| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] */ |
| |
| #include <openssl/bn.h> |
| |
| #include <assert.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| |
| #include "internal.h" |
| #include "../../internal.h" |
| |
| |
| #define BN_MUL_RECURSIVE_SIZE_NORMAL 16 |
| #define BN_SQR_RECURSIVE_SIZE_NORMAL BN_MUL_RECURSIVE_SIZE_NORMAL |
| |
| |
| static void bn_abs_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, |
| size_t num, BN_ULONG *tmp) { |
| BN_ULONG borrow = bn_sub_words(tmp, a, b, num); |
| bn_sub_words(r, b, a, num); |
| bn_select_words(r, 0 - borrow, r /* tmp < 0 */, tmp /* tmp >= 0 */, num); |
| } |
| |
| static void bn_mul_normal(BN_ULONG *r, const BN_ULONG *a, size_t na, |
| const BN_ULONG *b, size_t nb) { |
| if (na < nb) { |
| size_t itmp = na; |
| na = nb; |
| nb = itmp; |
| const BN_ULONG *ltmp = a; |
| a = b; |
| b = ltmp; |
| } |
| BN_ULONG *rr = &(r[na]); |
| if (nb == 0) { |
| OPENSSL_memset(r, 0, na * sizeof(BN_ULONG)); |
| return; |
| } |
| rr[0] = bn_mul_words(r, a, na, b[0]); |
| |
| for (;;) { |
| if (--nb == 0) { |
| return; |
| } |
| rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]); |
| if (--nb == 0) { |
| return; |
| } |
| rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]); |
| if (--nb == 0) { |
| return; |
| } |
| rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]); |
| if (--nb == 0) { |
| return; |
| } |
| rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]); |
| rr += 4; |
| r += 4; |
| b += 4; |
| } |
| } |
| |
| // bn_sub_part_words sets |r| to |a| - |b|. It returns the borrow bit, which is |
| // one if the operation underflowed and zero otherwise. |cl| is the common |
| // length, that is, the shorter of len(a) or len(b). |dl| is the delta length, |
| // that is, len(a) - len(b). |r|'s length matches the larger of |a| and |b|, or |
| // cl + abs(dl). |
| // |
| // TODO(davidben): Make this take |size_t|. The |cl| + |dl| calling convention |
| // is confusing. |
| static BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, |
| const BN_ULONG *b, int cl, int dl) { |
| assert(cl >= 0); |
| BN_ULONG borrow = bn_sub_words(r, a, b, cl); |
| if (dl == 0) { |
| return borrow; |
| } |
| |
| r += cl; |
| a += cl; |
| b += cl; |
| |
| if (dl < 0) { |
| // |a| is shorter than |b|. Complete the subtraction as if the excess words |
| // in |a| were zeros. |
| dl = -dl; |
| for (int i = 0; i < dl; i++) { |
| r[i] = 0u - b[i] - borrow; |
| borrow |= r[i] != 0; |
| } |
| } else { |
| // |b| is shorter than |a|. Complete the subtraction as if the excess words |
| // in |b| were zeros. |
| for (int i = 0; i < dl; i++) { |
| // |r| and |a| may alias, so use a temporary. |
| BN_ULONG tmp = a[i]; |
| r[i] = a[i] - borrow; |
| borrow = tmp < r[i]; |
| } |
| } |
| |
| return borrow; |
| } |
| |
| // bn_abs_sub_part_words computes |r| = |a| - |b|, storing the absolute value |
| // and returning a mask of all ones if the result was negative and all zeros if |
| // the result was positive. |cl| and |dl| follow the |bn_sub_part_words| calling |
