blob: 8c08ee22c928eb6987f680ac8f3d67397847f078 [file] [log] [blame]
/* Copyright (c) 2015, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <gtest/gtest.h>
#include <openssl/curve25519.h>
#include "internal.h"
#include "../internal.h"
#include "../test/abi_test.h"
#include "../test/file_test.h"
#include "../test/test_util.h"
#include "../test/wycheproof_util.h"
#include "internal.h"
static inline int ctwrapX25519(uint8_t out_shared_key[32],
const uint8_t private_key[32],
const uint8_t peer_public_value[32]) {
uint8_t scalar[32], point[32];
// Copy all the secrets into a temporary buffer, so we can run constant-time
// validation on them.
OPENSSL_memcpy(scalar, private_key, sizeof(scalar));
OPENSSL_memcpy(point, peer_public_value, sizeof(point));
// X25519 should not leak the private key.
CONSTTIME_SECRET(scalar, sizeof(scalar));
// All other inputs are also marked as secret. This is not to support any
// particular use case for calling X25519 with a secret *point*, but
// rather to ensure that the choice of the point cannot influence whether
// the scalar is leaked or not. Same for the initial contents of the
// output buffer. This conservative choice may be revised in the future.
CONSTTIME_SECRET(point, sizeof(point));
CONSTTIME_SECRET(out_shared_key, 32);
int r = X25519(out_shared_key, scalar, point);
CONSTTIME_DECLASSIFY(out_shared_key, 32);
return r;
}
TEST(X25519Test, TestVector) {
// Taken from https://www.rfc-editor.org/rfc/rfc7748#section-5.2
static const uint8_t kScalar1[32] = {
0xa5, 0x46, 0xe3, 0x6b, 0xf0, 0x52, 0x7c, 0x9d, 0x3b, 0x16, 0x15,
0x4b, 0x82, 0x46, 0x5e, 0xdd, 0x62, 0x14, 0x4c, 0x0a, 0xc1, 0xfc,
0x5a, 0x18, 0x50, 0x6a, 0x22, 0x44, 0xba, 0x44, 0x9a, 0xc4,
};
static const uint8_t kPoint1[32] = {
0xe6, 0xdb, 0x68, 0x67, 0x58, 0x30, 0x30, 0xdb, 0x35, 0x94, 0xc1,
0xa4, 0x24, 0xb1, 0x5f, 0x7c, 0x72, 0x66, 0x24, 0xec, 0x26, 0xb3,
0x35, 0x3b, 0x10, 0xa9, 0x03, 0xa6, 0xd0, 0xab, 0x1c, 0x4c,
};
uint8_t out[32], secret[32];
EXPECT_TRUE(ctwrapX25519(out, kScalar1, kPoint1));
static const uint8_t kExpected1[32] = {
0xc3, 0xda, 0x55, 0x37, 0x9d, 0xe9, 0xc6, 0x90, 0x8e, 0x94, 0xea,
0x4d, 0xf2, 0x8d, 0x08, 0x4f, 0x32, 0xec, 0xcf, 0x03, 0x49, 0x1c,
0x71, 0xf7, 0x54, 0xb4, 0x07, 0x55, 0x77, 0xa2, 0x85, 0x52,
};
EXPECT_EQ(Bytes(kExpected1), Bytes(out));
static const uint8_t kScalar2[32] = {
0x4b, 0x66, 0xe9, 0xd4, 0xd1, 0xb4, 0x67, 0x3c, 0x5a, 0xd2, 0x26,
0x91, 0x95, 0x7d, 0x6a, 0xf5, 0xc1, 0x1b, 0x64, 0x21, 0xe0, 0xea,
0x01, 0xd4, 0x2c, 0xa4, 0x16, 0x9e, 0x79, 0x18, 0xba, 0x0d,
};
static const uint8_t kPoint2[32] = {
0xe5, 0x21, 0x0f, 0x12, 0x78, 0x68, 0x11, 0xd3, 0xf4, 0xb7, 0x95,
0x9d, 0x05, 0x38, 0xae, 0x2c, 0x31, 0xdb, 0xe7, 0x10, 0x6f, 0xc0,
0x3c, 0x3e, 0xfc, 0x4c, 0xd5, 0x49, 0xc7, 0x15, 0xa4, 0x93,
};
EXPECT_TRUE(ctwrapX25519(out, kScalar2, kPoint2));
static const uint8_t kExpected2[32] = {
