| #!/usr/bin/env perl |
| |
| # ==================================================================== |
| # [Re]written by Andy Polyakov <appro@openssl.org> for the OpenSSL |
| # project. The module is, however, dual licensed under OpenSSL and |
| # CRYPTOGAMS licenses depending on where you obtain it. For further |
| # details see http://www.openssl.org/~appro/cryptogams/. |
| # ==================================================================== |
| |
| # "[Re]written" was achieved in two major overhauls. In 2004 BODY_* |
| # functions were re-implemented to address P4 performance issue [see |
| # commentary below], and in 2006 the rest was rewritten in order to |
| # gain freedom to liberate licensing terms. |
| |
| # January, September 2004. |
| # |
| # It was noted that Intel IA-32 C compiler generates code which |
| # performs ~30% *faster* on P4 CPU than original *hand-coded* |
| # SHA1 assembler implementation. To address this problem (and |
| # prove that humans are still better than machines:-), the |
| # original code was overhauled, which resulted in following |
| # performance changes: |
| # |
| # compared with original compared with Intel cc |
| # assembler impl. generated code |
| # Pentium -16% +48% |
| # PIII/AMD +8% +16% |
| # P4 +85%(!) +45% |
| # |
| # As you can see Pentium came out as looser:-( Yet I reckoned that |
| # improvement on P4 outweights the loss and incorporate this |
| # re-tuned code to 0.9.7 and later. |
| # ---------------------------------------------------------------- |
| # <appro@fy.chalmers.se> |
| |
| # August 2009. |
| # |
| # George Spelvin has tipped that F_40_59(b,c,d) can be rewritten as |
| # '(c&d) + (b&(c^d))', which allows to accumulate partial results |
| # and lighten "pressure" on scratch registers. This resulted in |
| # >12% performance improvement on contemporary AMD cores (with no |
| # degradation on other CPUs:-). Also, the code was revised to maximize |
| # "distance" between instructions producing input to 'lea' instruction |
| # and the 'lea' instruction itself, which is essential for Intel Atom |
| # core and resulted in ~15% improvement. |
| |
| # October 2010. |
| # |
| # Add SSSE3, Supplemental[!] SSE3, implementation. The idea behind it |
| # is to offload message schedule denoted by Wt in NIST specification, |
| # or Xupdate in OpenSSL source, to SIMD unit. The idea is not novel, |
| # and in SSE2 context was first explored by Dean Gaudet in 2004, see |
| # http://arctic.org/~dean/crypto/sha1.html. Since then several things |
| # have changed that made it interesting again: |
| # |
| # a) XMM units became faster and wider; |
| # b) instruction set became more versatile; |
| # c) an important observation was made by Max Locktykhin, which made |
| # it possible to reduce amount of instructions required to perform |
| # the operation in question, for further details see |
| # http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/. |
| |
| # April 2011. |
| # |
| # Add AVX code path, probably most controversial... The thing is that |
| # switch to AVX alone improves performance by as little as 4% in |
| # comparison to SSSE3 code path. But below result doesn't look like |
| # 4% improvement... Trouble is that Sandy Bridge decodes 'ro[rl]' as |
| # pair of µ-ops, and it's the additional µ-ops, two per round, that |
| # make it run slower than Core2 and Westmere. But 'sh[rl]d' is decoded |
| # as single µ-op by Sandy Bridge and it's replacing 'ro[rl]' with |
| # equivalent 'sh[rl]d' that is responsible for the impressive 5.1 |
| # cycles per processed byte. But 'sh[rl]d' is not something that used |
| # to be fast, nor does it appear to be fast in upcoming Bulldozer |
| # [according to its optimization manual]. Which is why AVX code path |
| # is guarded by *both* AVX and synthetic bit denoting Intel CPUs. |
| # One can argue that it's unfair to AMD, but without 'sh[rl]d' it |
| # makes no sense to keep the AVX code path. If somebody feels that |
| # strongly, it's probably more appropriate to discuss possibility of |
| # using vector rotate XOP on AMD... |
| |
| # March 2014. |
| # |
| # Add support for Intel SHA Extensions. |
| |
| ###################################################################### |
| # Current performance is summarized in following table. Numbers are |
| # CPU clock cycles spent to process single byte (less is better). |
| # |
| # x86 SSSE3 AVX |
| # Pentium 15.7 - |
| # PIII 11.5 - |
| # P4 10.6 - |
| # AMD K8 7.1 - |
| # Core2 7.3 6.0/+22% - |
| # Westmere 7.3 5.5/+33% - |
| # Sandy Bridge 8.8 6.2/+40% 5.1(**)/+73% |
| # Ivy Bridge 7.2 4.8/+51% 4.7(**)/+53% |
| # Haswell 6.5 4.3/+51% 4.1(**)/+58% |
| # Bulldozer 11.6 6.0/+92% |
| # VIA Nano 10.6 7.5/+41% |
| # Atom 12.5 9.3(*)/+35% |
| # Silvermont 14.5 9.9(*)/+46% |
| # |
| # (*) Loop is 1056 instructions long and expected result is ~8.25. |
| # The discrepancy is because of front-end limitations, so |
| # called MS-ROM penalties, and on Silvermont even rotate's |
| # limited parallelism. |
| # |
| # (**) As per above comment, the result is for AVX *plus* sh[rl]d. |
| |
| $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; |
| push(@INC,"${dir}","${dir}../../perlasm"); |
| require "x86asm.pl"; |
| |
| &asm_init($ARGV[0],"sha1-586.pl",$ARGV[$#ARGV] eq "386"); |
| |
| $xmm=$ymm=0; |
| for (@ARGV) { $xmm=1 if (/-DOPENSSL_IA32_SSE2/); } |
| |
| # In upstream, this is controlled by shelling out to the compiler to check |
| # versions, but BoringSSL is intended to be used with pre-generated perlasm |
| # output, so this isn't useful anyway. |
| $ymm = 1; |
| |
| $ymm = 0 unless ($xmm); |
| |
| $shaext=$xmm; ### set to zero if compiling for 1.0.1 |
| |
| # TODO(davidben): Consider enabling the Intel SHA Extensions code once it's |
| # been tested. |