| // convention. |
| // |
| // TODO(davidben): Make this take |size_t|. The |cl| + |dl| calling convention |
| // is confusing. |
| static BN_ULONG bn_abs_sub_part_words(BN_ULONG *r, const BN_ULONG *a, |
| const BN_ULONG *b, int cl, int dl, |
| BN_ULONG *tmp) { |
| BN_ULONG borrow = bn_sub_part_words(tmp, a, b, cl, dl); |
| bn_sub_part_words(r, b, a, cl, -dl); |
| int r_len = cl + (dl < 0 ? -dl : dl); |
| borrow = 0 - borrow; |
| bn_select_words(r, borrow, r /* tmp < 0 */, tmp /* tmp >= 0 */, r_len); |
| return borrow; |
| } |
| |
| int bn_abs_sub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
| BN_CTX *ctx) { |
| int cl = a->width < b->width ? a->width : b->width; |
| int dl = a->width - b->width; |
| int r_len = a->width < b->width ? b->width : a->width; |
| BN_CTX_start(ctx); |
| BIGNUM *tmp = BN_CTX_get(ctx); |
| int ok = tmp != NULL && |
| bn_wexpand(r, r_len) && |
| bn_wexpand(tmp, r_len); |
| if (ok) { |
| bn_abs_sub_part_words(r->d, a->d, b->d, cl, dl, tmp->d); |
| r->width = r_len; |
| } |
| BN_CTX_end(ctx); |
| return ok; |
| } |
| |
| // Karatsuba recursive multiplication algorithm |
| // (cf. Knuth, The Art of Computer Programming, Vol. 2) |
| |
| // bn_mul_recursive sets |r| to |a| * |b|, using |t| as scratch space. |r| has |
| // length 2*|n2|, |a| has length |n2| + |dna|, |b| has length |n2| + |dnb|, and |
| // |t| has length 4*|n2|. |n2| must be a power of two. Finally, we must have |
| // -|BN_MUL_RECURSIVE_SIZE_NORMAL|/2 <= |dna| <= 0 and |
| // -|BN_MUL_RECURSIVE_SIZE_NORMAL|/2 <= |dnb| <= 0. |
| // |
| // TODO(davidben): Simplify and |size_t| the calling convention around lengths |
| // here. |
| static void bn_mul_recursive(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, |
| int n2, int dna, int dnb, BN_ULONG *t) { |
| // |n2| is a power of two. |
| assert(n2 != 0 && (n2 & (n2 - 1)) == 0); |
| // Check |dna| and |dnb| are in range. |
| assert(-BN_MUL_RECURSIVE_SIZE_NORMAL/2 <= dna && dna <= 0); |
| assert(-BN_MUL_RECURSIVE_SIZE_NORMAL/2 <= dnb && dnb <= 0); |
| |
| // Only call bn_mul_comba 8 if n2 == 8 and the |
| // two arrays are complete [steve] |
| if (n2 == 8 && dna == 0 && dnb == 0) { |
| bn_mul_comba8(r, a, b); |
| return; |
| } |
| |
| // Else do normal multiply |
| if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) { |
| bn_mul_normal(r, a, n2 + dna, b, n2 + dnb); |
| if (dna + dnb < 0) { |
| OPENSSL_memset(&r[2 * n2 + dna + dnb], 0, |
| sizeof(BN_ULONG) * -(dna + dnb)); |
| } |
| return; |
| } |
| |
| // Split |a| and |b| into a0,a1 and b0,b1, where a0 and b0 have size |n|. |
| // Split |t| into t0,t1,t2,t3, each of size |n|, with the remaining 4*|n| used |
| // for recursive calls. |
| // Split |r| into r0,r1,r2,r3. We must contribute a0*b0 to r0,r1, a0*a1+b0*b1 |
| // to r1,r2, and a1*b1 to r2,r3. The middle term we will compute as: |
| // |
| // a0*a1 + b0*b1 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0 |
| // |
| // Note that we know |n| >= |BN_MUL_RECURSIVE_SIZE_NORMAL|/2 above, so |