0x95, 0xcb, 0xde, 0x94, 0x76, 0xe8, 0x90, 0x7d, 0x7a, 0xad, 0xe4,
0x5c, 0xb4, 0xb8, 0x73, 0xf8, 0x8b, 0x59, 0x5a, 0x68, 0x79, 0x9f,
0xa1, 0x52, 0xe6, 0xf8, 0xf7, 0x64, 0x7a, 0xac, 0x79, 0x57,
};
EXPECT_EQ(Bytes(kExpected2), Bytes(out));
// Taken from https://www.rfc-editor.org/rfc/rfc7748.html#section-6.1
static const uint8_t kPrivateA[32] = {
0x77, 0x07, 0x6d, 0x0a, 0x73, 0x18, 0xa5, 0x7d, 0x3c, 0x16, 0xc1,
0x72, 0x51, 0xb2, 0x66, 0x45, 0xdf, 0x4c, 0x2f, 0x87, 0xeb, 0xc0,
0x99, 0x2a, 0xb1, 0x77, 0xfb, 0xa5, 0x1d, 0xb9, 0x2c, 0x2a,
};
static const uint8_t kPublicA[32] = {
0x85, 0x20, 0xf0, 0x09, 0x89, 0x30, 0xa7, 0x54, 0x74, 0x8b, 0x7d,
0xdc, 0xb4, 0x3e, 0xf7, 0x5a, 0x0d, 0xbf, 0x3a, 0x0d, 0x26, 0x38,
0x1a, 0xf4, 0xeb, 0xa4, 0xa9, 0x8e, 0xaa, 0x9b, 0x4e, 0x6a,
};
static const uint8_t kPrivateB[32] = {
0x5d, 0xab, 0x08, 0x7e, 0x62, 0x4a, 0x8a, 0x4b, 0x79, 0xe1, 0x7f,
0x8b, 0x83, 0x80, 0x0e, 0xe6, 0x6f, 0x3b, 0xb1, 0x29, 0x26, 0x18,
0xb6, 0xfd, 0x1c, 0x2f, 0x8b, 0x27, 0xff, 0x88, 0xe0, 0xeb,
};
static const uint8_t kPublicB[32] = {
0xde, 0x9e, 0xdb, 0x7d, 0x7b, 0x7d, 0xc1, 0xb4, 0xd3, 0x5b, 0x61,
0xc2, 0xec, 0xe4, 0x35, 0x37, 0x3f, 0x83, 0x43, 0xc8, 0x5b, 0x78,
0x67, 0x4d, 0xad, 0xfc, 0x7e, 0x14, 0x6f, 0x88, 0x2b, 0x4f,
};
static const uint8_t kSecret[32] = {
0x4a, 0x5d, 0x9d, 0x5b, 0xa4, 0xce, 0x2d, 0xe1, 0x72, 0x8e, 0x3b,
0xf4, 0x80, 0x35, 0x0f, 0x25, 0xe0, 0x7e, 0x21, 0xc9, 0x47, 0xd1,
0x9e, 0x33, 0x76, 0xf0, 0x9b, 0x3c, 0x1e, 0x16, 0x17, 0x42,
};
OPENSSL_memcpy(secret, kPrivateA, sizeof(secret));
CONSTTIME_SECRET(secret, sizeof(secret));
X25519_public_from_private(out, secret);
CONSTTIME_DECLASSIFY(out, sizeof(out));
EXPECT_EQ(Bytes(out), Bytes(kPublicA));
OPENSSL_memcpy(secret, kPrivateB, sizeof(secret));
CONSTTIME_SECRET(secret, sizeof(secret));
X25519_public_from_private(out, secret);
CONSTTIME_DECLASSIFY(out, sizeof(out));
EXPECT_EQ(Bytes(out), Bytes(kPublicB));
ctwrapX25519(out, kPrivateA, kPublicB);
EXPECT_EQ(Bytes(out), Bytes(kSecret));
ctwrapX25519(out, kPrivateB, kPublicA);
EXPECT_EQ(Bytes(out), Bytes(kSecret));
}
TEST(X25519Test, SmallOrder) {
static const uint8_t kSmallOrderPoint[32] = {
0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae, 0x16, 0x56, 0xe3,
0xfa, 0xf1, 0x9f, 0xc4, 0x6a, 0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32,
0xb1, 0xfd, 0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8,
};
uint8_t out[32], private_key[32];
OPENSSL_memset(private_key, 0x11, sizeof(private_key));
OPENSSL_memset(out, 0xff, sizeof(out));
EXPECT_FALSE(ctwrapX25519(out, private_key, kSmallOrderPoint))
<< "X25519 returned success with a small-order input.";
// For callers which don't check, |out| should still be filled with zeros.
static const uint8_t kZeros[32] = {0};
EXPECT_EQ(Bytes(kZeros), Bytes(out));
}
TEST(X25519Test, Iterated) {
// Taken from https://tools.ietf.org/html/rfc7748#section-5.2.
