blob: d3c829a9dc9f5c8fe58df7450cdd9b5876648bff [file] [log] [blame]
/*
* Copyright 2010-2016 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/base.h>
#include <string.h>
#include <openssl/mem.h>
#include "../../internal.h"
#include "../aes/internal.h"
#include "internal.h"
// kSizeTWithoutLower4Bits is a mask that can be used to zero the lower four
// bits of a |size_t|.
static const size_t kSizeTWithoutLower4Bits = (size_t) -16;
#define GCM_MUL(key, ctx, Xi) gcm_gmult_nohw((ctx)->Xi, (key)->Htable)
#define GHASH(key, ctx, in, len) \
gcm_ghash_nohw((ctx)->Xi, (key)->Htable, in, len)
// GHASH_CHUNK is "stride parameter" missioned to mitigate cache
// trashing effect. In other words idea is to hash data while it's
// still in L1 cache after encryption pass...
#define GHASH_CHUNK (3 * 1024)
#if defined(GHASH_ASM_X86_64) || defined(GHASH_ASM_X86)
static inline void gcm_reduce_1bit(u128 *V) {
if (sizeof(crypto_word_t) == 8) {
uint64_t T = UINT64_C(0xe100000000000000) & (0 - (V->hi & 1));
V->hi = (V->lo << 63) | (V->hi >> 1);
V->lo = (V->lo >> 1) ^ T;
} else {
uint32_t T = 0xe1000000U & (0 - (uint32_t)(V->hi & 1));
V->hi = (V->lo << 63) | (V->hi >> 1);
V->lo = (V->lo >> 1) ^ ((uint64_t)T << 32);
}
}
void gcm_init_ssse3(u128 Htable[16], const uint64_t H[2]) {
Htable[0].hi = 0;
Htable[0].lo = 0;
u128 V;
V.hi = H[1];
V.lo = H[0];
Htable[8] = V;
gcm_reduce_1bit(&V);
Htable[4] = V;
gcm_reduce_1bit(&V);
Htable[2] = V;
gcm_reduce_1bit(&V);
Htable[1] = V;
Htable[3].hi = V.hi ^ Htable[2].hi, Htable[3].lo = V.lo ^ Htable[2].lo;
V = Htable[4];
Htable[5].hi = V.hi ^ Htable[1].hi, Htable[5].lo = V.lo ^ Htable[1].lo;
Htable[6].hi = V.hi ^ Htable[2].hi, Htable[6].lo = V.lo ^ Htable[2].lo;
Htable[7].hi = V.hi ^ Htable[3].hi, Htable[7].lo = V.lo ^ Htable[3].lo;
V = Htable[8];
Htable[9].hi = V.hi ^ Htable[1].hi, Htable[9].lo = V.lo ^ Htable[1].lo;
Htable[10].hi = V.hi ^ Htable[2].hi, Htable[10].lo = V.lo ^ Htable[2].lo;
Htable[11].hi = V.hi ^ Htable[3].hi, Htable[11].lo = V.lo ^ Htable[3].lo;
Htable[12].hi = V.hi ^ Htable[4].hi, Htable[12].lo = V.lo ^ Htable[4].lo;
Htable[13].hi = V.hi ^ Htable[5].hi, Htable[13].lo = V.lo ^ Htable[5].lo;
Htable[14].hi = V.hi ^ Htable[6].hi, Htable[14].lo = V.lo ^ Htable[6].lo;
Htable[15].hi = V.hi ^ Htable[7].hi, Htable[15].lo = V.lo ^ Htable[7].lo;
// Treat |Htable| as a 16x16 byte table and transpose it. Thus, Htable[i]
// contains the i'th byte of j*H for all j.
