| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package runner |
| |
| import ( |
| "crypto" |
| "crypto/hmac" |
| "crypto/md5" |
| "crypto/sha1" |
| "crypto/sha256" |
| "encoding" |
| "hash" |
| |
| "golang.org/x/crypto/cryptobyte" |
| "golang.org/x/crypto/hkdf" |
| ) |
| |
| // copyHash returns a copy of |h|, which must be an instance of |hashType|. |
| func copyHash(h hash.Hash, hash crypto.Hash) hash.Hash { |
| // While hash.Hash is not copyable, the documentation says all standard |
| // library hash.Hash implementations implement BinaryMarshaler and |
| // BinaryUnmarshaler interfaces. |
| m, ok := h.(encoding.BinaryMarshaler) |
| if !ok { |
| panic("hash did not implement encoding.BinaryMarshaler") |
| } |
| data, err := m.MarshalBinary() |
| if err != nil { |
| panic(err) |
| } |
| ret := hash.New() |
| u, ok := ret.(encoding.BinaryUnmarshaler) |
| if !ok { |
| panic("hash did not implement BinaryUnmarshaler") |
| } |
| if err := u.UnmarshalBinary(data); err != nil { |
| panic(err) |
| } |
| return ret |
| } |
| |
| // Split a premaster secret in two as specified in RFC 4346, section 5. |
| func splitPreMasterSecret(secret []byte) (s1, s2 []byte) { |
| s1 = secret[0 : (len(secret)+1)/2] |
| s2 = secret[len(secret)/2:] |
| return |
| } |
| |
| // pHash implements the P_hash function, as defined in RFC 4346, section 5. |
| func pHash(result, secret, seed []byte, hash func() hash.Hash) { |
| h := hmac.New(hash, secret) |
| h.Write(seed) |
| a := h.Sum(nil) |
| |
| j := 0 |
| for j < len(result) { |
| h.Reset() |
| h.Write(a) |
| h.Write(seed) |
| b := h.Sum(nil) |
| todo := len(b) |
| if j+todo > len(result) { |
| todo = len(result) - j |
| } |
| copy(result[j:j+todo], b) |
| j += todo |
| |
| h.Reset() |
| h.Write(a) |
| a = h.Sum(nil) |
| } |
| } |
| |
| // prf10 implements the TLS 1.0 pseudo-random function, as defined in RFC 2246, section 5. |
| func prf10(result, secret, label, seed []byte) { |
| hashSHA1 := sha1.New |
| hashMD5 := md5.New |
| |
| labelAndSeed := make([]byte, len(label)+len(seed)) |
| copy(labelAndSeed, label) |
| copy(labelAndSeed[len(label):], seed) |
| |
| s1, s2 := splitPreMasterSecret(secret) |
| pHash(result, s1, labelAndSeed, hashMD5) |
| result2 := make([]byte, len(result)) |
| pHash(result2, s2, labelAndSeed, hashSHA1) |
| |
| for i, b := range result2 { |
| result[i] ^= b |
| } |
| } |
| |
| // prf12 implements the TLS 1.2 pseudo-random function, as defined in RFC 5246, section 5. |
| func prf12(hashFunc func() hash.Hash) func(result, secret, label, seed []byte) { |
| return func(result, secret, label, seed []byte) { |
| labelAndSeed := make([]byte, len(label)+len(seed)) |
| copy(labelAndSeed, label) |
| copy(labelAndSeed[len(label):], seed) |
| |
| pHash(result, secret, labelAndSeed, hashFunc) |
| } |
| } |
| |
| const ( |
| tlsRandomLength = 32 // Length of a random nonce in TLS 1.1. |
| masterSecretLength = 48 // Length of a master secret in TLS 1.1. |
| finishedVerifyLength = 12 // Length of verify_data in a Finished message. |
| ) |
| |
| var masterSecretLabel = []byte("master secret") |
| var extendedMasterSecretLabel = []byte("extended master secret") |
| var keyExpansionLabel = []byte("key expansion") |
| var clientFinishedLabel = []byte("client finished") |
| var serverFinishedLabel = []byte("server finished") |
| var finishedLabel = []byte("finished") |
| var channelIDLabel = []byte("TLS Channel ID signature\x00") |
