blob: 54557e05855a416e95f62318344e6507100ed66d [file] [log] [blame]
/*
* Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/* ====================================================================
* Copyright 2005 Nokia. All rights reserved.
*
* The portions of the attached software ("Contribution") is developed by
* Nokia Corporation and is licensed pursuant to the OpenSSL open source
* license.
*
* The Contribution, originally written by Mika Kousa and Pasi Eronen of
* Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
* support (see RFC 4279) to OpenSSL.
*
* No patent licenses or other rights except those expressly stated in
* the OpenSSL open source license shall be deemed granted or received
* expressly, by implication, estoppel, or otherwise.
*
* No assurances are provided by Nokia that the Contribution does not
* infringe the patent or other intellectual property rights of any third
* party or that the license provides you with all the necessary rights
* to make use of the Contribution.
*
* THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
* ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
* SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
* OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
* OTHERWISE. */
#include <openssl/ssl.h>
#include <assert.h>
#include <string.h>
#include <utility>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/hmac.h>
#include <openssl/md5.h>
#include <openssl/mem.h>
#include <openssl/nid.h>
#include <openssl/rand.h>
#include "../crypto/fipsmodule/tls/internal.h"
#include "../crypto/internal.h"
#include "internal.h"
BSSL_NAMESPACE_BEGIN
bool tls1_prf(const EVP_MD *digest, Span<uint8_t> out,
Span<const uint8_t> secret, Span<const char> label,
Span<const uint8_t> seed1, Span<const uint8_t> seed2) {
return 1 == CRYPTO_tls1_prf(digest, out.data(), out.size(), secret.data(),
secret.size(), label.data(), label.size(),
seed1.data(), seed1.size(), seed2.data(),
seed2.size());
}
static bool get_key_block_lengths(const SSL *ssl, size_t *out_mac_secret_len,
size_t *out_key_len, size_t *out_iv_len,
const SSL_CIPHER *cipher) {
const EVP_AEAD *aead = NULL;
if (!ssl_cipher_get_evp_aead(&aead, out_mac_secret_len, out_iv_len, cipher,
ssl_protocol_version(ssl))) {
OPENSSL_PUT_ERROR(SSL, SSL_R_CIPHER_OR_HASH_UNAVAILABLE);
return false;
}
*out_key_len = EVP_AEAD_key_length(aead);
if (*out_mac_secret_len > 0) {
// For "stateful" AEADs (i.e. compatibility with pre-AEAD cipher suites) the
// key length reported by |EVP_AEAD_key_length| will include the MAC key
// bytes and initial implicit IV.
if (*out_key_len < *out_mac_secret_len + *out_iv_len) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return false;
}
*out_key_len -= *out_mac_secret_len + *out_iv_len;
}
return true;
}
static bool generate_key_block(const SSL *ssl, Span<uint8_t> out,
const SSL_SESSION *session) {
static const char kLabel[] = "key expansion";
auto label = MakeConstSpan(kLabel, sizeof(kLabel) - 1);
const EVP_MD *digest = ssl_session_get_digest(session);
// Note this function assumes that |session|'s key material corresponds to
// |ssl->s3->client_random| and |ssl->s3->server_random|.
return tls1_prf(digest, out, session->secret, label, ssl->s3->server_random,
ssl->s3->client_random);
}
bool tls1_configure_aead(SSL *ssl, evp_aead_direction_t direction,
Array<uint8_t> *key_block_cache,
const SSL_SESSION *session,
Span<const uint8_t> iv_override) {
size_t mac_secret_len, key_len, iv_len;
if (!get_key_block_lengths(ssl, &mac_secret_len, &key_len, &iv_len,
session->cipher)) {
return false;
}
// Ensure that |key_block_cache| is set up.
const size_t key_block_size = 2 * (mac_secret_len + key_len + iv_len);
if (key_block_cache->empty()) {
if (!key_block_cache->InitForOverwrite(key_block_size) ||
!generate_key_block(ssl, MakeSpan(*key_block_cache), session)) {
return false;
}
}
assert(key_block_cache->size() == key_block_size);
Span<const uint8_t> key_block = *key_block_cache;
Span<const uint8_t> mac_secret, key, iv;
if (direction == (ssl->server ? evp_aead_open : evp_aead_seal)) {
// Use the client write (server read) keys.
mac_secret = key_block.subspan(0, mac_secret_len);
key = key_block.subspan(2 * mac_secret_len, key_len);
iv = key_block.subspan(2 * mac_secret_len + 2 * key_len, iv_len);
} else {
// Use the server write (client read) keys.
