| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] */ |
| |
| #include <openssl/bn.h> |
| |
| #include <limits.h> |
| #include <string.h> |
| |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| |
| #include "internal.h" |
| #include "../delocate.h" |
| |
| |
| BIGNUM *BN_new(void) { |
| BIGNUM *bn = OPENSSL_malloc(sizeof(BIGNUM)); |
| |
| if (bn == NULL) { |
| OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE); |
| return NULL; |
| } |
| |
| OPENSSL_memset(bn, 0, sizeof(BIGNUM)); |
| bn->flags = BN_FLG_MALLOCED; |
| |
| return bn; |
| } |
| |
| void BN_init(BIGNUM *bn) { |
| OPENSSL_memset(bn, 0, sizeof(BIGNUM)); |
| } |
| |
| void BN_free(BIGNUM *bn) { |
| if (bn == NULL) { |
| return; |
| } |
| |
| if ((bn->flags & BN_FLG_STATIC_DATA) == 0) { |
| OPENSSL_free(bn->d); |
| } |
| |
| if (bn->flags & BN_FLG_MALLOCED) { |
| OPENSSL_free(bn); |
| } else { |
| bn->d = NULL; |
| } |
| } |
| |
| void BN_clear_free(BIGNUM *bn) { |
| char should_free; |
| |
| if (bn == NULL) { |
| return; |
| } |
| |
| if (bn->d != NULL) { |
| if ((bn->flags & BN_FLG_STATIC_DATA) == 0) { |
| OPENSSL_free(bn->d); |
| } else { |
| OPENSSL_cleanse(bn->d, bn->dmax * sizeof(bn->d[0])); |
| } |
| } |
| |
| should_free = (bn->flags & BN_FLG_MALLOCED) != 0; |
| if (should_free) { |
| OPENSSL_free(bn); |
| } else { |
| OPENSSL_cleanse(bn, sizeof(BIGNUM)); |
| } |
| } |
| |
| BIGNUM *BN_dup(const BIGNUM *src) { |
| BIGNUM *copy; |
| |
| if (src == NULL) { |
| return NULL; |
| } |
| |
| copy = BN_new(); |
| if (copy == NULL) { |
| return NULL; |
| } |
| |
| if (!BN_copy(copy, src)) { |
| BN_free(copy); |
| return NULL; |
| } |
| |
| return copy; |
| } |
| |
| BIGNUM *BN_copy(BIGNUM *dest, const BIGNUM *src) { |
| if (src == dest) { |
| return dest; |
| } |
| |
| if (!bn_wexpand(dest, src->width)) { |
| return NULL; |
| } |
| |
| OPENSSL_memcpy(dest->d, src->d, sizeof(src->d[0]) * src->width); |
| |
| dest->width = src->width; |
| dest->neg = src->neg; |
| return dest; |
| } |
| |
| void BN_clear(BIGNUM *bn) { |
| if (bn->d != NULL) { |
| OPENSSL_memset(bn->d, 0, bn->dmax * sizeof(bn->d[0])); |
| } |
| |
| bn->width = 0; |
| bn->neg = 0; |
| } |
| |
| DEFINE_METHOD_FUNCTION(BIGNUM, BN_value_one) { |
| static const BN_ULONG kOneLimbs[1] = { 1 }; |
| out->d = (BN_ULONG*) kOneLimbs; |
| out->width = 1; |
| out->dmax = 1; |
| out->neg = 0; |
| out->flags = BN_FLG_STATIC_DATA; |
| } |
| |
| // BN_num_bits_word returns the minimum number of bits needed to represent the |
| // value in |l|. |
| unsigned BN_num_bits_word(BN_ULONG l) { |
| // |BN_num_bits| is often called on RSA prime factors. These have public bit |
| // lengths, but all bits beyond the high bit are secret, so count bits in |
| // constant time. |
| BN_ULONG x, mask; |
| int bits = (l != 0); |
| |
| #if BN_BITS2 > 32 |
| // Look at the upper half of |x|. |x| is at most 64 bits long. |
