| /* Originally written by Bodo Moeller for the OpenSSL project. |
| * ==================================================================== |
| * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| * |
| */ |
| /* ==================================================================== |
| * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
| * |
| * Portions of the attached software ("Contribution") are developed by |
| * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. |
| * |
| * The Contribution is licensed pursuant to the OpenSSL open source |
| * license provided above. |
| * |
| * The elliptic curve binary polynomial software is originally written by |
| * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems |
| * Laboratories. */ |
| |
| #include <openssl/ec.h> |
| |
| #include <assert.h> |
| #include <string.h> |
| |
| #include <openssl/bn.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| #include <openssl/nid.h> |
| |
| #include "internal.h" |
| #include "../../internal.h" |
| #include "../bn/internal.h" |
| #include "../delocate.h" |
| |
| #include "builtin_curves.h" |
| |
| |
| static void ec_point_free(EC_POINT *point, int free_group); |
| |
| static void ec_group_init_static_mont(BN_MONT_CTX *mont, size_t num_words, |
| const BN_ULONG *modulus, |
| const BN_ULONG *rr, uint64_t n0) { |
| bn_set_static_words(&mont->N, modulus, num_words); |
| bn_set_static_words(&mont->RR, rr, num_words); |
| #if defined(OPENSSL_64_BIT) |
| mont->n0[0] = n0; |
| #elif defined(OPENSSL_32_BIT) |
| mont->n0[0] = (uint32_t)n0; |
| mont->n0[1] = (uint32_t)(n0 >> 32); |
| #else |
| #error "unknown word length" |
| #endif |
| } |
| |
| static void ec_group_set_a_minus3(EC_GROUP *group) { |
| const EC_FELEM *one = ec_felem_one(group); |
| group->a_is_minus3 = 1; |
| ec_felem_neg(group, &group->a, one); |
| ec_felem_sub(group, &group->a, &group->a, one); |
| ec_felem_sub(group, &group->a, &group->a, one); |
| } |
| |
| DEFINE_METHOD_FUNCTION(EC_GROUP, EC_group_p224) { |
| out->curve_name = NID_secp224r1; |
| out->comment = "NIST P-224"; |
| // 1.3.132.0.33 |
| static const uint8_t kOIDP224[] = {0x2b, 0x81, 0x04, 0x00, 0x21}; |
| OPENSSL_memcpy(out->oid, kOIDP224, sizeof(kOIDP224)); |
| out->oid_len = sizeof(kOIDP224); |
| |
| ec_group_init_static_mont(&out->field, OPENSSL_ARRAY_SIZE(kP224Field), |
| kP224Field, kP224FieldRR, kP224FieldN0); |
| ec_group_init_static_mont(&out->order, OPENSSL_ARRAY_SIZE(kP224Order), |
| kP224Order, kP224OrderRR, kP224OrderN0); |
| |
| #if defined(BORINGSSL_HAS_UINT128) && !defined(OPENSSL_SMALL) |
| out->meth = EC_GFp_nistp224_method(); |
| OPENSSL_memcpy(out->generator.raw.X.words, kP224GX, sizeof(kP224GX)); |
| OPENSSL_memcpy(out->generator.raw.Y.words, kP224GY, sizeof(kP224GY)); |
| out->generator.raw.Z.words[0] = 1; |
| OPENSSL_memcpy(out->b.words, kP224B, sizeof(kP224B)); |
| #else |
| out->meth = EC_GFp_mont_method(); |
| OPENSSL_memcpy(out->generator.raw.X.words, kP224MontGX, sizeof(kP224MontGX)); |
| OPENSSL_memcpy(out->generator.raw.Y.words, kP224MontGY, sizeof(kP224MontGY)); |
| OPENSSL_memcpy(out->generator.raw.Z.words, kP224FieldR, sizeof(kP224FieldR)); |
| OPENSSL_memcpy(out->b.words, kP224MontB, sizeof(kP224MontB)); |
| #endif |
| out->generator.group = out; |
| |
| ec_group_set_a_minus3(out); |
| out->has_order = 1; |
| out->field_greater_than_order = 1; |
| } |
| |
| DEFINE_METHOD_FUNCTION(EC_GROUP, EC_group_p256) { |
| out->curve_name = NID_X9_62_prime256v1; |
| out->comment = "NIST P-256"; |
| // 1.2.840.10045.3.1.7 |
| static const uint8_t kOIDP256[] = {0x2a, 0x86, 0x48, 0xce, |
| 0x3d, 0x03, 0x01, 0x07}; |
| OPENSSL_memcpy(out->oid, kOIDP256, sizeof(kOIDP256)); |
| out->oid_len = sizeof(kOIDP256); |
| |
| ec_group_init_static_mont(&out->field, OPENSSL_ARRAY_SIZE(kP256Field), |
| kP256Field, kP256FieldRR, kP256FieldN0); |
| ec_group_init_static_mont(&out->order, OPENSSL_ARRAY_SIZE(kP256Order), |
| kP256Order, kP256OrderRR, kP256OrderN0); |
| |
| #if !defined(OPENSSL_NO_ASM) && \ |