uint8_t scalar[32] = {9}, point[32] = {9}, out[32];
for (unsigned i = 0; i < 1000; i++) {
EXPECT_TRUE(ctwrapX25519(out, scalar, point));
OPENSSL_memcpy(point, scalar, sizeof(point));
OPENSSL_memcpy(scalar, out, sizeof(scalar));
}
static const uint8_t kExpected[32] = {
0x68, 0x4c, 0xf5, 0x9b, 0xa8, 0x33, 0x09, 0x55, 0x28, 0x00, 0xef,
0x56, 0x6f, 0x2f, 0x4d, 0x3c, 0x1c, 0x38, 0x87, 0xc4, 0x93, 0x60,
0xe3, 0x87, 0x5f, 0x2e, 0xb9, 0x4d, 0x99, 0x53, 0x2c, 0x51,
};
EXPECT_EQ(Bytes(kExpected), Bytes(scalar));
}
TEST(X25519Test, DISABLED_IteratedLarge) {
// Taken from https://tools.ietf.org/html/rfc7748#section-5.2.
uint8_t scalar[32] = {9}, point[32] = {9}, out[32];
for (unsigned i = 0; i < 1000000; i++) {
EXPECT_TRUE(ctwrapX25519(out, scalar, point));
OPENSSL_memcpy(point, scalar, sizeof(point));
OPENSSL_memcpy(scalar, out, sizeof(scalar));
}
static const uint8_t kExpected[32] = {
0x7c, 0x39, 0x11, 0xe0, 0xab, 0x25, 0x86, 0xfd, 0x86, 0x44, 0x97,
0x29, 0x7e, 0x57, 0x5e, 0x6f, 0x3b, 0xc6, 0x01, 0xc0, 0x88, 0x3c,
0x30, 0xdf, 0x5f, 0x4d, 0xd2, 0xd2, 0x4f, 0x66, 0x54, 0x24,
};
EXPECT_EQ(Bytes(kExpected), Bytes(scalar));
}
TEST(X25519Test, Wycheproof) {
FileTestGTest("third_party/wycheproof_testvectors/x25519_test.txt",
[](FileTest *t) {
t->IgnoreInstruction("curve");
t->IgnoreAttribute("curve");
WycheproofResult result;
ASSERT_TRUE(GetWycheproofResult(t, &result));
std::vector<uint8_t> priv, pub, shared;
ASSERT_TRUE(t->GetBytes(&priv, "private"));
ASSERT_TRUE(t->GetBytes(&pub, "public"));
ASSERT_TRUE(t->GetBytes(&shared, "shared"));
ASSERT_EQ(32u, priv.size());
ASSERT_EQ(32u, pub.size());
uint8_t secret[32];
int ret = ctwrapX25519(secret, priv.data(), pub.data());
EXPECT_EQ(ret, result.IsValid({"NonCanonicalPublic", "Twist"}) ? 1 : 0);
EXPECT_EQ(Bytes(secret), Bytes(shared));
});
}
#if defined(BORINGSSL_X25519_NEON) && defined(SUPPORTS_ABI_TEST)
TEST(X25519Test, NeonABI) {
static const uint8_t kScalar[32] = {
0xa5, 0x46, 0xe3, 0x6b, 0xf0, 0x52, 0x7c, 0x9d, 0x3b, 0x16, 0x15,
0x4b, 0x82, 0x46, 0x5e, 0xdd, 0x62, 0x14, 0x4c, 0x0a, 0xc1, 0xfc,
0x5a, 0x18, 0x50, 0x6a, 0x22, 0x44, 0xba, 0x44, 0x9a, 0xc4,
};
static const uint8_t kPoint[32] = {
0xe6, 0xdb, 0x68, 0x67, 0x58, 0x30, 0x30, 0xdb, 0x35, 0x94, 0xc1,
0xa4, 0x24, 0xb1, 0x5f, 0x7c, 0x72, 0x66, 0x24, 0xec, 0x26, 0xb3,
0x35, 0x3b, 0x10, 0xa9, 0x03, 0xa6, 0xd0, 0xab, 0x1c, 0x4c,
};
uint8_t secret[32];
CHECK_ABI(x25519_NEON, secret, kScalar, kPoint);
}
#endif // BORINGSSL_X25519_NEON && SUPPORTS_ABI_TEST
#if defined(BORINGSSL_FE25519_ADX) && defined(SUPPORTS_ABI_TEST)
TEST(X25519Test, AdxMulABI) {
static const uint64_t in1[4] = {0}, in2[4] = {0};
uint64_t out[4];
if (CRYPTO_is_BMI1_capable() && CRYPTO_is_BMI2_capable() &&
CRYPTO_is_ADX_capable()) {
CHECK_ABI(fiat_curve25519_adx_mul, out, in1, in2);
} else {
GTEST_SKIP() << "Can't test ABI of ADX code without ADX";
}
}
TEST(X25519Test, AdxSquareABI) {
static const uint64_t in[4] = {0};
uint64_t out[4];
if (CRYPTO_is_BMI1_capable() && CRYPTO_is_BMI2_capable() &&
CRYPTO_is_ADX_capable()) {
CHECK_ABI(fiat_curve25519_adx_square, out, in);
} else {
GTEST_SKIP() << "Can't test ABI of ADX code without ADX";
}
}
#endif // BORINGSSL_FE25519_ADX && SUPPORTS_ABI_TEST