| x = l >> 32; |
| // Set |mask| to all ones if |x| (the top 32 bits of |l|) is non-zero and all |
| // all zeros otherwise. |
| mask = 0u - x; |
| mask = (0u - (mask >> (BN_BITS2 - 1))); |
| // If |x| is non-zero, the lower half is included in the bit count in full, |
| // and we count the upper half. Otherwise, we count the lower half. |
| bits += 32 & mask; |
| l ^= (x ^ l) & mask; // |l| is |x| if |mask| and remains |l| otherwise. |
| #endif |
| |
| // The remaining blocks are analogous iterations at lower powers of two. |
| x = l >> 16; |
| mask = 0u - x; |
| mask = (0u - (mask >> (BN_BITS2 - 1))); |
| bits += 16 & mask; |
| l ^= (x ^ l) & mask; |
| |
| x = l >> 8; |
| mask = 0u - x; |
| mask = (0u - (mask >> (BN_BITS2 - 1))); |
| bits += 8 & mask; |
| l ^= (x ^ l) & mask; |
| |
| x = l >> 4; |
| mask = 0u - x; |
| mask = (0u - (mask >> (BN_BITS2 - 1))); |
| bits += 4 & mask; |
| l ^= (x ^ l) & mask; |
| |
| x = l >> 2; |
| mask = 0u - x; |
| mask = (0u - (mask >> (BN_BITS2 - 1))); |
| bits += 2 & mask; |
| l ^= (x ^ l) & mask; |
| |
| x = l >> 1; |
| mask = 0u - x; |
| mask = (0u - (mask >> (BN_BITS2 - 1))); |
| bits += 1 & mask; |
| |
| return bits; |
| } |
| |
| unsigned BN_num_bits(const BIGNUM *bn) { |
| const int width = bn_minimal_width(bn); |
| if (width == 0) { |
| return 0; |
| } |
| |
| return (width - 1) * BN_BITS2 + BN_num_bits_word(bn->d[width - 1]); |
| } |
| |
| unsigned BN_num_bytes(const BIGNUM *bn) { |
| return (BN_num_bits(bn) + 7) / 8; |
| } |
| |
| void BN_zero(BIGNUM *bn) { |
| bn->width = bn->neg = 0; |
| } |
| |
| int BN_one(BIGNUM *bn) { |
| return BN_set_word(bn, 1); |
| } |
| |
| int BN_set_word(BIGNUM *bn, BN_ULONG value) { |
| if (value == 0) { |
| BN_zero(bn); |
| return 1; |
| } |
| |
| if (!bn_wexpand(bn, 1)) { |
| return 0; |
| } |
| |
| bn->neg = 0; |
| bn->d[0] = value; |
| bn->width = 1; |
| return 1; |
| } |
| |
| int BN_set_u64(BIGNUM *bn, uint64_t value) { |
| #if BN_BITS2 == 64 |
| return BN_set_word(bn, value); |
| #elif BN_BITS2 == 32 |
| if (value <= BN_MASK2) { |
| return BN_set_word(bn, (BN_ULONG)value); |
| } |
| |
| if (!bn_wexpand(bn, 2)) { |
| return 0; |
| } |
| |
| bn->neg = 0; |
| bn->d[0] = (BN_ULONG)value; |
| bn->d[1] = (BN_ULONG)(value >> 32); |
| bn->width = 2; |
| return 1; |
| #else |
| #error "BN_BITS2 must be 32 or 64." |
| #endif |
| } |
| |
| int bn_set_words(BIGNUM *bn, const BN_ULONG *words, size_t num) { |
| if (!bn_wexpand(bn, num)) { |
| return 0; |
| } |
| OPENSSL_memmove(bn->d, words, num * sizeof(BN_ULONG)); |
| // |bn_wexpand| verified that |num| isn't too large. |
| bn->width = (int)num; |
| bn->neg = 0; |
| return 1; |
| } |
| |
| int bn_fits_in_words(const BIGNUM *bn, size_t num) { |
| // All words beyond |num| must be zero. |
| BN_ULONG mask = 0; |
| for (size_t i = num; i < (size_t)bn->width; i++) { |