| $shaext = 0; |
| |
| &external_label("OPENSSL_ia32cap_P") if ($xmm); |
| |
| |
| $A="eax"; |
| $B="ebx"; |
| $C="ecx"; |
| $D="edx"; |
| $E="edi"; |
| $T="esi"; |
| $tmp1="ebp"; |
| |
| @V=($A,$B,$C,$D,$E,$T); |
| |
| $alt=0; # 1 denotes alternative IALU implementation, which performs |
| # 8% *worse* on P4, same on Westmere and Atom, 2% better on |
| # Sandy Bridge... |
| |
| sub BODY_00_15 |
| { |
| local($n,$a,$b,$c,$d,$e,$f)=@_; |
| |
| &comment("00_15 $n"); |
| |
| &mov($f,$c); # f to hold F_00_19(b,c,d) |
| if ($n==0) { &mov($tmp1,$a); } |
| else { &mov($a,$tmp1); } |
| &rotl($tmp1,5); # tmp1=ROTATE(a,5) |
| &xor($f,$d); |
| &add($tmp1,$e); # tmp1+=e; |
| &mov($e,&swtmp($n%16)); # e becomes volatile and is loaded |
| # with xi, also note that e becomes |
| # f in next round... |
| &and($f,$b); |
| &rotr($b,2); # b=ROTATE(b,30) |
| &xor($f,$d); # f holds F_00_19(b,c,d) |
| &lea($tmp1,&DWP(0x5a827999,$tmp1,$e)); # tmp1+=K_00_19+xi |
| |
| if ($n==15) { &mov($e,&swtmp(($n+1)%16));# pre-fetch f for next round |
| &add($f,$tmp1); } # f+=tmp1 |
| else { &add($tmp1,$f); } # f becomes a in next round |
| &mov($tmp1,$a) if ($alt && $n==15); |
| } |
| |
| sub BODY_16_19 |
| { |
| local($n,$a,$b,$c,$d,$e,$f)=@_; |
| |
| &comment("16_19 $n"); |
| |
| if ($alt) { |
| &xor($c,$d); |
| &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) |
| &and($tmp1,$c); # tmp1 to hold F_00_19(b,c,d), b&=c^d |
| &xor($f,&swtmp(($n+8)%16)); |
| &xor($tmp1,$d); # tmp1=F_00_19(b,c,d) |
| &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd |
| &rotl($f,1); # f=ROTATE(f,1) |
| &add($e,$tmp1); # e+=F_00_19(b,c,d) |
| &xor($c,$d); # restore $c |
| &mov($tmp1,$a); # b in next round |
| &rotr($b,$n==16?2:7); # b=ROTATE(b,30) |
| &mov(&swtmp($n%16),$f); # xi=f |
| &rotl($a,5); # ROTATE(a,5) |
| &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e |
| &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round |
| &add($f,$a); # f+=ROTATE(a,5) |
| } else { |
| &mov($tmp1,$c); # tmp1 to hold F_00_19(b,c,d) |
| &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) |
| &xor($tmp1,$d); |
| &xor($f,&swtmp(($n+8)%16)); |
| &and($tmp1,$b); |
| &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd |
| &rotl($f,1); # f=ROTATE(f,1) |
| &xor($tmp1,$d); # tmp1=F_00_19(b,c,d) |
| &add($e,$tmp1); # e+=F_00_19(b,c,d) |
| &mov($tmp1,$a); |
| &rotr($b,2); # b=ROTATE(b,30) |
| &mov(&swtmp($n%16),$f); # xi=f |
| &rotl($tmp1,5); # ROTATE(a,5) |
| &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e |
| &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round |
| &add($f,$tmp1); # f+=ROTATE(a,5) |
| } |
| } |
| |
| sub BODY_20_39 |
| { |
| local($n,$a,$b,$c,$d,$e,$f)=@_; |
| local $K=($n<40)?0x6ed9eba1:0xca62c1d6; |
| |
| &comment("20_39 $n"); |
| |
| if ($alt) { |
| &xor($tmp1,$c); # tmp1 to hold F_20_39(b,c,d), b^=c |
| &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) |
| &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d) |
| &xor($f,&swtmp(($n+8)%16)); |
| &add($e,$tmp1); # e+=F_20_39(b,c,d) |
| &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd |
| &rotl($f,1); # f=ROTATE(f,1) |
| &mov($tmp1,$a); # b in next round |
| &rotr($b,7); # b=ROTATE(b,30) |
| &mov(&swtmp($n%16),$f) if($n<77);# xi=f |
| &rotl($a,5); # ROTATE(a,5) |
| &xor($b,$c) if($n==39);# warm up for BODY_40_59 |
| &and($tmp1,$b) if($n==39); |
| &lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY |
| &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round |
| &add($f,$a); # f+=ROTATE(a,5) |
| &rotr($a,5) if ($n==79); |
| } else { |
| &mov($tmp1,$b); # tmp1 to hold F_20_39(b,c,d) |
| &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) |
| &xor($tmp1,$c); |
| &xor($f,&swtmp(($n+8)%16)); |
| &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d) |
| &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd |
| &rotl($f,1); # f=ROTATE(f,1) |
| &add($e,$tmp1); # e+=F_20_39(b,c,d) |
| &rotr($b,2); # b=ROTATE(b,30) |
| &mov($tmp1,$a); |
| &rotl($tmp1,5); # ROTATE(a,5) |
| &mov(&swtmp($n%16),$f) if($n<77);# xi=f |
| &lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY |
| &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round |
| &add($f,$tmp1); # f+=ROTATE(a,5) |
| } |
| } |
| |
| sub BODY_40_59 |
| { |
| local($n,$a,$b,$c,$d,$e,$f)=@_; |
| |
| &comment("40_59 $n"); |
| |
| if ($alt) { |
| &add($e,$tmp1); # e+=b&(c^d) |
| &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) |
| &mov($tmp1,$d); |
| &xor($f,&swtmp(($n+8)%16)); |
| &xor($c,$d); # restore $c |
| &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd |
| &rotl($f,1); # f=ROTATE(f,1) |
| &and($tmp1,$c); |
| &rotr($b,7); # b=ROTATE(b,30) |
| &add($e,$tmp1); # e+=c&d |
| &mov($tmp1,$a); # b in next round |
| &mov(&swtmp($n%16),$f); # xi=f |
| &rotl($a,5); # ROTATE(a,5) |
| &xor($b,$c) if ($n<59); |
| &and($tmp1,$b) if ($n<59);# tmp1 to hold F_40_59(b,c,d) |
| &lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e+(b&(c^d)) |
| &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round |
| &add($f,$a); # f+=ROTATE(a,5) |
| } else { |
| &mov($tmp1,$c); # tmp1 to hold F_40_59(b,c,d) |
| &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) |
| &xor($tmp1,$d); |
| &xor($f,&swtmp(($n+8)%16)); |
| &and($tmp1,$b); |
| &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd |
| &rotl($f,1); # f=ROTATE(f,1) |
| &add($tmp1,$e); # b&(c^d)+=e |
| &rotr($b,2); # b=ROTATE(b,30) |
| &mov($e,$a); # e becomes volatile |
| &rotl($e,5); # ROTATE(a,5) |
| &mov(&swtmp($n%16),$f); # xi=f |
| &lea($f,&DWP(0x8f1bbcdc,$f,$tmp1));# f+=K_40_59+e+(b&(c^d)) |
| &mov($tmp1,$c); |
| &add($f,$e); # f+=ROTATE(a,5) |
| &and($tmp1,$d); |
| &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round |
| &add($f,$tmp1); # f+=c&d |
| } |
| } |
| |
| &function_begin("sha1_block_data_order"); |