uint8_t *Hbytes = (uint8_t *)Htable;
for (int i = 0; i < 16; i++) {
for (int j = 0; j < i; j++) {
uint8_t tmp = Hbytes[16*i + j];
Hbytes[16*i + j] = Hbytes[16*j + i];
Hbytes[16*j + i] = tmp;
}
}
}
#endif // GHASH_ASM_X86_64 || GHASH_ASM_X86
#ifdef GCM_FUNCREF
#undef GCM_MUL
#define GCM_MUL(key, ctx, Xi) (*gcm_gmult_p)((ctx)->Xi, (key)->Htable)
#undef GHASH
#define GHASH(key, ctx, in, len) \
(*gcm_ghash_p)((ctx)->Xi, (key)->Htable, in, len)
#endif // GCM_FUNCREF
#if defined(HW_GCM) && defined(OPENSSL_X86_64)
static size_t hw_gcm_encrypt(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, uint8_t ivec[16],
uint8_t Xi[16], const u128 Htable[16],
enum gcm_impl_t impl) {
switch (impl) {
case gcm_x86_vaes_avx10_256:
len &= kSizeTWithoutLower4Bits;
aes_gcm_enc_update_vaes_avx10_256(in, out, len, key, ivec, Htable, Xi);
CRYPTO_store_u32_be(&ivec[12], CRYPTO_load_u32_be(&ivec[12]) + len / 16);
return len;
case gcm_x86_vaes_avx10_512:
len &= kSizeTWithoutLower4Bits;
aes_gcm_enc_update_vaes_avx10_512(in, out, len, key, ivec, Htable, Xi);
CRYPTO_store_u32_be(&ivec[12], CRYPTO_load_u32_be(&ivec[12]) + len / 16);
return len;
default:
return aesni_gcm_encrypt(in, out, len, key, ivec, Htable, Xi);
}
}
static size_t hw_gcm_decrypt(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, uint8_t ivec[16],
uint8_t Xi[16], const u128 Htable[16],
enum gcm_impl_t impl) {
switch (impl) {
case gcm_x86_vaes_avx10_256:
len &= kSizeTWithoutLower4Bits;
aes_gcm_dec_update_vaes_avx10_256(in, out, len, key, ivec, Htable, Xi);
CRYPTO_store_u32_be(&ivec[12], CRYPTO_load_u32_be(&ivec[12]) + len / 16);
return len;
case gcm_x86_vaes_avx10_512:
len &= kSizeTWithoutLower4Bits;
aes_gcm_dec_update_vaes_avx10_512(in, out, len, key, ivec, Htable, Xi);
CRYPTO_store_u32_be(&ivec[12], CRYPTO_load_u32_be(&ivec[12]) + len / 16);
return len;
default:
return aesni_gcm_decrypt(in, out, len, key, ivec, Htable, Xi);
}
}
#endif // HW_GCM && X86_64
#if defined(HW_GCM) && defined(OPENSSL_AARCH64)
static size_t hw_gcm_encrypt(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, uint8_t ivec[16],
uint8_t Xi[16], const u128 Htable[16],
enum gcm_impl_t impl) {
const size_t len_blocks = len & kSizeTWithoutLower4Bits;
if (!len_blocks) {
return 0;
}
aes_gcm_enc_kernel(in, len_blocks * 8, out, Xi, ivec, key, Htable);
return len_blocks;
}
static size_t hw_gcm_decrypt(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, uint8_t ivec[16],
uint8_t Xi[16], const u128 Htable[16],
enum gcm_impl_t impl) {
const size_t len_blocks = len & kSizeTWithoutLower4Bits;
if (!len_blocks) {
return 0;
}
aes_gcm_dec_kernel(in, len_blocks * 8, out, Xi, ivec, key, Htable);
return len_blocks;
}
#endif // HW_GCM && AARCH64
void CRYPTO_ghash_init(gmult_func *out_mult, ghash_func *out_hash,
u128 out_table[16], const uint8_t gcm_key[16]) {
// H is passed to |gcm_init_*| as a pair of byte-swapped, 64-bit values.
uint64_t H[2] = {CRYPTO_load_u64_be(gcm_key),
CRYPTO_load_u64_be(gcm_key + 8)};
#if defined(GHASH_ASM_X86_64)
if (crypto_gcm_clmul_enabled()) {
if (CRYPTO_is_AVX512BW_capable() && CRYPTO_is_AVX512VL_capable() &&
CRYPTO_is_VPCLMULQDQ_capable() && CRYPTO_is_BMI2_capable()) {
gcm_init_vpclmulqdq_avx10(out_table, H);
*out_mult = gcm_gmult_vpclmulqdq_avx10;
if (CRYPTO_cpu_avoid_zmm_registers()) {
*out_hash = gcm_ghash_vpclmulqdq_avx10_256;
} else {
*out_hash = gcm_ghash_vpclmulqdq_avx10_512;
}
return;
}
if (CRYPTO_is_AVX_capable() && CRYPTO_is_MOVBE_capable()) {
gcm_init_avx(out_table, H);