| mask |= bn->d[i]; |
| } |
| return mask == 0; |
| } |
| |
| int bn_copy_words(BN_ULONG *out, size_t num, const BIGNUM *bn) { |
| if (bn->neg) { |
| OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); |
| return 0; |
| } |
| |
| size_t width = (size_t)bn->width; |
| if (width > num) { |
| if (!bn_fits_in_words(bn, num)) { |
| OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG); |
| return 0; |
| } |
| width = num; |
| } |
| |
| OPENSSL_memset(out, 0, sizeof(BN_ULONG) * num); |
| OPENSSL_memcpy(out, bn->d, sizeof(BN_ULONG) * width); |
| return 1; |
| } |
| |
| int BN_is_negative(const BIGNUM *bn) { |
| return bn->neg != 0; |
| } |
| |
| void BN_set_negative(BIGNUM *bn, int sign) { |
| if (sign && !BN_is_zero(bn)) { |
| bn->neg = 1; |
| } else { |
| bn->neg = 0; |
| } |
| } |
| |
| int bn_wexpand(BIGNUM *bn, size_t words) { |
| BN_ULONG *a; |
| |
| if (words <= (size_t)bn->dmax) { |
| return 1; |
| } |
| |
| if (words > (INT_MAX / (4 * BN_BITS2))) { |
| OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG); |
| return 0; |
| } |
| |
| if (bn->flags & BN_FLG_STATIC_DATA) { |
| OPENSSL_PUT_ERROR(BN, BN_R_EXPAND_ON_STATIC_BIGNUM_DATA); |
| return 0; |
| } |
| |
| a = OPENSSL_malloc(sizeof(BN_ULONG) * words); |
| if (a == NULL) { |
| OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| |
| OPENSSL_memcpy(a, bn->d, sizeof(BN_ULONG) * bn->width); |
| |
| OPENSSL_free(bn->d); |
| bn->d = a; |
| bn->dmax = (int)words; |
| |
| return 1; |
| } |
| |
| int bn_expand(BIGNUM *bn, size_t bits) { |
| if (bits + BN_BITS2 - 1 < bits) { |
| OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG); |
| return 0; |
| } |
| return bn_wexpand(bn, (bits+BN_BITS2-1)/BN_BITS2); |
| } |
| |
| int bn_resize_words(BIGNUM *bn, size_t words) { |
| if ((size_t)bn->width <= words) { |
| if (!bn_wexpand(bn, words)) { |
| return 0; |
| } |
| OPENSSL_memset(bn->d + bn->width, 0, |
| (words - bn->width) * sizeof(BN_ULONG)); |
| bn->width = words; |
| return 1; |
| } |
| |
| // All words beyond the new width must be zero. |
| if (!bn_fits_in_words(bn, words)) { |
| OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG); |
| return 0; |
| } |
| bn->width = words; |
| return 1; |
| } |
| |
| void bn_select_words(BN_ULONG *r, BN_ULONG mask, const BN_ULONG *a, |
| const BN_ULONG *b, size_t num) { |
| for (size_t i = 0; i < num; i++) { |
| OPENSSL_STATIC_ASSERT(sizeof(BN_ULONG) <= sizeof(crypto_word_t), |
| "crypto_word_t is too small"); |
| r[i] = constant_time_select_w(mask, a[i], b[i]); |
| } |
| } |
| |
| int bn_minimal_width(const BIGNUM *bn) { |
| int ret = bn->width; |
| while (ret > 0 && bn->d[ret - 1] == 0) { |
| ret--; |
| } |
| return ret; |
| } |
| |
| void bn_set_minimal_width(BIGNUM *bn) { |
| bn->width = bn_minimal_width(bn); |
| if (bn->width == 0) { |
| bn->neg = 0; |
| } |
| } |