11, x30
sbcs x7, x12, x14
// If result is non-negative (i.e., cs = carry set = no borrow),
// y_i := x_i; goto reduce again
// else
// y_i := y_i; continue
csel x8, x3, x8, cs
csel x9, x4, x9, cs
csel x10, x5, x10, cs
csel x11, x6, x11, cs
csel x12, x7, x12, cs
bcs Lbeeu_reduction_loop
// Now Y < n (Y cannot be equal to n, since the inverse cannot be 0)
// out = -Y = n-Y
subs x8, x0, x8
sbcs x9, x1, x9
sbcs x10, x2, x10
sbcs x11, x30, x11
// Save Y in output (out (x0) was saved on the stack)
ldr x3, [sp,#96]
stp x8, x9, [x3]
stp x10, x11, [x3,#16]
// return 1 (success)
mov x0, #1
b Lbeeu_finish
Lbeeu_err:
// return 0 (error)
eor x0, x0, x0
Lbeeu_finish:
// Restore callee-saved registers, except x0, x2
add sp,x29,#0
ldp x19,x20,[sp,#16]
ldp x21,x22,[sp,#32]
ldp x23,x24,[sp,#48]
ldp x25,x26,[sp,#64]
ldp x27,x28,[sp,#80]
ldp x29,x30,[sp],#112
AARCH64_VALIDATE_LINK_REGISTER
ret
#endif // !OPENSSL_NO_ASM && defined(OPENSSL_AARCH64) && defined(_WIN32)