*out_mult = gcm_gmult_avx;
*out_hash = gcm_ghash_avx;
return;
}
gcm_init_clmul(out_table, H);
*out_mult = gcm_gmult_clmul;
*out_hash = gcm_ghash_clmul;
return;
}
if (CRYPTO_is_SSSE3_capable()) {
gcm_init_ssse3(out_table, H);
*out_mult = gcm_gmult_ssse3;
*out_hash = gcm_ghash_ssse3;
return;
}
#elif defined(GHASH_ASM_X86)
if (crypto_gcm_clmul_enabled()) {
gcm_init_clmul(out_table, H);
*out_mult = gcm_gmult_clmul;
*out_hash = gcm_ghash_clmul;
return;
}
if (CRYPTO_is_SSSE3_capable()) {
gcm_init_ssse3(out_table, H);
*out_mult = gcm_gmult_ssse3;
*out_hash = gcm_ghash_ssse3;
return;
}
#elif defined(GHASH_ASM_ARM)
if (gcm_pmull_capable()) {
gcm_init_v8(out_table, H);
*out_mult = gcm_gmult_v8;
*out_hash = gcm_ghash_v8;
return;
}
if (gcm_neon_capable()) {
gcm_init_neon(out_table, H);
*out_mult = gcm_gmult_neon;
*out_hash = gcm_ghash_neon;
return;
}
#endif
gcm_init_nohw(out_table, H);
*out_mult = gcm_gmult_nohw;
*out_hash = gcm_ghash_nohw;
}
void CRYPTO_gcm128_init_aes_key(GCM128_KEY *gcm_key, const uint8_t *key,
size_t key_bytes) {
switch (key_bytes) {
case 16:
boringssl_fips_inc_counter(fips_counter_evp_aes_128_gcm);
break;
case 32:
boringssl_fips_inc_counter(fips_counter_evp_aes_256_gcm);
break;
}
OPENSSL_memset(gcm_key, 0, sizeof(*gcm_key));
int is_hwaes;
gcm_key->ctr = aes_ctr_set_key(&gcm_key->aes, &is_hwaes, &gcm_key->block, key,
key_bytes);
uint8_t ghash_key[16];
OPENSSL_memset(ghash_key, 0, sizeof(ghash_key));
gcm_key->block(ghash_key, ghash_key, &gcm_key->aes);
CRYPTO_ghash_init(&gcm_key->gmult, &gcm_key->ghash, gcm_key->Htable,
ghash_key);
#if !defined(OPENSSL_NO_ASM)
#if defined(OPENSSL_X86_64)
if (gcm_key->ghash == gcm_ghash_vpclmulqdq_avx10_256 &&
CRYPTO_is_VAES_capable()) {
gcm_key->impl = gcm_x86_vaes_avx10_256;
} else if (gcm_key->ghash == gcm_ghash_vpclmulqdq_avx10_512 &&
CRYPTO_is_VAES_capable()) {
gcm_key->impl = gcm_x86_vaes_avx10_512;
} else if (gcm_key->ghash == gcm_ghash_avx && is_hwaes) {
gcm_key->impl = gcm_x86_aesni;
}
#elif defined(OPENSSL_AARCH64)
if (gcm_pmull_capable() && is_hwaes) {
gcm_key->impl = gcm_arm64_aes;
}
#endif
#endif
}
void CRYPTO_gcm128_init_ctx(const GCM128_KEY *key, GCM128_CONTEXT *ctx,
const uint8_t *iv, size_t iv_len) {
#ifdef GCM_FUNCREF
void (*gcm_gmult_p)(uint8_t Xi[16], const u128 Htable[16]) = key->gmult;
#endif
OPENSSL_memset(&ctx->Yi, 0, sizeof(ctx->Yi));
OPENSSL_memset(&ctx->Xi, 0, sizeof(ctx->Xi));
ctx->len.aad = 0;
ctx->len.msg = 0;
ctx->ares = 0;
ctx->mres = 0;
uint32_t ctr;
if (iv_len == 12) {
OPENSSL_memcpy(ctx->Yi, iv, 12);
ctx->Yi[15] = 1;
ctr = 1;
} else {
uint64_t len0 = iv_len;
while (iv_len >= 16) {
CRYPTO_xor16(ctx->Yi, ctx->Yi, iv);
GCM_MUL(key, ctx, Yi);
iv += 16;
iv_len -= 16;
}
if (iv_len) {
for (size_t i = 0; i < iv_len; ++i) {
ctx->Yi[i] ^= iv[i];
}
GCM_MUL(key, ctx, Yi);
}
uint8_t len_block[16];
OPENSSL_memset(len_block, 0, 8);
CRYPTO_store_u64_be(len_block + 8, len0 << 3);
CRYPTO_xor16(ctx->Yi, ctx->Yi, len_block);
GCM_MUL(key, ctx, Yi);
ctr = CRYPTO_load_u32_be(ctx->Yi + 12);
}
key->block(ctx->Yi, ctx->EK0, &key->aes);
++ctr;
CRYPTO_store_u32_be(ctx->Yi + 12, ctr);
}
int CRYPTO_gcm128_aad(const GCM128_KEY *key, GCM128_CONTEXT *ctx,
const uint8_t *aad, size_t aad_len) {
#ifdef GCM_FUNCREF
void (*gcm_gmult_p)(uint8_t Xi[16], const u128 Htable[16]) = key->gmult;
void (*gcm_ghash_p)(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp,
size_t len) = key->ghash;
#endif
if (ctx->len.msg != 0) {
// The caller must have finished the AAD before providing other input.