| if ($xmm) { |
| &static_label("shaext_shortcut") if ($shaext); |
| &static_label("ssse3_shortcut"); |
| &static_label("avx_shortcut") if ($ymm); |
| &static_label("K_XX_XX"); |
| |
| &call (&label("pic_point")); # make it PIC! |
| &set_label("pic_point"); |
| &blindpop($tmp1); |
| &picmeup($T,"OPENSSL_ia32cap_P",$tmp1,&label("pic_point")); |
| &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1)); |
| |
| &mov ($A,&DWP(0,$T)); |
| &mov ($D,&DWP(4,$T)); |
| &test ($D,1<<9); # check SSSE3 bit |
| &jz (&label("x86")); |
| &mov ($C,&DWP(8,$T)); |
| &test ($A,1<<24); # check FXSR bit |
| &jz (&label("x86")); |
| if ($shaext) { |
| &test ($C,1<<29); # check SHA bit |
| &jnz (&label("shaext_shortcut")); |
| } |
| if ($ymm) { |
| &and ($D,1<<28); # mask AVX bit |
| &and ($A,1<<30); # mask "Intel CPU" bit |
| &or ($A,$D); |
| &cmp ($A,1<<28|1<<30); |
| &je (&label("avx_shortcut")); |
| } |
| &jmp (&label("ssse3_shortcut")); |
| &set_label("x86",16); |
| } |
| &mov($tmp1,&wparam(0)); # SHA_CTX *c |
| &mov($T,&wparam(1)); # const void *input |
| &mov($A,&wparam(2)); # size_t num |
| &stack_push(16+3); # allocate X[16] |
| &shl($A,6); |
| &add($A,$T); |
| &mov(&wparam(2),$A); # pointer beyond the end of input |
| &mov($E,&DWP(16,$tmp1));# pre-load E |
| &jmp(&label("loop")); |
| |
| &set_label("loop",16); |
| |
| # copy input chunk to X, but reversing byte order! |
| for ($i=0; $i<16; $i+=4) |
| { |
| &mov($A,&DWP(4*($i+0),$T)); |
| &mov($B,&DWP(4*($i+1),$T)); |
| &mov($C,&DWP(4*($i+2),$T)); |
| &mov($D,&DWP(4*($i+3),$T)); |
| &bswap($A); |
| &bswap($B); |
| &bswap($C); |
| &bswap($D); |
| &mov(&swtmp($i+0),$A); |
| &mov(&swtmp($i+1),$B); |
| &mov(&swtmp($i+2),$C); |
| &mov(&swtmp($i+3),$D); |
| } |
| &mov(&wparam(1),$T); # redundant in 1st spin |
| |
| &mov($A,&DWP(0,$tmp1)); # load SHA_CTX |
| &mov($B,&DWP(4,$tmp1)); |
| &mov($C,&DWP(8,$tmp1)); |
| &mov($D,&DWP(12,$tmp1)); |
| # E is pre-loaded |
| |
| for($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); } |
| for(;$i<20;$i++) { &BODY_16_19($i,@V); unshift(@V,pop(@V)); } |
| for(;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } |
| for(;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); } |
| for(;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } |
| |
| (($V[5] eq $D) and ($V[0] eq $E)) or die; # double-check |
| |
| &mov($tmp1,&wparam(0)); # re-load SHA_CTX* |
| &mov($D,&wparam(1)); # D is last "T" and is discarded |
| |
| &add($E,&DWP(0,$tmp1)); # E is last "A"... |
| &add($T,&DWP(4,$tmp1)); |
| &add($A,&DWP(8,$tmp1)); |
| &add($B,&DWP(12,$tmp1)); |
| &add($C,&DWP(16,$tmp1)); |
| |
| &mov(&DWP(0,$tmp1),$E); # update SHA_CTX |
| &add($D,64); # advance input pointer |
| &mov(&DWP(4,$tmp1),$T); |
| &cmp($D,&wparam(2)); # have we reached the end yet? |
| &mov(&DWP(8,$tmp1),$A); |
| &mov($E,$C); # C is last "E" which needs to be "pre-loaded" |
| &mov(&DWP(12,$tmp1),$B); |
| &mov($T,$D); # input pointer |
| &mov(&DWP(16,$tmp1),$C); |
| &jb(&label("loop")); |
| |
| &stack_pop(16+3); |
| &function_end("sha1_block_data_order"); |
| |
| if ($xmm) { |
| if ($shaext) { |
| ###################################################################### |
| # Intel SHA Extensions implementation of SHA1 update function. |
| # |
| my ($ctx,$inp,$num)=("edi","esi","ecx"); |
| my ($ABCD,$E,$E_,$BSWAP)=map("xmm$_",(0..3)); |
| my @MSG=map("xmm$_",(4..7)); |
| |
| sub sha1rnds4 { |
| my ($dst,$src,$imm)=@_; |
| if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/) |
| { &data_byte(0x0f,0x3a,0xcc,0xc0|($1<<3)|$2,$imm); } |
| } |
| sub sha1op38 { |
| my ($opcodelet,$dst,$src)=@_; |
| if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/) |
| { &data_byte(0x0f,0x38,$opcodelet,0xc0|($1<<3)|$2); } |
| } |
| sub sha1nexte { sha1op38(0xc8,@_); } |
| sub sha1msg1 { sha1op38(0xc9,@_); } |
| sub sha1msg2 { sha1op38(0xca,@_); } |
| |
| &function_begin("_sha1_block_data_order_shaext"); |
| &call (&label("pic_point")); # make it PIC! |
| &set_label("pic_point"); |
| &blindpop($tmp1); |
| &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1)); |
| &set_label("shaext_shortcut"); |
| &mov ($ctx,&wparam(0)); |
| &mov ("ebx","esp"); |
| &mov ($inp,&wparam(1)); |
| &mov ($num,&wparam(2)); |
| &sub ("esp",32); |
| |
| &movdqu ($ABCD,&QWP(0,$ctx)); |
| &movd ($E,&DWP(16,$ctx)); |
| &and ("esp",-32); |
| &movdqa ($BSWAP,&QWP(0x50,$tmp1)); # byte-n-word swap |
| |
| &movdqu (@MSG[0],&QWP(0,$inp)); |
| &pshufd ($ABCD,$ABCD,0b00011011); # flip word order |
| &movdqu (@MSG[1],&QWP(0x10,$inp)); |
| &pshufd ($E,$E,0b00011011); # flip word order |
| &movdqu (@MSG[2],&QWP(0x20,$inp)); |
| &pshufb (@MSG[0],$BSWAP); |
| &movdqu (@MSG[3],&QWP(0x30,$inp)); |
| &pshufb (@MSG[1],$BSWAP); |
| &pshufb (@MSG[2],$BSWAP); |
| &pshufb (@MSG[3],$BSWAP); |
| &jmp (&label("loop_shaext")); |
| |
| &set_label("loop_shaext",16); |
| &dec ($num); |
| &lea ("eax",&DWP(0x40,$inp)); |
| &movdqa (&QWP(0,"esp"),$E); # offload $E |
| &paddd ($E,@MSG[0]); |
| &cmovne ($inp,"eax"); |
| &movdqa (&QWP(16,"esp"),$ABCD); # offload $ABCD |
| |
| for($i=0;$i<20-4;$i+=2) { |
| &sha1msg1 (@MSG[0],@MSG[1]); |
| &movdqa ($E_,$ABCD); |
| &sha1rnds4 ($ABCD,$E,int($i/5)); # 0-3... |
| &sha1nexte ($E_,@MSG[1]); |
| &pxor (@MSG[0],@MSG[2]); |
| &sha1msg1 (@MSG[1],@MSG[2]); |
| &sha1msg2 (@MSG[0],@MSG[3]); |
| |
| &movdqa ($E,$ABCD); |
| &sha1rnds4 ($ABCD,$E_,int(($i+1)/5)); |
| &sha1nexte ($E,@MSG[2]); |
| &pxor (@MSG[1],@MSG[3]); |
| &sha1msg2 (@MSG[1],@MSG[0]); |
| |
| push(@MSG,shift(@MSG)); push(@MSG,shift(@MSG)); |
| } |
| &movdqu (@MSG[0],&QWP(0,$inp)); |
| &movdqa ($E_,$ABCD); |
| &sha1rnds4 ($ABCD,$E,3); # 64-67 |
| &sha1nexte ($E_,@MSG[1]); |
| &movdqu (@MSG[1],&QWP(0x10,$inp)); |
| &pshufb (@MSG[0],$BSWAP); |
| |
| &movdqa ($E,$ABCD); |
| &sha1rnds4 ($ABCD,$E_,3); # 68-71 |
| &sha1nexte ($E,@MSG[2]); |