| (defined(OPENSSL_X86_64) || defined(OPENSSL_AARCH64)) && \ |
| !defined(OPENSSL_SMALL) |
| out->meth = EC_GFp_nistz256_method(); |
| #else |
| out->meth = EC_GFp_nistp256_method(); |
| #endif |
| out->generator.group = out; |
| OPENSSL_memcpy(out->generator.raw.X.words, kP256MontGX, sizeof(kP256MontGX)); |
| OPENSSL_memcpy(out->generator.raw.Y.words, kP256MontGY, sizeof(kP256MontGY)); |
| OPENSSL_memcpy(out->generator.raw.Z.words, kP256FieldR, sizeof(kP256FieldR)); |
| OPENSSL_memcpy(out->b.words, kP256MontB, sizeof(kP256MontB)); |
| |
| ec_group_set_a_minus3(out); |
| out->has_order = 1; |
| out->field_greater_than_order = 1; |
| } |
| |
| DEFINE_METHOD_FUNCTION(EC_GROUP, EC_group_p384) { |
| out->curve_name = NID_secp384r1; |
| out->comment = "NIST P-384"; |
| // 1.3.132.0.34 |
| static const uint8_t kOIDP384[] = {0x2b, 0x81, 0x04, 0x00, 0x22}; |
| OPENSSL_memcpy(out->oid, kOIDP384, sizeof(kOIDP384)); |
| out->oid_len = sizeof(kOIDP384); |
| |
| ec_group_init_static_mont(&out->field, OPENSSL_ARRAY_SIZE(kP384Field), |
| kP384Field, kP384FieldRR, kP384FieldN0); |
| ec_group_init_static_mont(&out->order, OPENSSL_ARRAY_SIZE(kP384Order), |
| kP384Order, kP384OrderRR, kP384OrderN0); |
| |
| out->meth = EC_GFp_mont_method(); |
| out->generator.group = out; |
| OPENSSL_memcpy(out->generator.raw.X.words, kP384MontGX, sizeof(kP384MontGX)); |
| OPENSSL_memcpy(out->generator.raw.Y.words, kP384MontGY, sizeof(kP384MontGY)); |
| OPENSSL_memcpy(out->generator.raw.Z.words, kP384FieldR, sizeof(kP384FieldR)); |
| OPENSSL_memcpy(out->b.words, kP384MontB, sizeof(kP384MontB)); |
| |
| ec_group_set_a_minus3(out); |
| out->has_order = 1; |
| out->field_greater_than_order = 1; |
| } |
| |
| DEFINE_METHOD_FUNCTION(EC_GROUP, EC_group_p521) { |
| out->curve_name = NID_secp521r1; |
| out->comment = "NIST P-521"; |
| // 1.3.132.0.35 |
| static const uint8_t kOIDP521[] = {0x2b, 0x81, 0x04, 0x00, 0x23}; |
| OPENSSL_memcpy(out->oid, kOIDP521, sizeof(kOIDP521)); |
| out->oid_len = sizeof(kOIDP521); |
| |
| ec_group_init_static_mont(&out->field, OPENSSL_ARRAY_SIZE(kP521Field), |
| kP521Field, kP521FieldRR, kP521FieldN0); |
| ec_group_init_static_mont(&out->order, OPENSSL_ARRAY_SIZE(kP521Order), |
| kP521Order, kP521OrderRR, kP521OrderN0); |
| |
| out->meth = EC_GFp_mont_method(); |
| out->generator.group = out; |
| OPENSSL_memcpy(out->generator.raw.X.words, kP521MontGX, sizeof(kP521MontGX)); |
| OPENSSL_memcpy(out->generator.raw.Y.words, kP521MontGY, sizeof(kP521MontGY)); |
| OPENSSL_memcpy(out->generator.raw.Z.words, kP521FieldR, sizeof(kP521FieldR)); |
| OPENSSL_memcpy(out->b.words, kP521MontB, sizeof(kP521MontB)); |
| |
| ec_group_set_a_minus3(out); |
| out->has_order = 1; |
| out->field_greater_than_order = 1; |
| } |
| |
| EC_GROUP *EC_GROUP_new_curve_GFp(const BIGNUM *p, const BIGNUM *a, |
| const BIGNUM *b, BN_CTX *ctx) { |
| if (BN_num_bytes(p) > EC_MAX_BYTES) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FIELD); |
| return NULL; |
| } |
| |
| BN_CTX *new_ctx = NULL; |
| if (ctx == NULL) { |
| ctx = new_ctx = BN_CTX_new(); |
| if (ctx == NULL) { |
| return NULL; |
| } |
| } |
| |
| // Historically, |a| and |b| were not required to be fully reduced. |
| // TODO(davidben): Can this be removed? |
| EC_GROUP *ret = NULL; |
| BN_CTX_start(ctx); |
| BIGNUM *a_reduced = BN_CTX_get(ctx); |
| BIGNUM *b_reduced = BN_CTX_get(ctx); |
| if (a_reduced == NULL || b_reduced == NULL || |
| !BN_nnmod(a_reduced, a, p, ctx) || |
| !BN_nnmod(b_reduced, b, p, ctx)) { |
| goto err; |
| } |
| |
| ret = OPENSSL_malloc(sizeof(EC_GROUP)); |
| if (ret == NULL) { |
| return NULL; |
| } |
| OPENSSL_memset(ret, 0, sizeof(EC_GROUP)); |
| ret->references = 1; |
| ret->meth = EC_GFp_mont_method(); |
| bn_mont_ctx_init(&ret->field); |
| bn_mont_ctx_init(&ret->order); |
| ret->generator.group = ret; |
| if (!ec_GFp_simple_group_set_curve(ret, p, a_reduced, b_reduced, ctx)) { |
| EC_GROUP_free(ret); |
| ret = NULL; |
| goto err; |
| } |
| |
| err: |
| BN_CTX_end(ctx); |
| BN_CTX_free(new_ctx); |
| return ret; |
| } |
| |