| var channelIDResumeLabel = []byte("Resumption\x00") |
| |
| func prfForVersion(version uint16, suite *cipherSuite) func(result, secret, label, seed []byte) { |
| switch version { |
| case VersionTLS10, VersionTLS11: |
| return prf10 |
| case VersionTLS12: |
| return prf12(suite.hash().New) |
| } |
| panic("unknown version") |
| } |
| |
| // masterFromPreMasterSecret generates the master secret from the pre-master |
| // secret. See http://tools.ietf.org/html/rfc5246#section-8.1 |
| func masterFromPreMasterSecret(version uint16, suite *cipherSuite, preMasterSecret, clientRandom, serverRandom []byte) []byte { |
| var seed [tlsRandomLength * 2]byte |
| copy(seed[0:len(clientRandom)], clientRandom) |
| copy(seed[len(clientRandom):], serverRandom) |
| masterSecret := make([]byte, masterSecretLength) |
| prfForVersion(version, suite)(masterSecret, preMasterSecret, masterSecretLabel, seed[0:]) |
| return masterSecret |
| } |
| |
| // extendedMasterFromPreMasterSecret generates the master secret from the |
| // pre-master secret when the Triple Handshake fix is in effect. See |
| // https://tools.ietf.org/html/rfc7627 |
| func extendedMasterFromPreMasterSecret(version uint16, suite *cipherSuite, preMasterSecret []byte, h finishedHash) []byte { |
| masterSecret := make([]byte, masterSecretLength) |
| prfForVersion(version, suite)(masterSecret, preMasterSecret, extendedMasterSecretLabel, h.Sum()) |
| return masterSecret |
| } |
| |
| // keysFromMasterSecret generates the connection keys from the master |
| // secret, given the lengths of the MAC key, cipher key and IV, as defined in |
| // RFC 2246, section 6.3. |
| func keysFromMasterSecret(version uint16, suite *cipherSuite, masterSecret, clientRandom, serverRandom []byte, macLen, keyLen, ivLen int) (clientMAC, serverMAC, clientKey, serverKey, clientIV, serverIV []byte) { |
| var seed [tlsRandomLength * 2]byte |
| copy(seed[0:len(clientRandom)], serverRandom) |
| copy(seed[len(serverRandom):], clientRandom) |
| |
| n := 2*macLen + 2*keyLen + 2*ivLen |
| keyMaterial := make([]byte, n) |
| prfForVersion(version, suite)(keyMaterial, masterSecret, keyExpansionLabel, seed[0:]) |
| clientMAC = keyMaterial[:macLen] |
| keyMaterial = keyMaterial[macLen:] |
| serverMAC = keyMaterial[:macLen] |
| keyMaterial = keyMaterial[macLen:] |
| clientKey = keyMaterial[:keyLen] |
| keyMaterial = keyMaterial[keyLen:] |
| serverKey = keyMaterial[:keyLen] |
| keyMaterial = keyMaterial[keyLen:] |
| clientIV = keyMaterial[:ivLen] |
| keyMaterial = keyMaterial[ivLen:] |
| serverIV = keyMaterial[:ivLen] |
| return |
| } |
| |
| func newFinishedHash(wireVersion uint16, isDTLS bool, cipherSuite *cipherSuite) finishedHash { |
| version, ok := wireToVersion(wireVersion, isDTLS) |
| if !ok { |
| panic("unknown version") |
| } |
| |
| var ret finishedHash |
| if version >= VersionTLS12 { |
| ret.hash = cipherSuite.hash().New() |
| |
| if version == VersionTLS12 { |
| ret.prf = prf12(cipherSuite.hash().New) |
| } else { |
| ret.secret = make([]byte, ret.hash.Size()) |
| } |
| } else { |
| ret.hash = sha1.New() |
| ret.md5 = md5.New() |
| |
| ret.prf = prf10 |
| } |
| |
| ret.suite = cipherSuite |
| ret.buffer = []byte{} |
| ret.version = version |
| ret.wireVersion = wireVersion |
| ret.isDTLS = isDTLS |
| return ret |
| } |
| |
| // A finishedHash calculates the hash of a set of handshake messages suitable |