| &movdqu (@MSG[2],&QWP(0x20,$inp)); |
| &pshufb (@MSG[1],$BSWAP); |
| |
| &movdqa ($E_,$ABCD); |
| &sha1rnds4 ($ABCD,$E,3); # 72-75 |
| &sha1nexte ($E_,@MSG[3]); |
| &movdqu (@MSG[3],&QWP(0x30,$inp)); |
| &pshufb (@MSG[2],$BSWAP); |
| |
| &movdqa ($E,$ABCD); |
| &sha1rnds4 ($ABCD,$E_,3); # 76-79 |
| &movdqa ($E_,&QWP(0,"esp")); |
| &pshufb (@MSG[3],$BSWAP); |
| &sha1nexte ($E,$E_); |
| &paddd ($ABCD,&QWP(16,"esp")); |
| |
| &jnz (&label("loop_shaext")); |
| |
| &pshufd ($ABCD,$ABCD,0b00011011); |
| &pshufd ($E,$E,0b00011011); |
| &movdqu (&QWP(0,$ctx),$ABCD) |
| &movd (&DWP(16,$ctx),$E); |
| &mov ("esp","ebx"); |
| &function_end("_sha1_block_data_order_shaext"); |
| } |
| ###################################################################### |
| # The SSSE3 implementation. |
| # |
| # %xmm[0-7] are used as ring @X[] buffer containing quadruples of last |
| # 32 elements of the message schedule or Xupdate outputs. First 4 |
| # quadruples are simply byte-swapped input, next 4 are calculated |
| # according to method originally suggested by Dean Gaudet (modulo |
| # being implemented in SSSE3). Once 8 quadruples or 32 elements are |
| # collected, it switches to routine proposed by Max Locktyukhin. |
| # |
| # Calculations inevitably require temporary reqisters, and there are |
| # no %xmm registers left to spare. For this reason part of the ring |
| # buffer, X[2..4] to be specific, is offloaded to 3 quadriples ring |
| # buffer on the stack. Keep in mind that X[2] is alias X[-6], X[3] - |
| # X[-5], and X[4] - X[-4]... |
| # |
| # Another notable optimization is aggressive stack frame compression |
| # aiming to minimize amount of 9-byte instructions... |
| # |
| # Yet another notable optimization is "jumping" $B variable. It means |
| # that there is no register permanently allocated for $B value. This |
| # allowed to eliminate one instruction from body_20_39... |
| # |
| my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded |
| my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4 |
| my @V=($A,$B,$C,$D,$E); |
| my $j=0; # hash round |
| my $rx=0; |
| my @T=($T,$tmp1); |
| my $inp; |
| |
| my $_rol=sub { &rol(@_) }; |
| my $_ror=sub { &ror(@_) }; |
| |
| &function_begin("_sha1_block_data_order_ssse3"); |
| &call (&label("pic_point")); # make it PIC! |
| &set_label("pic_point"); |
| &blindpop($tmp1); |
| &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1)); |
| &set_label("ssse3_shortcut"); |
| |
| &movdqa (@X[3],&QWP(0,$tmp1)); # K_00_19 |
| &movdqa (@X[4],&QWP(16,$tmp1)); # K_20_39 |
| &movdqa (@X[5],&QWP(32,$tmp1)); # K_40_59 |
| &movdqa (@X[6],&QWP(48,$tmp1)); # K_60_79 |
| &movdqa (@X[2],&QWP(64,$tmp1)); # pbswap mask |
| |
| &mov ($E,&wparam(0)); # load argument block |
| &mov ($inp=@T[1],&wparam(1)); |
| &mov ($D,&wparam(2)); |
| &mov (@T[0],"esp"); |
| |
| # stack frame layout |
| # |
| # +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area |
| # X[4]+K X[5]+K X[6]+K X[7]+K |
| # X[8]+K X[9]+K X[10]+K X[11]+K |
| # X[12]+K X[13]+K X[14]+K X[15]+K |
| # |
| # +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area |
| # X[4] X[5] X[6] X[7] |
| # X[8] X[9] X[10] X[11] # even borrowed for K_00_19 |
| # |
| # +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants |
| # K_40_59 K_40_59 K_40_59 K_40_59 |
| # K_60_79 K_60_79 K_60_79 K_60_79 |
| # K_00_19 K_00_19 K_00_19 K_00_19 |
| # pbswap mask |
| # |
| # +192 ctx # argument block |
| # +196 inp |
| # +200 end |
| # +204 esp |
| &sub ("esp",208); |
| &and ("esp",-64); |
| |
| &movdqa (&QWP(112+0,"esp"),@X[4]); # copy constants |
| &movdqa (&QWP(112+16,"esp"),@X[5]); |
| &movdqa (&QWP(112+32,"esp"),@X[6]); |
| &shl ($D,6); # len*64 |
| &movdqa (&QWP(112+48,"esp"),@X[3]); |
| &add ($D,$inp); # end of input |
| &movdqa (&QWP(112+64,"esp"),@X[2]); |
| &add ($inp,64); |
| &mov (&DWP(192+0,"esp"),$E); # save argument block |
| &mov (&DWP(192+4,"esp"),$inp); |
| &mov (&DWP(192+8,"esp"),$D); |
| &mov (&DWP(192+12,"esp"),@T[0]); # save original %esp |
| |
| &mov ($A,&DWP(0,$E)); # load context |
| &mov ($B,&DWP(4,$E)); |
| &mov ($C,&DWP(8,$E)); |
| &mov ($D,&DWP(12,$E)); |
| &mov ($E,&DWP(16,$E)); |
| &mov (@T[0],$B); # magic seed |
| |
| &movdqu (@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3] |
| &movdqu (@X[-3&7],&QWP(-48,$inp)); |
| &movdqu (@X[-2&7],&QWP(-32,$inp)); |
| &movdqu (@X[-1&7],&QWP(-16,$inp)); |
| &pshufb (@X[-4&7],@X[2]); # byte swap |
| &pshufb (@X[-3&7],@X[2]); |
| &pshufb (@X[-2&7],@X[2]); |
| &movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot |
| &pshufb (@X[-1&7],@X[2]); |
| &paddd (@X[-4&7],@X[3]); # add K_00_19 |
| &paddd (@X[-3&7],@X[3]); |
| &paddd (@X[-2&7],@X[3]); |
| &movdqa (&QWP(0,"esp"),@X[-4&7]); # X[]+K xfer to IALU |
| &psubd (@X[-4&7],@X[3]); # restore X[] |
| &movdqa (&QWP(0+16,"esp"),@X[-3&7]); |
| &psubd (@X[-3&7],@X[3]); |
| &movdqa (&QWP(0+32,"esp"),@X[-2&7]); |
| &mov (@T[1],$C); |
| &psubd (@X[-2&7],@X[3]); |
| &xor (@T[1],$D); |
| &pshufd (@X[0],@X[-4&7],0xee); # was &movdqa (@X[0],@X[-3&7]); |
| &and (@T[0],@T[1]); |
| &jmp (&label("loop")); |
| |
| ###################################################################### |
| # SSE instruction sequence is first broken to groups of indepentent |
| # instructions, independent in respect to their inputs and shifter |
| # (not all architectures have more than one). Then IALU instructions |
| # are "knitted in" between the SSE groups. Distance is maintained for |
| # SSE latency of 2 in hope that it fits better upcoming AMD Bulldozer |
| # [which allegedly also implements SSSE3]... |
| # |
| # Temporary registers usage. X[2] is volatile at the entry and at the |
| # end is restored from backtrace ring buffer. X[3] is expected to |
| # contain current K_XX_XX constant and is used to caclulate X[-1]+K |