| int EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator, |
| const BIGNUM *order, const BIGNUM *cofactor) { |
| if (group->curve_name != NID_undef || group->has_order || |
| generator->group != group) { |
| // |EC_GROUP_set_generator| may only be used with |EC_GROUP|s returned by |
| // |EC_GROUP_new_curve_GFp| and may only used once on each group. |
| // |generator| must have been created from |EC_GROUP_new_curve_GFp|, not a |
| // copy, so that |generator->group->generator| is set correctly. |
| OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| |
| if (BN_num_bytes(order) > EC_MAX_BYTES) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INVALID_GROUP_ORDER); |
| return 0; |
| } |
| |
| // Require a cofactor of one for custom curves, which implies prime order. |
| if (!BN_is_one(cofactor)) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INVALID_COFACTOR); |
| return 0; |
| } |
| |
| // Require that p < 2×order. This simplifies some ECDSA operations. |
| // |
| // Note any curve which did not satisfy this must have been invalid or use a |
| // tiny prime (less than 17). See the proof in |field_element_to_scalar| in |
| // the ECDSA implementation. |
| int ret = 0; |
| BIGNUM *tmp = BN_new(); |
| if (tmp == NULL || |
| !BN_lshift1(tmp, order)) { |
| goto err; |
| } |
| if (BN_cmp(tmp, &group->field.N) <= 0) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INVALID_GROUP_ORDER); |
| goto err; |
| } |
| |
| EC_AFFINE affine; |
| if (!ec_jacobian_to_affine(group, &affine, &generator->raw) || |
| !BN_MONT_CTX_set(&group->order, order, NULL)) { |
| goto err; |
| } |
| |
| group->field_greater_than_order = BN_cmp(&group->field.N, order) > 0; |
| group->generator.raw.X = affine.X; |
| group->generator.raw.Y = affine.Y; |
| // |raw.Z| was set to 1 by |EC_GROUP_new_curve_GFp|. |
| group->has_order = 1; |
| ret = 1; |
| |
| err: |
| BN_free(tmp); |
| return ret; |
| } |
| |
| EC_GROUP *EC_GROUP_new_by_curve_name(int nid) { |
| switch (nid) { |
| case NID_secp224r1: |
| return (EC_GROUP *)EC_group_p224(); |
| case NID_X9_62_prime256v1: |
| return (EC_GROUP *)EC_group_p256(); |
| case NID_secp384r1: |
| return (EC_GROUP *)EC_group_p384(); |
| case NID_secp521r1: |
| return (EC_GROUP *)EC_group_p521(); |
| default: |
| OPENSSL_PUT_ERROR(EC, EC_R_UNKNOWN_GROUP); |
| return NULL; |
| } |
| } |
| |
| void EC_GROUP_free(EC_GROUP *group) { |
| if (group == NULL || |
| // Built-in curves are static. |
| group->curve_name != NID_undef || |
| !CRYPTO_refcount_dec_and_test_zero(&group->references)) { |
| return; |
| } |
| |
| bn_mont_ctx_cleanup(&group->order); |
| bn_mont_ctx_cleanup(&group->field); |
| OPENSSL_free(group); |
| } |
| |
| EC_GROUP *EC_GROUP_dup(const EC_GROUP *a) { |
| if (a == NULL || |
| // Built-in curves are static. |
| a->curve_name != NID_undef) { |
| return (EC_GROUP *)a; |
| } |
| |
| // Groups are logically immutable (but for |EC_GROUP_set_generator| which must |
| // be called early on), so we simply take a reference. |
| EC_GROUP *group = (EC_GROUP *)a; |
| CRYPTO_refcount_inc(&group->references); |
| return group; |
| } |
| |
| int EC_GROUP_cmp(const EC_GROUP *a, const EC_GROUP *b, BN_CTX *ignored) { |
| // Note this function returns 0 if equal and non-zero otherwise. |
| if (a == b) { |
| return 0; |
| } |
| if (a->curve_name != b->curve_name) { |
| return 1; |
| } |
| if (a->curve_name != NID_undef) { |
| // Built-in curves may be compared by curve name alone. |
| return 0; |
| } |
| |
| // |a| and |b| are both custom curves. We compare the entire curve |
| // structure. If |a| or |b| is incomplete (due to legacy OpenSSL mistakes, |
| // custom curve construction is sadly done in two parts) but otherwise not the |
| // same object, we consider them always unequal. |
| return a->meth != b->meth || // |
| !a->has_order || !b->has_order || |
| BN_cmp(&a->order.N, &b->order.N) != 0 || |
| BN_cmp(&a->field.N, &b->field.N) != 0 || |
| !ec_felem_equal(a, &a->a, &b->a) || // |
| !ec_felem_equal(a, &a->b, &b->b) || |