mac_secret = key_block.subspan(mac_secret_len, mac_secret_len);
key = key_block.subspan(2 * mac_secret_len + key_len, key_len);
iv = key_block.subspan(2 * mac_secret_len + 2 * key_len + iv_len, iv_len);
}
if (!iv_override.empty()) {
if (iv_override.size() != iv_len) {
return false;
}
iv = iv_override;
}
UniquePtr<SSLAEADContext> aead_ctx = SSLAEADContext::Create(
direction, ssl->s3->version, session->cipher, key, mac_secret, iv);
if (!aead_ctx) {
return false;
}
if (direction == evp_aead_open) {
return ssl->method->set_read_state(ssl, ssl_encryption_application,
std::move(aead_ctx),
/*traffic_secret=*/{});
}
return ssl->method->set_write_state(ssl, ssl_encryption_application,
std::move(aead_ctx),
/*traffic_secret=*/{});
}
bool tls1_change_cipher_state(SSL_HANDSHAKE *hs,
evp_aead_direction_t direction) {
return tls1_configure_aead(hs->ssl, direction, &hs->key_block,
ssl_handshake_session(hs), {});
}
bool tls1_generate_master_secret(SSL_HANDSHAKE *hs, Span<uint8_t> out,
Span<const uint8_t> premaster) {
static const char kMasterSecretLabel[] = "master secret";
static const char kExtendedMasterSecretLabel[] = "extended master secret";
BSSL_CHECK(out.size() == SSL3_MASTER_SECRET_SIZE);
const SSL *ssl = hs->ssl;
if (hs->extended_master_secret) {
auto label = MakeConstSpan(kExtendedMasterSecretLabel,
sizeof(kExtendedMasterSecretLabel) - 1);
uint8_t digests[EVP_MAX_MD_SIZE];
size_t digests_len;
if (!hs->transcript.GetHash(digests, &digests_len) ||
!tls1_prf(hs->transcript.Digest(), out, premaster, label,
MakeConstSpan(digests, digests_len), {})) {
return false;
}
} else {
auto label =
MakeConstSpan(kMasterSecretLabel, sizeof(kMasterSecretLabel) - 1);
if (!tls1_prf(hs->transcript.Digest(), out, premaster, label,
ssl->s3->client_random, ssl->s3->server_random)) {
return false;
}
}
return true;
}
BSSL_NAMESPACE_END
using namespace bssl;
size_t SSL_get_key_block_len(const SSL *ssl) {
// See |SSL_generate_key_block|.
if (SSL_in_init(ssl) || ssl_protocol_version(ssl) > TLS1_2_VERSION) {
return 0;
}
size_t mac_secret_len, key_len, fixed_iv_len;
if (!get_key_block_lengths(ssl, &mac_secret_len, &key_len, &fixed_iv_len,
SSL_get_current_cipher(ssl))) {
ERR_clear_error();
return 0;
}
return 2 * (mac_secret_len + key_len + fixed_iv_len);
}
int SSL_generate_key_block(const SSL *ssl, uint8_t *out, size_t out_len) {
// Which cipher state to use is ambiguous during a handshake. In particular,
// there are points where read and write states are from different epochs.
// During a handshake, before ChangeCipherSpec, the encryption states may not
// match |ssl->s3->client_random| and |ssl->s3->server_random|.
if (SSL_in_init(ssl) || ssl_protocol_version(ssl) > TLS1_2_VERSION) {
OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
return generate_key_block(ssl, MakeSpan(out, out_len), SSL_get_session(ssl));
}
int SSL_export_keying_material(SSL *ssl, uint8_t *out, size_t out_len,
const char *label, size_t label_len,
const uint8_t *context, size_t context_len,
int use_context) {
// In TLS 1.3, the exporter may be used whenever the secret has been derived.
if (ssl->s3->version != 0 && ssl_protocol_version(ssl) >= TLS1_3_VERSION) {
if (ssl->s3->exporter_secret.empty()) {
OPENSSL_PUT_ERROR(SSL, SSL_R_HANDSHAKE_NOT_COMPLETE);
return 0;
}
if (!use_context) {
context = nullptr;
context_len = 0;
}
return tls13_export_keying_material(
ssl, MakeSpan(out, out_len), ssl->s3->exporter_secret,
MakeConstSpan(label, label_len), MakeConstSpan(context, context_len));
}
// Exporters may be used in False Start, where the handshake has progressed
// enough. Otherwise, they may not be used during a handshake.
if (SSL_in_init(ssl) && !SSL_in_false_start(ssl)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_HANDSHAKE_NOT_COMPLETE);
return 0;
}
size_t seed_len = 2 * SSL3_RANDOM_SIZE;
if (use_context) {
if (context_len >= 1u << 16) {
OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
return 0;
}
seed_len += 2 + context_len;
}
Array<uint8_t> seed;
if (!seed.InitForOverwrite(seed_len)) {
return 0;
}
OPENSSL_memcpy(seed.data(), ssl->s3->client_random, SSL3_RANDOM_SIZE);
OPENSSL_memcpy(seed.data() + SSL3_RANDOM_SIZE, ssl->s3->server_random,
SSL3_RANDOM_SIZE);
if (use_context) {
seed[2 * SSL3_RANDOM_SIZE] = static_cast<uint8_t>(context_len >> 8);
seed[2 * SSL3_RANDOM_SIZE + 1] = static_cast<uint8_t>(context_len);
OPENSSL_memcpy(seed.data() + 2 * SSL3_RANDOM_SIZE + 2, context,
context_len);
}
const SSL_SESSION *session = SSL_get_session(ssl);
const EVP_MD *digest = ssl_session_get_digest(session);
return tls1_prf(digest, MakeSpan(out, out_len), session->secret,
MakeConstSpan(label, label_len), seed, {});
}