| // for including in a Finished message. |
| type finishedHash struct { |
| suite *cipherSuite |
| |
| // hash maintains a running hash of handshake messages. In TLS 1.2 and up, |
| // the hash is determined from suite.hash(). In TLS 1.0 and 1.1, this is the |
| // SHA-1 half of the MD5/SHA-1 concatenation. |
| hash hash.Hash |
| |
| // md5 is the MD5 half of the TLS 1.0 and 1.1 MD5/SHA1 concatenation. |
| md5 hash.Hash |
| |
| // In TLS 1.2, a full buffer is required. |
| buffer []byte |
| |
| version uint16 |
| wireVersion uint16 |
| isDTLS bool |
| prf func(result, secret, label, seed []byte) |
| |
| // secret, in TLS 1.3, is the running input secret. |
| secret []byte |
| } |
| |
| func (h *finishedHash) UpdateForHelloRetryRequest() { |
| data := cryptobyte.NewBuilder(nil) |
| data.AddUint8(typeMessageHash) |
| data.AddUint24(uint32(h.hash.Size())) |
| data.AddBytes(h.Sum()) |
| h.hash = h.suite.hash().New() |
| if h.buffer != nil { |
| h.buffer = []byte{} |
| } |
| h.Write(data.BytesOrPanic()) |
| } |
| |
| func (h *finishedHash) Write(msg []byte) (n int, err error) { |
| h.hash.Write(msg) |
| |
| if h.version < VersionTLS12 { |
| h.md5.Write(msg) |
| } |
| |
| if h.buffer != nil { |
| h.buffer = append(h.buffer, msg...) |
| } |
| |
| return len(msg), nil |
| } |
| |
| // WriteHandshake appends |msg| to the hash, which must be a serialized |
| // handshake message with a TLS header. In DTLS, the header is rewritten to a |
| // DTLS header with |seqno| as the sequence number. |
| func (h *finishedHash) WriteHandshake(msg []byte, seqno uint16) { |
| if h.isDTLS && h.version <= VersionTLS12 { |
| // This is somewhat hacky. DTLS <= 1.2 hashes a slightly different format. (DTLS 1.3 uses the same format as TLS.) |
| // First, the TLS header. |
| h.Write(msg[:4]) |
| // Then the sequence number and reassembled fragment offset (always 0). |
| h.Write([]byte{byte(seqno >> 8), byte(seqno), 0, 0, 0}) |
| // Then the reassembled fragment (always equal to the message length). |
| h.Write(msg[1:4]) |
| // And then the message body. |
| h.Write(msg[4:]) |
| } else { |
| h.Write(msg) |
| } |
| } |
| |
| func (h finishedHash) Sum() []byte { |
| if h.version >= VersionTLS12 { |
| return h.hash.Sum(nil) |
| } |
| |
| out := make([]byte, 0, md5.Size+sha1.Size) |
| out = h.md5.Sum(out) |
| return h.hash.Sum(out) |
| } |
| |
| // clientSum returns the contents of the verify_data member of a client's |
| // Finished message. |
| func (h finishedHash) clientSum(baseKey []byte) []byte { |
| if h.version < VersionTLS13 { |
| out := make([]byte, finishedVerifyLength) |
| h.prf(out, baseKey, clientFinishedLabel, h.Sum()) |
| return out |
| } |
| |
| clientFinishedKey := hkdfExpandLabel(h.suite.hash(), baseKey, finishedLabel, nil, h.hash.Size(), h.isDTLS) |
| finishedHMAC := hmac.New(h.suite.hash().New, clientFinishedKey) |
| finishedHMAC.Write(h.appendContextHashes(nil)) |
| return finishedHMAC.Sum(nil) |
| } |
| |
| // serverSum returns the contents of the verify_data member of a server's |
| // Finished message. |
| func (h finishedHash) serverSum(baseKey []byte) []byte { |
| if h.version < VersionTLS13 { |
| out := make([]byte, finishedVerifyLength) |
| h.prf(out, baseKey, serverFinishedLabel, h.Sum()) |
| return out |
| } |
| |
| serverFinishedKey := hkdfExpandLabel(h.suite.hash(), baseKey, finishedLabel, nil, h.hash.Size(), h.isDTLS) |
| finishedHMAC := hmac.New(h.suite.hash().New, serverFinishedKey) |