| !ec_GFp_simple_points_equal(a, &a->generator.raw, &b->generator.raw); |
| } |
| |
| const EC_POINT *EC_GROUP_get0_generator(const EC_GROUP *group) { |
| return group->has_order ? &group->generator : NULL; |
| } |
| |
| const BIGNUM *EC_GROUP_get0_order(const EC_GROUP *group) { |
| assert(group->has_order); |
| return &group->order.N; |
| } |
| |
| int EC_GROUP_get_order(const EC_GROUP *group, BIGNUM *order, BN_CTX *ctx) { |
| if (BN_copy(order, EC_GROUP_get0_order(group)) == NULL) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| int EC_GROUP_order_bits(const EC_GROUP *group) { |
| return BN_num_bits(&group->order.N); |
| } |
| |
| int EC_GROUP_get_cofactor(const EC_GROUP *group, BIGNUM *cofactor, |
| BN_CTX *ctx) { |
| // All |EC_GROUP|s have cofactor 1. |
| return BN_set_word(cofactor, 1); |
| } |
| |
| int EC_GROUP_get_curve_GFp(const EC_GROUP *group, BIGNUM *out_p, BIGNUM *out_a, |
| BIGNUM *out_b, BN_CTX *ctx) { |
| return ec_GFp_simple_group_get_curve(group, out_p, out_a, out_b); |
| } |
| |
| int EC_GROUP_get_curve_name(const EC_GROUP *group) { return group->curve_name; } |
| |
| unsigned EC_GROUP_get_degree(const EC_GROUP *group) { |
| return BN_num_bits(&group->field.N); |
| } |
| |
| const char *EC_curve_nid2nist(int nid) { |
| switch (nid) { |
| case NID_secp224r1: |
| return "P-224"; |
| case NID_X9_62_prime256v1: |
| return "P-256"; |
| case NID_secp384r1: |
| return "P-384"; |
| case NID_secp521r1: |
| return "P-521"; |
| } |
| return NULL; |
| } |
| |
| int EC_curve_nist2nid(const char *name) { |
| if (strcmp(name, "P-224") == 0) { |
| return NID_secp224r1; |
| } |
| if (strcmp(name, "P-256") == 0) { |
| return NID_X9_62_prime256v1; |
| } |
| if (strcmp(name, "P-384") == 0) { |
| return NID_secp384r1; |
| } |
| if (strcmp(name, "P-521") == 0) { |
| return NID_secp521r1; |
| } |
| return NID_undef; |
| } |
| |
| EC_POINT *EC_POINT_new(const EC_GROUP *group) { |
| if (group == NULL) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); |
| return NULL; |
| } |
| |
| EC_POINT *ret = OPENSSL_malloc(sizeof *ret); |
| if (ret == NULL) { |
| return NULL; |
| } |
| |
| ret->group = EC_GROUP_dup(group); |
| ec_GFp_simple_point_init(&ret->raw); |
| return ret; |
| } |
| |
| static void ec_point_free(EC_POINT *point, int free_group) { |
| if (!point) { |
| return; |
| } |
| if (free_group) { |
| EC_GROUP_free(point->group); |
| } |
| OPENSSL_free(point); |
| } |
| |
| void EC_POINT_free(EC_POINT *point) { |
| ec_point_free(point, 1 /* free group */); |
| } |
| |
| void EC_POINT_clear_free(EC_POINT *point) { EC_POINT_free(point); } |
| |
| int EC_POINT_copy(EC_POINT *dest, const EC_POINT *src) { |
| if (EC_GROUP_cmp(dest->group, src->group, NULL) != 0) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
| return 0; |
| } |
| if (dest == src) { |
| return 1; |
| } |
| ec_GFp_simple_point_copy(&dest->raw, &src->raw); |
| return 1; |
| } |
| |
| EC_POINT *EC_POINT_dup(const EC_POINT *a, const EC_GROUP *group) { |
| if (a == NULL) { |
| return NULL; |
| } |
| |
| EC_POINT *ret = EC_POINT_new(group); |
| if (ret == NULL || |
| !EC_POINT_copy(ret, a)) { |
| EC_POINT_free(ret); |
| return NULL; |
| } |
| |
| return ret; |
| } |
| |
| int EC_POINT_set_to_infinity(const EC_GROUP *group, EC_POINT *point) { |
| if (EC_GROUP_cmp(group, point->group, NULL) != 0) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
| return 0; |
| } |
| ec_GFp_simple_point_set_to_infinity(group, &point->raw); |
| return 1; |
| } |
| |
| int EC_POINT_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) { |
| if (EC_GROUP_cmp(group, point->group, NULL) != 0) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
| return 0; |
| } |
| return ec_GFp_simple_is_at_infinity(group, &point->raw); |
| } |
| |
| int EC_POINT_is_on_curve(const EC_GROUP *group, const EC_POINT *point, |
| BN_CTX *ctx) { |
| if (EC_GROUP_cmp(group, point->group, NULL) != 0) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
| return 0; |
| } |
| return ec_GFp_simple_is_on_curve(group, &point->raw); |
| } |
| |