| # from previous round, it becomes volatile the moment the value is |
| # saved to stack for transfer to IALU. X[4] becomes volatile whenever |
| # X[-4] is accumulated and offloaded to backtrace ring buffer, at the |
| # end it is loaded with next K_XX_XX [which becomes X[3] in next |
| # round]... |
| # |
| sub Xupdate_ssse3_16_31() # recall that $Xi starts wtih 4 |
| { use integer; |
| my $body = shift; |
| my @insns = (&$body,&$body,&$body,&$body); # 40 instructions |
| my ($a,$b,$c,$d,$e); |
| |
| eval(shift(@insns)); # ror |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &punpcklqdq(@X[0],@X[-3&7]); # compose "X[-14]" in "X[0]", was &palignr(@X[0],@X[-4&7],8); |
| &movdqa (@X[2],@X[-1&7]); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| |
| &paddd (@X[3],@X[-1&7]); |
| &movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer |
| eval(shift(@insns)); # rol |
| eval(shift(@insns)); |
| &psrldq (@X[2],4); # "X[-3]", 3 dwords |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &pxor (@X[0],@X[-4&7]); # "X[0]"^="X[-16]" |
| eval(shift(@insns)); |
| eval(shift(@insns)); # ror |
| |
| &pxor (@X[2],@X[-2&7]); # "X[-3]"^"X[-8]" |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| |
| &pxor (@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]" |
| eval(shift(@insns)); |
| eval(shift(@insns)); # rol |
| &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| |
| &movdqa (@X[4],@X[0]); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); # ror |
| &movdqa (@X[2],@X[0]); |
| eval(shift(@insns)); |
| |
| &pslldq (@X[4],12); # "X[0]"<<96, extract one dword |
| &paddd (@X[0],@X[0]); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| |
| &psrld (@X[2],31); |
| eval(shift(@insns)); |
| eval(shift(@insns)); # rol |
| &movdqa (@X[3],@X[4]); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| |
| &psrld (@X[4],30); |
| eval(shift(@insns)); |
| eval(shift(@insns)); # ror |
| &por (@X[0],@X[2]); # "X[0]"<<<=1 |
| eval(shift(@insns)); |
| &movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5); # restore X[] from backtrace buffer |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| |
| &pslld (@X[3],2); |
| eval(shift(@insns)); |
| eval(shift(@insns)); # rol |
| &pxor (@X[0],@X[4]); |
| &movdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_XX |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| |
| &pxor (@X[0],@X[3]); # "X[0]"^=("X[0]"<<96)<<<2 |
| &pshufd (@X[1],@X[-3&7],0xee) if ($Xi<7); # was &movdqa (@X[1],@X[-2&7]) |
| &pshufd (@X[3],@X[-1&7],0xee) if ($Xi==7); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| |
| foreach (@insns) { eval; } # remaining instructions [if any] |
| |
| $Xi++; push(@X,shift(@X)); # "rotate" X[] |
| } |
| |
| sub Xupdate_ssse3_32_79() |
| { use integer; |
| my $body = shift; |
| my @insns = (&$body,&$body,&$body,&$body); # 32 to 44 instructions |
| my ($a,$b,$c,$d,$e); |
| |
| eval(shift(@insns)); # body_20_39 |
| &pxor (@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]" |
| &punpcklqdq(@X[2],@X[-1&7]); # compose "X[-6]", was &palignr(@X[2],@X[-2&7],8) |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); # rol |
| |
| &pxor (@X[0],@X[-7&7]); # "X[0]"^="X[-28]" |
| &movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X[] to backtrace buffer |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)) if (@insns[0] =~ /_rol/); |
| if ($Xi%5) { |
| &movdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX... |
| } else { # ... or load next one |
| &movdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp")); |
| } |
| eval(shift(@insns)); # ror |
| &paddd (@X[3],@X[-1&7]); |
| eval(shift(@insns)); |
| |
| &pxor (@X[0],@X[2]); # "X[0]"^="X[-6]" |
| eval(shift(@insns)); # body_20_39 |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); # rol |
| |
| &movdqa (@X[2],@X[0]); |
| &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); # ror |
| eval(shift(@insns)); |
| eval(shift(@insns)) if (@insns[0] =~ /_rol/); |
| |
| &pslld (@X[0],2); |
| eval(shift(@insns)); # body_20_39 |
| eval(shift(@insns)); |
| &psrld (@X[2],30); |
| eval(shift(@insns)); |
| eval(shift(@insns)); # rol |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); # ror |
| eval(shift(@insns)); |
| eval(shift(@insns)) if (@insns[1] =~ /_rol/); |
| eval(shift(@insns)) if (@insns[0] =~ /_rol/); |
| |
| &por (@X[0],@X[2]); # "X[0]"<<<=2 |
| eval(shift(@insns)); # body_20_39 |
| eval(shift(@insns)); |
| &movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19); # restore X[] from backtrace buffer |
| eval(shift(@insns)); |
| eval(shift(@insns)); # rol |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); # ror |
| &pshufd (@X[3],@X[-1],0xee) if ($Xi<19); # was &movdqa (@X[3],@X[0]) |
| eval(shift(@insns)); |
| |
| foreach (@insns) { eval; } # remaining instructions |
| |
| $Xi++; push(@X,shift(@X)); # "rotate" X[] |
| } |
| |
| sub Xuplast_ssse3_80() |
| { use integer; |
| my $body = shift; |
| my @insns = (&$body,&$body,&$body,&$body); # 32 instructions |
| my ($a,$b,$c,$d,$e); |
| |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &paddd (@X[3],@X[-1&7]); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| |
| &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IALU |
| |
| foreach (@insns) { eval; } # remaining instructions |
| |
| &mov ($inp=@T[1],&DWP(192+4,"esp")); |
| &cmp ($inp,&DWP(192+8,"esp")); |
| &je (&label("done")); |
| |
| &movdqa (@X[3],&QWP(112+48,"esp")); # K_00_19 |
| &movdqa (@X[2],&QWP(112+64,"esp")); # pbswap mask |
| &movdqu (@X[-4&7],&QWP(0,$inp)); # load input |
| &movdqu (@X[-3&7],&QWP(16,$inp)); |
| &movdqu (@X[-2&7],&QWP(32,$inp)); |
| &movdqu (@X[-1&7],&QWP(48,$inp)); |
| &add ($inp,64); |
| &pshufb (@X[-4&7],@X[2]); # byte swap |
| &mov (&DWP(192+4,"esp"),$inp); |
| &movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot |
| |
| $Xi=0; |
| } |
| |
| sub Xloop_ssse3() |
| { use integer; |
| my $body = shift; |
| my @insns = (&$body,&$body,&$body,&$body); # 32 instructions |
| my ($a,$b,$c,$d,$e); |
| |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &pshufb (@X[($Xi-3)&7],@X[2]); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &paddd (@X[($Xi-4)&7],@X[3]); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &movdqa (&QWP(0+16*$Xi,"esp"),@X[($Xi-4)&7]); # X[]+K xfer to IALU |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &psubd (@X[($Xi-4)&7],@X[3]); |
| |
| foreach (@insns) { eval; } |
| $Xi++; |
| } |
| |
| sub Xtail_ssse3() |
| { use integer; |
| my $body = shift; |
| my @insns = (&$body,&$body,&$body,&$body); # 32 instructions |
| my ($a,$b,$c,$d,$e); |
| |
| foreach (@insns) { eval; } |
| } |
| |
| sub body_00_19 () { # ((c^d)&b)^d |
| # on start @T[0]=(c^d)&b |
| return &body_20_39() if ($rx==19); $rx++; |
| ( |
| '($a,$b,$c,$d,$e)=@V;'. |
| '&$_ror ($b,$j?7:2);', # $b>>>2 |
| '&xor (@T[0],$d);', |
| '&mov (@T[1],$a);', # $b in next round |
| |
| '&add ($e,&DWP(4*($j&15),"esp"));', # X[]+K xfer |
| '&xor ($b,$c);', # $c^$d for next round |
| |
| '&$_rol ($a,5);', |
| '&add ($e,@T[0]);', |
| '&and (@T[1],$b);', # ($b&($c^$d)) for next round |
| |
| '&xor ($b,$c);', # restore $b |
| '&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));' |
| ); |
| } |
| |
| sub body_20_39 () { # b^d^c |
| # on entry @T[0]=b^d |
| return &body_40_59() if ($rx==39); $rx++; |
| ( |
| '($a,$b,$c,$d,$e)=@V;'. |
| '&add ($e,&DWP(4*($j&15),"esp"));', # X[]+K xfer |
| '&xor (@T[0],$d) if($j==19);'. |
| '&xor (@T[0],$c) if($j> 19);', # ($b^$d^$c) |
| '&mov (@T[1],$a);', # $b in next round |
| |
| '&$_rol ($a,5);', |
| '&add ($e,@T[0]);', |
| '&xor (@T[1],$c) if ($j< 79);', # $b^$d for next round |
| |
| '&$_ror ($b,7);', # $b>>>2 |
| '&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));' |
| ); |
| } |
| |
| sub body_40_59 () { # ((b^c)&(c^d))^c |
| # on entry @T[0]=(b^c), (c^=d) |
| $rx++; |
| ( |
| '($a,$b,$c,$d,$e)=@V;'. |
| '&add ($e,&DWP(4*($j&15),"esp"));', # X[]+K xfer |
| '&and (@T[0],$c) if ($j>=40);', # (b^c)&(c^d) |
| '&xor ($c,$d) if ($j>=40);', # restore $c |
| |
| '&$_ror ($b,7);', # $b>>>2 |
| '&mov (@T[1],$a);', # $b for next round |
| '&xor (@T[0],$c);', |
| |
| '&$_rol ($a,5);', |
| '&add ($e,@T[0]);', |
| '&xor (@T[1],$c) if ($j==59);'. |
| '&xor (@T[1],$b) if ($j< 59);', # b^c for next round |
| |
| '&xor ($b,$c) if ($j< 59);', # c^d for next round |
| '&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));' |
| ); |
| } |
| ###### |
| sub bodyx_00_19 () { # ((c^d)&b)^d |
| # on start @T[0]=(b&c)^(~b&d), $e+=X[]+K |
| return &bodyx_20_39() if ($rx==19); $rx++; |
| ( |
| '($a,$b,$c,$d,$e)=@V;'. |
| |
| '&rorx ($b,$b,2) if ($j==0);'. # $b>>>2 |
| '&rorx ($b,@T[1],7) if ($j!=0);', # $b>>>2 |
| '&lea ($e,&DWP(0,$e,@T[0]));', |
| '&rorx (@T[0],$a,5);', |
| |
| '&andn (@T[1],$a,$c);', |
| '&and ($a,$b)', |
| '&add ($d,&DWP(4*(($j+1)&15),"esp"));', # X[]+K xfer |
| |
| '&xor (@T[1],$a)', |
| '&add ($e,@T[0]);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));' |
| ); |
| } |
| |
| sub bodyx_20_39 () { # b^d^c |
| # on start $b=b^c^d |
| return &bodyx_40_59() if ($rx==39); $rx++; |
| ( |
| '($a,$b,$c,$d,$e)=@V;'. |
| |
| '&add ($e,($j==19?@T[0]:$b))', |
| '&rorx ($b,@T[1],7);', # $b>>>2 |
| '&rorx (@T[0],$a,5);', |
| |
| '&xor ($a,$b) if ($j<79);', |
| '&add ($d,&DWP(4*(($j+1)&15),"esp")) if ($j<79);', # X[]+K xfer |
| '&xor ($a,$c) if ($j<79);', |
| '&add ($e,@T[0]);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));' |
| ); |
| } |
| |
| sub bodyx_40_59 () { # ((b^c)&(c^d))^c |
| # on start $b=((b^c)&(c^d))^c |
| return &bodyx_20_39() if ($rx==59); $rx++; |
| ( |
| '($a,$b,$c,$d,$e)=@V;'. |
| |
| '&rorx (@T[0],$a,5)', |
| '&lea ($e,&DWP(0,$e,$b))', |
| '&rorx ($b,@T[1],7)', # $b>>>2 |
| '&add ($d,&DWP(4*(($j+1)&15),"esp"))', # X[]+K xfer |
| |
| '&mov (@T[1],$c)', |
| '&xor ($a,$b)', # b^c for next round |
| '&xor (@T[1],$b)', # c^d for next round |
| |
| '&and ($a,@T[1])', |
| '&add ($e,@T[0])', |
| '&xor ($a,$b)' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));' |
| ); |
| } |
| |
| &set_label("loop",16); |
| &Xupdate_ssse3_16_31(\&body_00_19); |
| &Xupdate_ssse3_16_31(\&body_00_19); |
| &Xupdate_ssse3_16_31(\&body_00_19); |
| &Xupdate_ssse3_16_31(\&body_00_19); |
| &Xupdate_ssse3_32_79(\&body_00_19); |
| &Xupdate_ssse3_32_79(\&body_20_39); |
| &Xupdate_ssse3_32_79(\&body_20_39); |
| &Xupdate_ssse3_32_79(\&body_20_39); |
| &Xupdate_ssse3_32_79(\&body_20_39); |
| &Xupdate_ssse3_32_79(\&body_20_39); |
| &Xupdate_ssse3_32_79(\&body_40_59); |
| &Xupdate_ssse3_32_79(\&body_40_59); |
| &Xupdate_ssse3_32_79(\&body_40_59); |
| &Xupdate_ssse3_32_79(\&body_40_59); |
| &Xupdate_ssse3_32_79(\&body_40_59); |
| &Xupdate_ssse3_32_79(\&body_20_39); |
| &Xuplast_ssse3_80(\&body_20_39); # can jump to "done" |
| |
| $saved_j=$j; @saved_V=@V; |
| |
| &Xloop_ssse3(\&body_20_39); |
| &Xloop_ssse3(\&body_20_39); |
| &Xloop_ssse3(\&body_20_39); |
| |
| &mov (@T[1],&DWP(192,"esp")); # update context |
| &add ($A,&DWP(0,@T[1])); |
| &add (@T[0],&DWP(4,@T[1])); # $b |
| &add ($C,&DWP(8,@T[1])); |
| &mov (&DWP(0,@T[1]),$A); |
| &add ($D,&DWP(12,@T[1])); |
| &mov (&DWP(4,@T[1]),@T[0]); |
| &add ($E,&DWP(16,@T[1])); |
| &mov (&DWP(8,@T[1]),$C); |
| &mov ($B,$C); |
| &mov (&DWP(12,@T[1]),$D); |
| &xor ($B,$D); |
| &mov (&DWP(16,@T[1]),$E); |
| &mov (@T[1],@T[0]); |
| &pshufd (@X[0],@X[-4&7],0xee); # was &movdqa (@X[0],@X[-3&7]); |
| &and (@T[0],$B); |
| &mov ($B,$T[1]); |
| |
| &jmp (&label("loop")); |
| |
| &set_label("done",16); $j=$saved_j; @V=@saved_V; |
| |
| &Xtail_ssse3(\&body_20_39); |
| &Xtail_ssse3(\&body_20_39); |
| &Xtail_ssse3(\&body_20_39); |
| |
| &mov (@T[1],&DWP(192,"esp")); # update context |