| // |tna| and |tnb| are non-negative. |
| int n = n2 / 2, tna = n + dna, tnb = n + dnb; |
| |
| // t0 = a0 - a1 and t1 = b1 - b0. The result will be multiplied, so we XOR |
| // their sign masks, giving the sign of (a0 - a1)*(b1 - b0). t0 and t1 |
| // themselves store the absolute value. |
| BN_ULONG neg = bn_abs_sub_part_words(t, a, &a[n], tna, n - tna, &t[n2]); |
| neg ^= bn_abs_sub_part_words(&t[n], &b[n], b, tnb, tnb - n, &t[n2]); |
| |
| // Compute: |
| // t2,t3 = t0 * t1 = |(a0 - a1)*(b1 - b0)| |
| // r0,r1 = a0 * b0 |
| // r2,r3 = a1 * b1 |
| if (n == 4 && dna == 0 && dnb == 0) { |
| bn_mul_comba4(&t[n2], t, &t[n]); |
| |
| bn_mul_comba4(r, a, b); |
| bn_mul_comba4(&r[n2], &a[n], &b[n]); |
| } else if (n == 8 && dna == 0 && dnb == 0) { |
| bn_mul_comba8(&t[n2], t, &t[n]); |
| |
| bn_mul_comba8(r, a, b); |
| bn_mul_comba8(&r[n2], &a[n], &b[n]); |
| } else { |
| BN_ULONG *p = &t[n2 * 2]; |
| bn_mul_recursive(&t[n2], t, &t[n], n, 0, 0, p); |
| bn_mul_recursive(r, a, b, n, 0, 0, p); |
| bn_mul_recursive(&r[n2], &a[n], &b[n], n, dna, dnb, p); |
| } |
| |
| // t0,t1,c = r0,r1 + r2,r3 = a0*b0 + a1*b1 |
| BN_ULONG c = bn_add_words(t, r, &r[n2], n2); |
| |
| // t2,t3,c = t0,t1,c + neg*t2,t3 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0. |
| // The second term is stored as the absolute value, so we do this with a |
| // constant-time select. |
| BN_ULONG c_neg = c - bn_sub_words(&t[n2 * 2], t, &t[n2], n2); |
| BN_ULONG c_pos = c + bn_add_words(&t[n2], t, &t[n2], n2); |
| bn_select_words(&t[n2], neg, &t[n2 * 2], &t[n2], n2); |
| static_assert(sizeof(BN_ULONG) <= sizeof(crypto_word_t), |
| "crypto_word_t is too small"); |
| c = constant_time_select_w(neg, c_neg, c_pos); |
| |
| // We now have our three components. Add them together. |
| // r1,r2,c = r1,r2 + t2,t3,c |
| c += bn_add_words(&r[n], &r[n], &t[n2], n2); |
| |
| // Propagate the carry bit to the end. |
| for (int i = n + n2; i < n2 + n2; i++) { |
| BN_ULONG old = r[i]; |
| r[i] = old + c; |
| c = r[i] < old; |
| } |
| |
| // The product should fit without carries. |
| assert(c == 0); |
| } |
| |
| // bn_mul_part_recursive sets |r| to |a| * |b|, using |t| as scratch space. |r| |
| // has length 4*|n|, |a| has length |n| + |tna|, |b| has length |n| + |tnb|, and |
| // |t| has length 8*|n|. |n| must be a power of two. Additionally, we must have |
| // 0 <= tna < n and 0 <= tnb < n, and |tna| and |tnb| must differ by at most |
| // one. |
| // |
| // TODO(davidben): Make this take |size_t| and perhaps the actual lengths of |a| |
| // and |b|. |
| static void bn_mul_part_recursive(BN_ULONG *r, const BN_ULONG *a, |
| const BN_ULONG *b, int n, int tna, int tnb, |
| BN_ULONG *t) { |
| // |n| is a power of two. |
| assert(n != 0 && (n & (n - 1)) == 0); |
| // Check |tna| and |tnb| are in range. |
| assert(0 <= tna && tna < n); |
| assert(0 <= tnb && tnb < n); |
| assert(-1 <= tna - tnb && tna - tnb <= 1); |
| |
| int n2 = n * 2; |
| if (n < 8) { |
| bn_mul_normal(r, a, n + tna, b, n + tnb); |