return 0;
}
uint64_t alen = ctx->len.aad + aad_len;
if (alen > (UINT64_C(1) << 61) || (sizeof(aad_len) == 8 && alen < aad_len)) {
return 0;
}
ctx->len.aad = alen;
unsigned n = ctx->ares;
if (n) {
while (n && aad_len) {
ctx->Xi[n] ^= *(aad++);
--aad_len;
n = (n + 1) % 16;
}
if (n == 0) {
GCM_MUL(key, ctx, Xi);
} else {
ctx->ares = n;
return 1;
}
}
// Process a whole number of blocks.
size_t len_blocks = aad_len & kSizeTWithoutLower4Bits;
if (len_blocks != 0) {
GHASH(key, ctx, aad, len_blocks);
aad += len_blocks;
aad_len -= len_blocks;
}
// Process the remainder.
if (aad_len != 0) {
n = (unsigned int)aad_len;
for (size_t i = 0; i < aad_len; ++i) {
ctx->Xi[i] ^= aad[i];
}
}
ctx->ares = n;
return 1;
}
int CRYPTO_gcm128_encrypt(const GCM128_KEY *key, GCM128_CONTEXT *ctx,
const uint8_t *in, uint8_t *out, size_t len) {
#ifdef GCM_FUNCREF
void (*gcm_gmult_p)(uint8_t Xi[16], const u128 Htable[16]) = key->gmult;
void (*gcm_ghash_p)(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp,
size_t len) = key->ghash;
#endif
uint64_t mlen = ctx->len.msg + len;
if (mlen > ((UINT64_C(1) << 36) - 32) ||
(sizeof(len) == 8 && mlen < len)) {
return 0;
}
ctx->len.msg = mlen;
if (ctx->ares) {
// First call to encrypt finalizes GHASH(AAD)
GCM_MUL(key, ctx, Xi);
ctx->ares = 0;
}
unsigned n = ctx->mres;
if (n) {
while (n && len) {
ctx->Xi[n] ^= *(out++) = *(in++) ^ ctx->EKi[n];
--len;
n = (n + 1) % 16;
}
if (n == 0) {
GCM_MUL(key, ctx, Xi);
} else {
ctx->mres = n;
return 1;
}
}
#if defined(HW_GCM)
// Check |len| to work around a C language bug. See https://crbug.com/1019588.
if (key->impl != gcm_separate && len > 0) {
// |hw_gcm_encrypt| may not process all the input given to it. It may
// not process *any* of its input if it is deemed too small.
size_t bulk = hw_gcm_encrypt(in, out, len, &key->aes, ctx->Yi, ctx->Xi,
key->Htable, key->impl);
in += bulk;
out += bulk;
len -= bulk;
}
#endif
uint32_t ctr = CRYPTO_load_u32_be(ctx->Yi + 12);
ctr128_f stream = key->ctr;
while (len >= GHASH_CHUNK) {
(*stream)(in, out, GHASH_CHUNK / 16, &key->aes, ctx->Yi);
ctr += GHASH_CHUNK / 16;
CRYPTO_store_u32_be(ctx->Yi + 12, ctr);
GHASH(key, ctx, out, GHASH_CHUNK);
out += GHASH_CHUNK;
in += GHASH_CHUNK;
len -= GHASH_CHUNK;
}
size_t len_blocks = len & kSizeTWithoutLower4Bits;
if (len_blocks != 0) {
size_t j = len_blocks / 16;
(*stream)(in, out, j, &key->aes, ctx->Yi);
ctr += (uint32_t)j;
CRYPTO_store_u32_be(ctx->Yi + 12, ctr);
in += len_blocks;
len -= len_blocks;
GHASH(key, ctx, out, len_blocks);
out += len_blocks;
}
if (len) {
key->block(ctx->Yi, ctx->EKi, &key->aes);
++ctr;
CRYPTO_store_u32_be(ctx->Yi + 12, ctr);
while (len--) {
ctx->Xi[n] ^= out[n] = in[n] ^ ctx->EKi[n];
++n;
}
}
ctx->mres = n;
return 1;
}
int CRYPTO_gcm128_decrypt(const GCM128_KEY *key, GCM128_CONTEXT *ctx,
const uint8_t *in, uint8_t *out, size_t len) {
#ifdef GCM_FUNCREF
void (*gcm_gmult_p)(uint8_t Xi[16], const u128 Htable[16]) = key->gmult;
void (*gcm_ghash_p)(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp,
size_t len) = key->ghash;
#endif
uint64_t mlen = ctx->len.msg + len;
if (mlen > ((UINT64_C(1) << 36) - 32) ||
(sizeof(len) == 8 && mlen < len)) {
return 0;
}
ctx->len.msg = mlen;
if (ctx->ares) {
// First call to decrypt finalizes GHASH(AAD)
GCM_MUL(key, ctx, Xi);
ctx->ares = 0;
}
unsigned n = ctx->mres;
if (n) {
while (n && len) {
uint8_t c = *(in++);
*(out++) = c ^ ctx->EKi[n];
ctx->Xi[n] ^= c;
--len;
n = (n + 1) % 16;
}
if (n == 0) {
GCM_MUL(key, ctx, Xi);
} else {
ctx->mres = n;
return 1;
}
}
#if defined(HW_GCM)
// Check |len| to work around a C language bug. See https://crbug.com/1019588.