| int EC_POINT_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, |
| BN_CTX *ctx) { |
| if (EC_GROUP_cmp(group, a->group, NULL) != 0 || |
| EC_GROUP_cmp(group, b->group, NULL) != 0) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
| return -1; |
| } |
| |
| // Note |EC_POINT_cmp| returns zero for equality and non-zero for inequality. |
| return ec_GFp_simple_points_equal(group, &a->raw, &b->raw) ? 0 : 1; |
| } |
| |
| int EC_POINT_get_affine_coordinates_GFp(const EC_GROUP *group, |
| const EC_POINT *point, BIGNUM *x, |
| BIGNUM *y, BN_CTX *ctx) { |
| if (group->meth->point_get_affine_coordinates == 0) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| if (EC_GROUP_cmp(group, point->group, NULL) != 0) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
| return 0; |
| } |
| EC_FELEM x_felem, y_felem; |
| if (!group->meth->point_get_affine_coordinates(group, &point->raw, |
| x == NULL ? NULL : &x_felem, |
| y == NULL ? NULL : &y_felem) || |
| (x != NULL && !ec_felem_to_bignum(group, x, &x_felem)) || |
| (y != NULL && !ec_felem_to_bignum(group, y, &y_felem))) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| int EC_POINT_get_affine_coordinates(const EC_GROUP *group, |
| const EC_POINT *point, BIGNUM *x, BIGNUM *y, |
| BN_CTX *ctx) { |
| return EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx); |
| } |
| |
| void ec_affine_to_jacobian(const EC_GROUP *group, EC_JACOBIAN *out, |
| const EC_AFFINE *p) { |
| out->X = p->X; |
| out->Y = p->Y; |
| out->Z = *ec_felem_one(group); |
| } |
| |
| int ec_jacobian_to_affine(const EC_GROUP *group, EC_AFFINE *out, |
| const EC_JACOBIAN *p) { |
| return group->meth->point_get_affine_coordinates(group, p, &out->X, &out->Y); |
| } |
| |
| int ec_jacobian_to_affine_batch(const EC_GROUP *group, EC_AFFINE *out, |
| const EC_JACOBIAN *in, size_t num) { |
| if (group->meth->jacobian_to_affine_batch == NULL) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| return group->meth->jacobian_to_affine_batch(group, out, in, num); |
| } |
| |
| int ec_point_set_affine_coordinates(const EC_GROUP *group, EC_AFFINE *out, |
| const EC_FELEM *x, const EC_FELEM *y) { |
| void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, |
| const EC_FELEM *b) = group->meth->felem_mul; |
| void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) = |
| group->meth->felem_sqr; |
| |
| // Check if the point is on the curve. |
| EC_FELEM lhs, rhs; |
| felem_sqr(group, &lhs, y); // lhs = y^2 |
| felem_sqr(group, &rhs, x); // rhs = x^2 |
| ec_felem_add(group, &rhs, &rhs, &group->a); // rhs = x^2 + a |
| felem_mul(group, &rhs, &rhs, x); // rhs = x^3 + ax |
| ec_felem_add(group, &rhs, &rhs, &group->b); // rhs = x^3 + ax + b |
| if (!ec_felem_equal(group, &lhs, &rhs)) { |
| OPENSSL_PUT_ERROR(EC, EC_R_POINT_IS_NOT_ON_CURVE); |
| // In the event of an error, defend against the caller not checking the |
| // return value by setting a known safe value. Note this may not be possible |
| // if the caller is in the process of constructing an arbitrary group and |
| // the generator is missing. |
| if (group->has_order) { |
| out->X = group->generator.raw.X; |
| out->Y = group->generator.raw.Y; |
| } |
| return 0; |
| } |
| |
| out->X = *x; |
| out->Y = *y; |
| return 1; |
| } |
| |
| int EC_POINT_set_affine_coordinates_GFp(const EC_GROUP *group, EC_POINT *point, |
| const BIGNUM *x, const BIGNUM *y, |
| BN_CTX *ctx) { |
| if (EC_GROUP_cmp(group, point->group, NULL) != 0) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
| return 0; |
| } |
| |
| if (x == NULL || y == NULL) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| |
| EC_FELEM x_felem, y_felem; |
| EC_AFFINE affine; |
| if (!ec_bignum_to_felem(group, &x_felem, x) || |
| !ec_bignum_to_felem(group, &y_felem, y) || |
| !ec_point_set_affine_coordinates(group, &affine, &x_felem, &y_felem)) { |
| // In the event of an error, defend against the caller not checking the |
| // return value by setting a known safe value. |
| ec_set_to_safe_point(group, &point->raw); |
| return 0; |
| } |
| |