| &add ($A,&DWP(0,@T[1])); |
| &mov ("esp",&DWP(192+12,"esp")); # restore %esp |
| &add (@T[0],&DWP(4,@T[1])); # $b |
| &add ($C,&DWP(8,@T[1])); |
| &mov (&DWP(0,@T[1]),$A); |
| &add ($D,&DWP(12,@T[1])); |
| &mov (&DWP(4,@T[1]),@T[0]); |
| &add ($E,&DWP(16,@T[1])); |
| &mov (&DWP(8,@T[1]),$C); |
| &mov (&DWP(12,@T[1]),$D); |
| &mov (&DWP(16,@T[1]),$E); |
| |
| &function_end("_sha1_block_data_order_ssse3"); |
| |
| $rx=0; # reset |
| |
| if ($ymm) { |
| my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded |
| my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4 |
| my @V=($A,$B,$C,$D,$E); |
| my $j=0; # hash round |
| my @T=($T,$tmp1); |
| my $inp; |
| |
| my $_rol=sub { &shld(@_[0],@_) }; |
| my $_ror=sub { &shrd(@_[0],@_) }; |
| |
| &function_begin("_sha1_block_data_order_avx"); |
| &call (&label("pic_point")); # make it PIC! |
| &set_label("pic_point"); |
| &blindpop($tmp1); |
| &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1)); |
| &set_label("avx_shortcut"); |
| &vzeroall(); |
| |
| &vmovdqa(@X[3],&QWP(0,$tmp1)); # K_00_19 |
| &vmovdqa(@X[4],&QWP(16,$tmp1)); # K_20_39 |
| &vmovdqa(@X[5],&QWP(32,$tmp1)); # K_40_59 |
| &vmovdqa(@X[6],&QWP(48,$tmp1)); # K_60_79 |
| &vmovdqa(@X[2],&QWP(64,$tmp1)); # pbswap mask |
| |
| &mov ($E,&wparam(0)); # load argument block |
| &mov ($inp=@T[1],&wparam(1)); |
| &mov ($D,&wparam(2)); |
| &mov (@T[0],"esp"); |
| |
| # stack frame layout |
| # |
| # +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area |
| # X[4]+K X[5]+K X[6]+K X[7]+K |
| # X[8]+K X[9]+K X[10]+K X[11]+K |
| # X[12]+K X[13]+K X[14]+K X[15]+K |
| # |
| # +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area |
| # X[4] X[5] X[6] X[7] |
| # X[8] X[9] X[10] X[11] # even borrowed for K_00_19 |
| # |
| # +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants |
| # K_40_59 K_40_59 K_40_59 K_40_59 |
| # K_60_79 K_60_79 K_60_79 K_60_79 |
| # K_00_19 K_00_19 K_00_19 K_00_19 |
| # pbswap mask |
| # |
| # +192 ctx # argument block |
| # +196 inp |
| # +200 end |
| # +204 esp |
| &sub ("esp",208); |
| &and ("esp",-64); |
| |
| &vmovdqa(&QWP(112+0,"esp"),@X[4]); # copy constants |
| &vmovdqa(&QWP(112+16,"esp"),@X[5]); |
| &vmovdqa(&QWP(112+32,"esp"),@X[6]); |
| &shl ($D,6); # len*64 |
| &vmovdqa(&QWP(112+48,"esp"),@X[3]); |
| &add ($D,$inp); # end of input |
| &vmovdqa(&QWP(112+64,"esp"),@X[2]); |
| &add ($inp,64); |
| &mov (&DWP(192+0,"esp"),$E); # save argument block |
| &mov (&DWP(192+4,"esp"),$inp); |
| &mov (&DWP(192+8,"esp"),$D); |
| &mov (&DWP(192+12,"esp"),@T[0]); # save original %esp |
| |
| &mov ($A,&DWP(0,$E)); # load context |
| &mov ($B,&DWP(4,$E)); |
| &mov ($C,&DWP(8,$E)); |
| &mov ($D,&DWP(12,$E)); |
| &mov ($E,&DWP(16,$E)); |
| &mov (@T[0],$B); # magic seed |
| |
| &vmovdqu(@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3] |
| &vmovdqu(@X[-3&7],&QWP(-48,$inp)); |
| &vmovdqu(@X[-2&7],&QWP(-32,$inp)); |
| &vmovdqu(@X[-1&7],&QWP(-16,$inp)); |
| &vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap |
| &vpshufb(@X[-3&7],@X[-3&7],@X[2]); |
| &vpshufb(@X[-2&7],@X[-2&7],@X[2]); |
| &vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot |
| &vpshufb(@X[-1&7],@X[-1&7],@X[2]); |
| &vpaddd (@X[0],@X[-4&7],@X[3]); # add K_00_19 |
| &vpaddd (@X[1],@X[-3&7],@X[3]); |
| &vpaddd (@X[2],@X[-2&7],@X[3]); |
| &vmovdqa(&QWP(0,"esp"),@X[0]); # X[]+K xfer to IALU |
| &mov (@T[1],$C); |
| &vmovdqa(&QWP(0+16,"esp"),@X[1]); |
| &xor (@T[1],$D); |
| &vmovdqa(&QWP(0+32,"esp"),@X[2]); |
| &and (@T[0],@T[1]); |
| &jmp (&label("loop")); |
| |
| sub Xupdate_avx_16_31() # recall that $Xi starts wtih 4 |
| { use integer; |
| my $body = shift; |
| my @insns = (&$body,&$body,&$body,&$body); # 40 instructions |
| my ($a,$b,$c,$d,$e); |
| |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &vpalignr(@X[0],@X[-3&7],@X[-4&7],8); # compose "X[-14]" in "X[0]" |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| |
| &vpaddd (@X[3],@X[3],@X[-1&7]); |
| &vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &vpsrldq(@X[2],@X[-1&7],4); # "X[-3]", 3 dwords |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"^="X[-16]" |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| |
| &vpxor (@X[2],@X[2],@X[-2&7]); # "X[-3]"^"X[-8]" |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| |
| &vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]" |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| |
| &vpsrld (@X[2],@X[0],31); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| |
| &vpslldq(@X[4],@X[0],12); # "X[0]"<<96, extract one dword |
| &vpaddd (@X[0],@X[0],@X[0]); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| |
| &vpsrld (@X[3],@X[4],30); |
| &vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=1 |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| |
| &vpslld (@X[4],@X[4],2); |
| &vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5); # restore X[] from backtrace buffer |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &vpxor (@X[0],@X[0],@X[3]); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| |
| &vpxor (@X[0],@X[0],@X[4]); # "X[0]"^=("X[0]"<<96)<<<2 |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &vmovdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_XX |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| |
| foreach (@insns) { eval; } # remaining instructions [if any] |
| |
| $Xi++; push(@X,shift(@X)); # "rotate" X[] |
| } |
| |
| sub Xupdate_avx_32_79() |
| { use integer; |
| my $body = shift; |
| my @insns = (&$body,&$body,&$body,&$body); # 32 to 44 instructions |
| my ($a,$b,$c,$d,$e); |
| |
| &vpalignr(@X[2],@X[-1&7],@X[-2&7],8); # compose "X[-6]" |
| &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]" |
| eval(shift(@insns)); # body_20_39 |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); # rol |
| |