| finishedHMAC.Write(h.appendContextHashes(nil)) |
| return finishedHMAC.Sum(nil) |
| } |
| |
| // hashForChannelID returns the hash to be signed for TLS Channel |
| // ID. If a resumption, resumeHash has the previous handshake |
| // hash. Otherwise, it is nil. |
| func (h finishedHash) hashForChannelID(resumeHash []byte) []byte { |
| hash := sha256.New() |
| hash.Write(channelIDLabel) |
| if resumeHash != nil { |
| hash.Write(channelIDResumeLabel) |
| hash.Write(resumeHash) |
| } |
| hash.Write(h.Sum()) |
| return hash.Sum(nil) |
| } |
| |
| // discardHandshakeBuffer is called when there is no more need to |
| // buffer the entirety of the handshake messages. |
| func (h *finishedHash) discardHandshakeBuffer() { |
| h.buffer = nil |
| } |
| |
| // zeroSecretTLS13 returns the default all zeros secret for TLS 1.3, used when a |
| // given secret is not available in the handshake. See RFC 8446, section 7.1. |
| func (h *finishedHash) zeroSecret() []byte { |
| return make([]byte, h.hash.Size()) |
| } |
| |
| // addEntropy incorporates ikm into the running TLS 1.3 secret with HKDF-Expand. |
| func (h *finishedHash) addEntropy(ikm []byte) { |
| h.secret = hkdf.Extract(h.suite.hash().New, ikm, h.secret) |
| } |
| |
| func (h *finishedHash) nextSecret() { |
| h.secret = hkdfExpandLabel(h.suite.hash(), h.secret, []byte("derived"), h.suite.hash().New().Sum(nil), h.hash.Size(), h.isDTLS) |
| } |
| |
| // hkdfExpandLabel implements TLS 1.3's HKDF-Expand-Label function, as defined |
| // in section 7.1 of RFC 8446. |
| func hkdfExpandLabel(hash crypto.Hash, secret, label, hashValue []byte, length int, isDTLS bool) []byte { |
| if len(label) > 255 || len(hashValue) > 255 { |
| panic("hkdfExpandLabel: label or hashValue too long") |
| } |
| |
| versionLabel := []byte("tls13 ") |
| if isDTLS { |
| versionLabel = []byte("dtls13") |
| } |
| hkdfLabel := make([]byte, 3+len(versionLabel)+len(label)+1+len(hashValue)) |
| x := hkdfLabel |
| x[0] = byte(length >> 8) |
| x[1] = byte(length) |
| x[2] = byte(len(versionLabel) + len(label)) |
| x = x[3:] |
| copy(x, versionLabel) |
| x = x[len(versionLabel):] |
| copy(x, label) |
| x = x[len(label):] |
| x[0] = byte(len(hashValue)) |
| copy(x[1:], hashValue) |
| ret := make([]byte, length) |
| if n, err := hkdf.Expand(hash.New, secret, hkdfLabel).Read(ret); err != nil || n != length { |
| panic("hkdfExpandLabel: hkdf.Expand unexpectedly failed") |
| } |
| return ret |
| } |
| |
| // appendContextHashes returns the concatenation of the handshake hash and the |
| // resumption context hash, as used in TLS 1.3. |
| func (h *finishedHash) appendContextHashes(b []byte) []byte { |
| b = h.hash.Sum(b) |
| return b |
| } |
| |
| var ( |
| externalPSKBinderLabel = []byte("ext binder") |
| resumptionPSKBinderLabel = []byte("res binder") |
| earlyTrafficLabel = []byte("c e traffic") |
| clientHandshakeTrafficLabel = []byte("c hs traffic") |
| serverHandshakeTrafficLabel = []byte("s hs traffic") |
| clientApplicationTrafficLabel = []byte("c ap traffic") |
| serverApplicationTrafficLabel = []byte("s ap traffic") |
| applicationTrafficLabel = []byte("traffic upd") |
| earlyExporterLabel = []byte("e exp master") |
| exporterLabel = []byte("exp master") |
| resumptionLabel = []byte("res master") |
| |
| resumptionPSKLabel = []byte("resumption") |
| |
| echAcceptConfirmationLabel = []byte("ech accept confirmation") |