| ec_affine_to_jacobian(group, &point->raw, &affine); |
| return 1; |
| } |
| |
| int EC_POINT_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point, |
| const BIGNUM *x, const BIGNUM *y, |
| BN_CTX *ctx) { |
| return EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx); |
| } |
| |
| int EC_POINT_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, |
| const EC_POINT *b, BN_CTX *ctx) { |
| if (EC_GROUP_cmp(group, r->group, NULL) != 0 || |
| EC_GROUP_cmp(group, a->group, NULL) != 0 || |
| EC_GROUP_cmp(group, b->group, NULL) != 0) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
| return 0; |
| } |
| group->meth->add(group, &r->raw, &a->raw, &b->raw); |
| return 1; |
| } |
| |
| int EC_POINT_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, |
| BN_CTX *ctx) { |
| if (EC_GROUP_cmp(group, r->group, NULL) != 0 || |
| EC_GROUP_cmp(group, a->group, NULL) != 0) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
| return 0; |
| } |
| group->meth->dbl(group, &r->raw, &a->raw); |
| return 1; |
| } |
| |
| |
| int EC_POINT_invert(const EC_GROUP *group, EC_POINT *a, BN_CTX *ctx) { |
| if (EC_GROUP_cmp(group, a->group, NULL) != 0) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
| return 0; |
| } |
| ec_GFp_simple_invert(group, &a->raw); |
| return 1; |
| } |
| |
| static int arbitrary_bignum_to_scalar(const EC_GROUP *group, EC_SCALAR *out, |
| const BIGNUM *in, BN_CTX *ctx) { |
| if (ec_bignum_to_scalar(group, out, in)) { |
| return 1; |
| } |
| |
| ERR_clear_error(); |
| |
| // This is an unusual input, so we do not guarantee constant-time processing. |
| BN_CTX_start(ctx); |
| BIGNUM *tmp = BN_CTX_get(ctx); |
| int ok = tmp != NULL && |
| BN_nnmod(tmp, in, EC_GROUP_get0_order(group), ctx) && |
| ec_bignum_to_scalar(group, out, tmp); |
| BN_CTX_end(ctx); |
| return ok; |
| } |
| |
| int ec_point_mul_no_self_test(const EC_GROUP *group, EC_POINT *r, |
| const BIGNUM *g_scalar, const EC_POINT *p, |
| const BIGNUM *p_scalar, BN_CTX *ctx) { |
| // Previously, this function set |r| to the point at infinity if there was |
| // nothing to multiply. But, nobody should be calling this function with |
| // nothing to multiply in the first place. |
| if ((g_scalar == NULL && p_scalar == NULL) || |
| (p == NULL) != (p_scalar == NULL)) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| |
| if (EC_GROUP_cmp(group, r->group, NULL) != 0 || |
| (p != NULL && EC_GROUP_cmp(group, p->group, NULL) != 0)) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
| return 0; |
| } |
| |
| int ret = 0; |
| BN_CTX *new_ctx = NULL; |
| if (ctx == NULL) { |
| new_ctx = BN_CTX_new(); |
| if (new_ctx == NULL) { |
| goto err; |
| } |
| ctx = new_ctx; |
| } |
| |
| // If both |g_scalar| and |p_scalar| are non-NULL, |
| // |ec_point_mul_scalar_public| would share the doublings between the two |
| // products, which would be more efficient. However, we conservatively assume |
| // the caller needs a constant-time operation. (ECDSA verification does not |
| // use this function.) |
| // |
| // Previously, the low-level constant-time multiplication function aligned |
| // with this function's calling convention, but this was misleading. Curves |
| // which combined the two multiplications did not avoid the doubling case |
| // in the incomplete addition formula and were not constant-time. |
| |
| if (g_scalar != NULL) { |
| EC_SCALAR scalar; |
| if (!arbitrary_bignum_to_scalar(group, &scalar, g_scalar, ctx) || |
| !ec_point_mul_scalar_base(group, &r->raw, &scalar)) { |
| goto err; |
| } |
| } |
| |
| if (p_scalar != NULL) { |
| EC_SCALAR scalar; |
| EC_JACOBIAN tmp; |
| if (!arbitrary_bignum_to_scalar(group, &scalar, p_scalar, ctx) || |
| !ec_point_mul_scalar(group, &tmp, &p->raw, &scalar)) { |
| goto err; |
| } |
| if (g_scalar == NULL) { |
| OPENSSL_memcpy(&r->raw, &tmp, sizeof(EC_JACOBIAN)); |
| } else { |
| group->meth->add(group, &r->raw, &r->raw, &tmp); |
| } |
| } |
| |
| ret = 1; |
| |
| err: |
| BN_CTX_free(new_ctx); |
| return ret; |
| } |
| |