| &vpxor (@X[0],@X[0],@X[-7&7]); # "X[0]"^="X[-28]" |
| &vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X[] to backtrace buffer |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| if ($Xi%5) { |
| &vmovdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX... |
| } else { # ... or load next one |
| &vmovdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp")); |
| } |
| &vpaddd (@X[3],@X[3],@X[-1&7]); |
| eval(shift(@insns)); # ror |
| eval(shift(@insns)); |
| |
| &vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-6]" |
| eval(shift(@insns)); # body_20_39 |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); # rol |
| |
| &vpsrld (@X[2],@X[0],30); |
| &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); # ror |
| eval(shift(@insns)); |
| |
| &vpslld (@X[0],@X[0],2); |
| eval(shift(@insns)); # body_20_39 |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); # rol |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); # ror |
| eval(shift(@insns)); |
| |
| &vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=2 |
| eval(shift(@insns)); # body_20_39 |
| eval(shift(@insns)); |
| &vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19); # restore X[] from backtrace buffer |
| eval(shift(@insns)); |
| eval(shift(@insns)); # rol |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); # ror |
| eval(shift(@insns)); |
| |
| foreach (@insns) { eval; } # remaining instructions |
| |
| $Xi++; push(@X,shift(@X)); # "rotate" X[] |
| } |
| |
| sub Xuplast_avx_80() |
| { use integer; |
| my $body = shift; |
| my @insns = (&$body,&$body,&$body,&$body); # 32 instructions |
| my ($a,$b,$c,$d,$e); |
| |
| eval(shift(@insns)); |
| &vpaddd (@X[3],@X[3],@X[-1&7]); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| |
| &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IALU |
| |
| foreach (@insns) { eval; } # remaining instructions |
| |
| &mov ($inp=@T[1],&DWP(192+4,"esp")); |
| &cmp ($inp,&DWP(192+8,"esp")); |
| &je (&label("done")); |
| |
| &vmovdqa(@X[3],&QWP(112+48,"esp")); # K_00_19 |
| &vmovdqa(@X[2],&QWP(112+64,"esp")); # pbswap mask |
| &vmovdqu(@X[-4&7],&QWP(0,$inp)); # load input |
| &vmovdqu(@X[-3&7],&QWP(16,$inp)); |
| &vmovdqu(@X[-2&7],&QWP(32,$inp)); |
| &vmovdqu(@X[-1&7],&QWP(48,$inp)); |
| &add ($inp,64); |
| &vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap |
| &mov (&DWP(192+4,"esp"),$inp); |
| &vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot |
| |
| $Xi=0; |
| } |
| |
| sub Xloop_avx() |
| { use integer; |
| my $body = shift; |
| my @insns = (&$body,&$body,&$body,&$body); # 32 instructions |
| my ($a,$b,$c,$d,$e); |
| |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &vpshufb (@X[($Xi-3)&7],@X[($Xi-3)&7],@X[2]); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &vpaddd (@X[$Xi&7],@X[($Xi-4)&7],@X[3]); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &vmovdqa (&QWP(0+16*$Xi,"esp"),@X[$Xi&7]); # X[]+K xfer to IALU |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| |
| foreach (@insns) { eval; } |
| $Xi++; |
| } |
| |
| sub Xtail_avx() |
| { use integer; |
| my $body = shift; |
| my @insns = (&$body,&$body,&$body,&$body); # 32 instructions |
| my ($a,$b,$c,$d,$e); |
| |
| foreach (@insns) { eval; } |
| } |
| |
| &set_label("loop",16); |
| &Xupdate_avx_16_31(\&body_00_19); |
| &Xupdate_avx_16_31(\&body_00_19); |
| &Xupdate_avx_16_31(\&body_00_19); |
| &Xupdate_avx_16_31(\&body_00_19); |
| &Xupdate_avx_32_79(\&body_00_19); |
| &Xupdate_avx_32_79(\&body_20_39); |
| &Xupdate_avx_32_79(\&body_20_39); |
| &Xupdate_avx_32_79(\&body_20_39); |
| &Xupdate_avx_32_79(\&body_20_39); |
| &Xupdate_avx_32_79(\&body_20_39); |
| &Xupdate_avx_32_79(\&body_40_59); |
| &Xupdate_avx_32_79(\&body_40_59); |
| &Xupdate_avx_32_79(\&body_40_59); |
| &Xupdate_avx_32_79(\&body_40_59); |
| &Xupdate_avx_32_79(\&body_40_59); |
| &Xupdate_avx_32_79(\&body_20_39); |
| &Xuplast_avx_80(\&body_20_39); # can jump to "done" |
| |
| $saved_j=$j; @saved_V=@V; |
| |
| &Xloop_avx(\&body_20_39); |
| &Xloop_avx(\&body_20_39); |
| &Xloop_avx(\&body_20_39); |
| |
| &mov (@T[1],&DWP(192,"esp")); # update context |
| &add ($A,&DWP(0,@T[1])); |
| &add (@T[0],&DWP(4,@T[1])); # $b |
| &add ($C,&DWP(8,@T[1])); |
| &mov (&DWP(0,@T[1]),$A); |
| &add ($D,&DWP(12,@T[1])); |
| &mov (&DWP(4,@T[1]),@T[0]); |
| &add ($E,&DWP(16,@T[1])); |
| &mov ($B,$C); |
| &mov (&DWP(8,@T[1]),$C); |
| &xor ($B,$D); |
| &mov (&DWP(12,@T[1]),$D); |
| &mov (&DWP(16,@T[1]),$E); |
| &mov (@T[1],@T[0]); |
| &and (@T[0],$B); |
| &mov ($B,@T[1]); |
| |
| &jmp (&label("loop")); |
| |
| &set_label("done",16); $j=$saved_j; @V=@saved_V; |
| |
| &Xtail_avx(\&body_20_39); |
| &Xtail_avx(\&body_20_39); |
| &Xtail_avx(\&body_20_39); |
| |
| &vzeroall(); |
| |
| &mov (@T[1],&DWP(192,"esp")); # update context |
| &add ($A,&DWP(0,@T[1])); |
| &mov ("esp",&DWP(192+12,"esp")); # restore %esp |
| &add (@T[0],&DWP(4,@T[1])); # $b |
| &add ($C,&DWP(8,@T[1])); |
| &mov (&DWP(0,@T[1]),$A); |
| &add ($D,&DWP(12,@T[1])); |
| &mov (&DWP(4,@T[1]),@T[0]); |
| &add ($E,&DWP(16,@T[1])); |
| &mov (&DWP(8,@T[1]),$C); |
| &mov (&DWP(12,@T[1]),$D); |
| &mov (&DWP(16,@T[1]),$E); |
| &function_end("_sha1_block_data_order_avx"); |
| } |
| &set_label("K_XX_XX",64); |
| &data_word(0x5a827999,0x5a827999,0x5a827999,0x5a827999); # K_00_19 |
| &data_word(0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1); # K_20_39 |
| &data_word(0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc); # K_40_59 |
| &data_word(0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6); # K_60_79 |
| &data_word(0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f); # pbswap mask |
| &data_byte(0xf,0xe,0xd,0xc,0xb,0xa,0x9,0x8,0x7,0x6,0x5,0x4,0x3,0x2,0x1,0x0); |
| } |
| &asciz("SHA1 block transform for x86, CRYPTOGAMS by <appro\@openssl.org>"); |
| |
| &asm_finish(); |