| echAcceptConfirmationHRRLabel = []byte("hrr ech accept confirmation") |
| ) |
| |
| // deriveSecret implements TLS 1.3's Derive-Secret function, as defined in |
| // section 7.1 of RFC8446. |
| func (h *finishedHash) deriveSecret(label []byte) []byte { |
| return hkdfExpandLabel(h.suite.hash(), h.secret, label, h.appendContextHashes(nil), h.hash.Size(), h.isDTLS) |
| } |
| |
| // echConfirmation computes the ECH accept confirmation signal, as defined in |
| // sections 7.2 and 7.2.1 of draft-ietf-tls-esni-13. The transcript hash is |
| // computed by concatenating |h| with |extraMessages|. |
| func (h *finishedHash) echAcceptConfirmation(clientRandom, label, extraMessages []byte) []byte { |
| secret := hkdf.Extract(h.suite.hash().New, clientRandom, h.zeroSecret()) |
| hashCopy := copyHash(h.hash, h.suite.hash()) |
| hashCopy.Write(extraMessages) |
| return hkdfExpandLabel(h.suite.hash(), secret, label, hashCopy.Sum(nil), echAcceptConfirmationLength, h.isDTLS) |
| } |
| |
| // The following are context strings for CertificateVerify in TLS 1.3. |
| var ( |
| clientCertificateVerifyContextTLS13 = []byte("TLS 1.3, client CertificateVerify") |
| serverCertificateVerifyContextTLS13 = []byte("TLS 1.3, server CertificateVerify") |
| channelIDContextTLS13 = []byte("TLS 1.3, Channel ID") |
| ) |
| |
| // certificateVerifyMessage returns the input to be signed for CertificateVerify |
| // in TLS 1.3. |
| func (h *finishedHash) certificateVerifyInput(context []byte) []byte { |
| const paddingLen = 64 |
| b := make([]byte, paddingLen, paddingLen+len(context)+1+2*h.hash.Size()) |
| for i := 0; i < paddingLen; i++ { |
| b[i] = 32 |
| } |
| b = append(b, context...) |
| b = append(b, 0) |
| b = h.appendContextHashes(b) |
| return b |
| } |
| |
| type trafficDirection int |
| |
| const ( |
| clientWrite trafficDirection = iota |
| serverWrite |
| ) |
| |
| var ( |
| keyTLS13 = []byte("key") |
| ivTLS13 = []byte("iv") |
| ) |
| |
| // deriveTrafficAEAD derives traffic keys and constructs an AEAD given a traffic |
| // secret. |
| func deriveTrafficAEAD(version uint16, suite *cipherSuite, secret []byte, side trafficDirection, isDTLS bool) any { |
| key := hkdfExpandLabel(suite.hash(), secret, keyTLS13, nil, suite.keyLen, isDTLS) |
| iv := hkdfExpandLabel(suite.hash(), secret, ivTLS13, nil, suite.ivLen(version), isDTLS) |
| |
| return suite.aead(version, key, iv) |
| } |
| |
| func updateTrafficSecret(hash crypto.Hash, version uint16, secret []byte, isDTLS bool) []byte { |
| return hkdfExpandLabel(hash, secret, applicationTrafficLabel, nil, hash.Size(), isDTLS) |
| } |
| |
| func computePSKBinder(psk []byte, version uint16, isDTLS bool, label []byte, cipherSuite *cipherSuite, clientHello, helloRetryRequest, truncatedHello []byte) []byte { |
| finishedHash := newFinishedHash(version, isDTLS, cipherSuite) |
| finishedHash.addEntropy(psk) |
| binderKey := finishedHash.deriveSecret(label) |
| finishedHash.Write(clientHello) |
| if len(helloRetryRequest) != 0 { |
| finishedHash.UpdateForHelloRetryRequest() |
| } |
| finishedHash.Write(helloRetryRequest) |
| finishedHash.Write(truncatedHello) |
| return finishedHash.clientSum(binderKey) |
| } |
| |
| func deriveSessionPSK(suite *cipherSuite, version uint16, masterSecret []byte, nonce []byte, isDTLS bool) []byte { |
| hash := suite.hash() |
| return hkdfExpandLabel(hash, masterSecret, resumptionPSKLabel, nonce, hash.Size(), isDTLS) |
| } |