| int EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar, |
| const EC_POINT *p, const BIGNUM *p_scalar, BN_CTX *ctx) { |
| boringssl_ensure_ecc_self_test(); |
| |
| return ec_point_mul_no_self_test(group, r, g_scalar, p, p_scalar, ctx); |
| } |
| |
| int ec_point_mul_scalar_public(const EC_GROUP *group, EC_JACOBIAN *r, |
| const EC_SCALAR *g_scalar, const EC_JACOBIAN *p, |
| const EC_SCALAR *p_scalar) { |
| if (g_scalar == NULL || p_scalar == NULL || p == NULL) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| |
| if (group->meth->mul_public == NULL) { |
| return group->meth->mul_public_batch(group, r, g_scalar, p, p_scalar, 1); |
| } |
| |
| group->meth->mul_public(group, r, g_scalar, p, p_scalar); |
| return 1; |
| } |
| |
| int ec_point_mul_scalar_public_batch(const EC_GROUP *group, EC_JACOBIAN *r, |
| const EC_SCALAR *g_scalar, |
| const EC_JACOBIAN *points, |
| const EC_SCALAR *scalars, size_t num) { |
| if (group->meth->mul_public_batch == NULL) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| |
| return group->meth->mul_public_batch(group, r, g_scalar, points, scalars, |
| num); |
| } |
| |
| int ec_point_mul_scalar(const EC_GROUP *group, EC_JACOBIAN *r, |
| const EC_JACOBIAN *p, const EC_SCALAR *scalar) { |
| if (p == NULL || scalar == NULL) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| |
| group->meth->mul(group, r, p, scalar); |
| |
| // Check the result is on the curve to defend against fault attacks or bugs. |
| // This has negligible cost compared to the multiplication. |
| if (!ec_GFp_simple_is_on_curve(group, r)) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| int ec_point_mul_scalar_base(const EC_GROUP *group, EC_JACOBIAN *r, |
| const EC_SCALAR *scalar) { |
| if (scalar == NULL) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| |
| group->meth->mul_base(group, r, scalar); |
| |
| // Check the result is on the curve to defend against fault attacks or bugs. |
| // This has negligible cost compared to the multiplication. This can only |
| // happen on bug or CPU fault, so it okay to leak this. The alternative would |
| // be to proceed with bad data. |
| if (!constant_time_declassify_int(ec_GFp_simple_is_on_curve(group, r))) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| int ec_point_mul_scalar_batch(const EC_GROUP *group, EC_JACOBIAN *r, |
| const EC_JACOBIAN *p0, const EC_SCALAR *scalar0, |
| const EC_JACOBIAN *p1, const EC_SCALAR *scalar1, |
| const EC_JACOBIAN *p2, |
| const EC_SCALAR *scalar2) { |
| if (group->meth->mul_batch == NULL) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| |
| group->meth->mul_batch(group, r, p0, scalar0, p1, scalar1, p2, scalar2); |
| |
| // Check the result is on the curve to defend against fault attacks or bugs. |
| // This has negligible cost compared to the multiplication. |
| if (!ec_GFp_simple_is_on_curve(group, r)) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| int ec_init_precomp(const EC_GROUP *group, EC_PRECOMP *out, |
| const EC_JACOBIAN *p) { |
| if (group->meth->init_precomp == NULL) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| |
| return group->meth->init_precomp(group, out, p); |
| } |
| |
| int ec_point_mul_scalar_precomp(const EC_GROUP *group, EC_JACOBIAN *r, |
| const EC_PRECOMP *p0, const EC_SCALAR *scalar0, |
| const EC_PRECOMP *p1, const EC_SCALAR *scalar1, |
| const EC_PRECOMP *p2, |
| const EC_SCALAR *scalar2) { |
| if (group->meth->mul_precomp == NULL) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| |
| group->meth->mul_precomp(group, r, p0, scalar0, p1, scalar1, p2, scalar2); |
| |
| // Check the result is on the curve to defend against fault attacks or bugs. |
| // This has negligible cost compared to the multiplication. |
| if (!ec_GFp_simple_is_on_curve(group, r)) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| void ec_point_select(const EC_GROUP *group, EC_JACOBIAN *out, BN_ULONG mask, |
| const EC_JACOBIAN *a, const EC_JACOBIAN *b) { |
| ec_felem_select(group, &out->X, mask, &a->X, &b->X); |
| ec_felem_select(group, &out->Y, mask, &a->Y, &b->Y); |