| OPENSSL_memset(r + n2 + tna + tnb, 0, n2 - tna - tnb); |
| return; |
| } |
| |
| // Split |a| and |b| into a0,a1 and b0,b1, where a0 and b0 have size |n|. |a1| |
| // and |b1| have size |tna| and |tnb|, respectively. |
| // Split |t| into t0,t1,t2,t3, each of size |n|, with the remaining 4*|n| used |
| // for recursive calls. |
| // Split |r| into r0,r1,r2,r3. We must contribute a0*b0 to r0,r1, a0*a1+b0*b1 |
| // to r1,r2, and a1*b1 to r2,r3. The middle term we will compute as: |
| // |
| // a0*a1 + b0*b1 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0 |
| |
| // t0 = a0 - a1 and t1 = b1 - b0. The result will be multiplied, so we XOR |
| // their sign masks, giving the sign of (a0 - a1)*(b1 - b0). t0 and t1 |
| // themselves store the absolute value. |
| BN_ULONG neg = bn_abs_sub_part_words(t, a, &a[n], tna, n - tna, &t[n2]); |
| neg ^= bn_abs_sub_part_words(&t[n], &b[n], b, tnb, tnb - n, &t[n2]); |
| |
| // Compute: |
| // t2,t3 = t0 * t1 = |(a0 - a1)*(b1 - b0)| |
| // r0,r1 = a0 * b0 |
| // r2,r3 = a1 * b1 |
| if (n == 8) { |
| bn_mul_comba8(&t[n2], t, &t[n]); |
| bn_mul_comba8(r, a, b); |
| |
| bn_mul_normal(&r[n2], &a[n], tna, &b[n], tnb); |
| // |bn_mul_normal| only writes |tna| + |tna| words. Zero the rest. |
| OPENSSL_memset(&r[n2 + tna + tnb], 0, sizeof(BN_ULONG) * (n2 - tna - tnb)); |
| } else { |
| BN_ULONG *p = &t[n2 * 2]; |
| bn_mul_recursive(&t[n2], t, &t[n], n, 0, 0, p); |
| bn_mul_recursive(r, a, b, n, 0, 0, p); |
| |
| OPENSSL_memset(&r[n2], 0, sizeof(BN_ULONG) * n2); |
| if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL && |
| tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) { |
| bn_mul_normal(&r[n2], &a[n], tna, &b[n], tnb); |
| } else { |
| int i = n; |
| for (;;) { |
| i /= 2; |
| if (i < tna || i < tnb) { |
| // E.g., n == 16, i == 8 and tna == 11. |tna| and |tnb| are within one |
| // of each other, so if |tna| is larger and tna > i, then we know |
| // tnb >= i, and this call is valid. |
| bn_mul_part_recursive(&r[n2], &a[n], &b[n], i, tna - i, tnb - i, p); |
| break; |
| } |
| if (i == tna || i == tnb) { |
| // If there is only a bottom half to the number, just do it. We know |
| // the larger of |tna - i| and |tnb - i| is zero. The other is zero or |
| // -1 by because of |tna| and |tnb| differ by at most one. |
| bn_mul_recursive(&r[n2], &a[n], &b[n], i, tna - i, tnb - i, p); |
| break; |
| } |
| |
| // This loop will eventually terminate when |i| falls below |
| // |BN_MUL_RECURSIVE_SIZE_NORMAL| because we know one of |tna| and |tnb| |
| // exceeds that. |
| } |
| } |
| } |
| |
| // t0,t1,c = r0,r1 + r2,r3 = a0*b0 + a1*b1 |
| BN_ULONG c = bn_add_words(t, r, &r[n2], n2); |
| |
| // t2,t3,c = t0,t1,c + neg*t2,t3 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0. |
| // The second term is stored as the absolute value, so we do this with a |
| // constant-time select. |
| BN_ULONG c_neg = c - bn_sub_words(&t[n2 * 2], t, &t[n2], n2); |
| BN_ULONG c_pos = c + bn_add_words(&t[n2], t, &t[n2], n2); |