if (key->impl != gcm_separate && len > 0) {
// |hw_gcm_decrypt| may not process all the input given to it. It may
// not process *any* of its input if it is deemed too small.
size_t bulk = hw_gcm_decrypt(in, out, len, &key->aes, ctx->Yi, ctx->Xi,
key->Htable, key->impl);
in += bulk;
out += bulk;
len -= bulk;
}
#endif
uint32_t ctr = CRYPTO_load_u32_be(ctx->Yi + 12);
ctr128_f stream = key->ctr;
while (len >= GHASH_CHUNK) {
GHASH(key, ctx, in, GHASH_CHUNK);
(*stream)(in, out, GHASH_CHUNK / 16, &key->aes, ctx->Yi);
ctr += GHASH_CHUNK / 16;
CRYPTO_store_u32_be(ctx->Yi + 12, ctr);
out += GHASH_CHUNK;
in += GHASH_CHUNK;
len -= GHASH_CHUNK;
}
size_t len_blocks = len & kSizeTWithoutLower4Bits;
if (len_blocks != 0) {
size_t j = len_blocks / 16;
GHASH(key, ctx, in, len_blocks);
(*stream)(in, out, j, &key->aes, ctx->Yi);
ctr += (uint32_t)j;
CRYPTO_store_u32_be(ctx->Yi + 12, ctr);
out += len_blocks;
in += len_blocks;
len -= len_blocks;
}
if (len) {
key->block(ctx->Yi, ctx->EKi, &key->aes);
++ctr;
CRYPTO_store_u32_be(ctx->Yi + 12, ctr);
while (len--) {
uint8_t c = in[n];
ctx->Xi[n] ^= c;
out[n] = c ^ ctx->EKi[n];
++n;
}
}
ctx->mres = n;
return 1;
}
int CRYPTO_gcm128_finish(const GCM128_KEY *key, GCM128_CONTEXT *ctx,
const uint8_t *tag, size_t len) {
#ifdef GCM_FUNCREF
void (*gcm_gmult_p)(uint8_t Xi[16], const u128 Htable[16]) = key->gmult;
#endif
if (ctx->mres || ctx->ares) {
GCM_MUL(key, ctx, Xi);
}
uint8_t len_block[16];
CRYPTO_store_u64_be(len_block, ctx->len.aad << 3);
CRYPTO_store_u64_be(len_block + 8, ctx->len.msg << 3);
CRYPTO_xor16(ctx->Xi, ctx->Xi, len_block);
GCM_MUL(key, ctx, Xi);
CRYPTO_xor16(ctx->Xi, ctx->Xi, ctx->EK0);
if (tag && len <= sizeof(ctx->Xi)) {
return CRYPTO_memcmp(ctx->Xi, tag, len) == 0;
} else {
return 0;
}
}
void CRYPTO_gcm128_tag(const GCM128_KEY *key, GCM128_CONTEXT *ctx, uint8_t *tag,
size_t len) {
CRYPTO_gcm128_finish(key, ctx, NULL, 0);
OPENSSL_memcpy(tag, ctx->Xi, len <= sizeof(ctx->Xi) ? len : sizeof(ctx->Xi));
}
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
int crypto_gcm_clmul_enabled(void) {
#if defined(GHASH_ASM_X86) || defined(GHASH_ASM_X86_64)
return CRYPTO_is_FXSR_capable() && CRYPTO_is_PCLMUL_capable();
#else
return 0;
#endif
}
#endif