| ec_felem_select(group, &out->Z, mask, &a->Z, &b->Z); |
| } |
| |
| void ec_affine_select(const EC_GROUP *group, EC_AFFINE *out, BN_ULONG mask, |
| const EC_AFFINE *a, const EC_AFFINE *b) { |
| ec_felem_select(group, &out->X, mask, &a->X, &b->X); |
| ec_felem_select(group, &out->Y, mask, &a->Y, &b->Y); |
| } |
| |
| void ec_precomp_select(const EC_GROUP *group, EC_PRECOMP *out, BN_ULONG mask, |
| const EC_PRECOMP *a, const EC_PRECOMP *b) { |
| static_assert(sizeof(out->comb) == sizeof(*out), |
| "out->comb does not span the entire structure"); |
| for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(out->comb); i++) { |
| ec_affine_select(group, &out->comb[i], mask, &a->comb[i], &b->comb[i]); |
| } |
| } |
| |
| int ec_cmp_x_coordinate(const EC_GROUP *group, const EC_JACOBIAN *p, |
| const EC_SCALAR *r) { |
| return group->meth->cmp_x_coordinate(group, p, r); |
| } |
| |
| int ec_get_x_coordinate_as_scalar(const EC_GROUP *group, EC_SCALAR *out, |
| const EC_JACOBIAN *p) { |
| uint8_t bytes[EC_MAX_BYTES]; |
| size_t len; |
| if (!ec_get_x_coordinate_as_bytes(group, bytes, &len, sizeof(bytes), p)) { |
| return 0; |
| } |
| |
| // The x-coordinate is bounded by p, but we need a scalar, bounded by the |
| // order. These may not have the same size. However, we must have p < 2×order, |
| // assuming p is not tiny (p >= 17). |
| // |
| // Thus |bytes| will fit in |order.width + 1| words, and we can reduce by |
| // performing at most one subtraction. |
| // |
| // Proof: We only work with prime order curves, so the number of points on |
| // the curve is the order. Thus Hasse's theorem gives: |
| // |
| // |order - (p + 1)| <= 2×sqrt(p) |
| // p + 1 - order <= 2×sqrt(p) |
| // p + 1 - 2×sqrt(p) <= order |
| // p + 1 - 2×(p/4) < order (p/4 > sqrt(p) for p >= 17) |
| // p/2 < p/2 + 1 < order |
| // p < 2×order |
| // |
| // Additionally, one can manually check this property for built-in curves. It |
| // is enforced for legacy custom curves in |EC_GROUP_set_generator|. |
| const BIGNUM *order = EC_GROUP_get0_order(group); |
| BN_ULONG words[EC_MAX_WORDS + 1] = {0}; |
| bn_big_endian_to_words(words, order->width + 1, bytes, len); |
| bn_reduce_once(out->words, words, /*carry=*/words[order->width], order->d, |
| order->width); |
| return 1; |
| } |
| |
| int ec_get_x_coordinate_as_bytes(const EC_GROUP *group, uint8_t *out, |
| size_t *out_len, size_t max_out, |
| const EC_JACOBIAN *p) { |
| size_t len = BN_num_bytes(&group->field.N); |
| assert(len <= EC_MAX_BYTES); |
| if (max_out < len) { |
| OPENSSL_PUT_ERROR(EC, EC_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| |
| EC_FELEM x; |
| if (!group->meth->point_get_affine_coordinates(group, p, &x, NULL)) { |
| return 0; |
| } |
| |
| ec_felem_to_bytes(group, out, out_len, &x); |
| *out_len = len; |
| return 1; |
| } |
| |
| void ec_set_to_safe_point(const EC_GROUP *group, EC_JACOBIAN *out) { |
| if (group->has_order) { |
| ec_GFp_simple_point_copy(out, &group->generator.raw); |
| } else { |
| // The generator can be missing if the caller is in the process of |
| // constructing an arbitrary group. In this case, we give up and use the |
| // point at infinity. |
| ec_GFp_simple_point_set_to_infinity(group, out); |
| } |
| } |
| |
| void EC_GROUP_set_asn1_flag(EC_GROUP *group, int flag) {} |
| |
| int EC_GROUP_get_asn1_flag(const EC_GROUP *group) { |
| return OPENSSL_EC_NAMED_CURVE; |
| } |
| |
| const EC_METHOD *EC_GROUP_method_of(const EC_GROUP *group) { |
| // This function exists purely to give callers a way to call |
| // |EC_METHOD_get_field_type|. cryptography.io crashes if |EC_GROUP_method_of| |
| // returns NULL, so return some other garbage pointer. |
| return (const EC_METHOD *)0x12340000; |
| } |
| |
| int EC_METHOD_get_field_type(const EC_METHOD *meth) { |
| return NID_X9_62_prime_field; |
| } |
| |
| void EC_GROUP_set_point_conversion_form(EC_GROUP *group, |
| point_conversion_form_t form) { |
| if (form != POINT_CONVERSION_UNCOMPRESSED) { |
| abort(); |
| } |
| } |