| bn_select_words(&t[n2], neg, &t[n2 * 2], &t[n2], n2); |
| static_assert(sizeof(BN_ULONG) <= sizeof(crypto_word_t), |
| "crypto_word_t is too small"); |
| c = constant_time_select_w(neg, c_neg, c_pos); |
| |
| // We now have our three components. Add them together. |
| // r1,r2,c = r1,r2 + t2,t3,c |
| c += bn_add_words(&r[n], &r[n], &t[n2], n2); |
| |
| // Propagate the carry bit to the end. |
| for (int i = n + n2; i < n2 + n2; i++) { |
| BN_ULONG old = r[i]; |
| r[i] = old + c; |
| c = r[i] < old; |
| } |
| |
| // The product should fit without carries. |
| assert(c == 0); |
| } |
| |
| // bn_mul_impl implements |BN_mul| and |bn_mul_consttime|. Note this function |
| // breaks |BIGNUM| invariants and may return a negative zero. This is handled by |
| // the callers. |
| static int bn_mul_impl(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
| BN_CTX *ctx) { |
| int al = a->width; |
| int bl = b->width; |
| if (al == 0 || bl == 0) { |
| BN_zero(r); |
| return 1; |
| } |
| |
| int ret = 0; |
| BIGNUM *rr; |
| BN_CTX_start(ctx); |
| if (r == a || r == b) { |
| rr = BN_CTX_get(ctx); |
| if (rr == NULL) { |
| goto err; |
| } |
| } else { |
| rr = r; |
| } |
| rr->neg = a->neg ^ b->neg; |
| |
| int i = al - bl; |
| if (i == 0) { |
| if (al == 8) { |
| if (!bn_wexpand(rr, 16)) { |
| goto err; |
| } |
| rr->width = 16; |
| bn_mul_comba8(rr->d, a->d, b->d); |
| goto end; |
| } |
| } |
| |
| int top = al + bl; |
| static const int kMulNormalSize = 16; |
| if (al >= kMulNormalSize && bl >= kMulNormalSize) { |
| if (-1 <= i && i <= 1) { |
| // Find the largest power of two less than or equal to the larger length. |
| int j; |
| if (i >= 0) { |
| j = BN_num_bits_word((BN_ULONG)al); |
| } else { |
| j = BN_num_bits_word((BN_ULONG)bl); |
| } |
| j = 1 << (j - 1); |
| assert(j <= al || j <= bl); |
| BIGNUM *t = BN_CTX_get(ctx); |
| if (t == NULL) { |
| goto err; |
| } |
| if (al > j || bl > j) { |
| // We know |al| and |bl| are at most one from each other, so if al > j, |
| // bl >= j, and vice versa. Thus we can use |bn_mul_part_recursive|. |
| // |
| // TODO(davidben): This codepath is almost unused in standard |
| // algorithms. Is this optimization necessary? See notes in |
| // https://boringssl-review.googlesource.com/q/I0bd604e2cd6a75c266f64476c23a730ca1721ea6 |
| assert(al >= j && bl >= j); |
| if (!bn_wexpand(t, j * 8) || |
| !bn_wexpand(rr, j * 4)) { |
| goto err; |
| } |
| bn_mul_part_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d); |
| } else { |
| // al <= j && bl <= j. Additionally, we know j <= al or j <= bl, so one |
| // of al - j or bl - j is zero. The other, by the bound on |i| above, is |
| // zero or -1. Thus, we can use |bn_mul_recursive|. |
| if (!bn_wexpand(t, j * 4) || |
| !bn_wexpand(rr, j * 2)) { |
| goto err; |
| } |
| bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d); |
| } |
| rr->width = top; |
| goto end; |
| } |
| } |
| |
| if (!bn_wexpand(rr, top)) { |
| goto err; |
| } |
| rr->width = top; |
| bn_mul_normal(rr->d, a->d, al, b->d, bl); |
| |
| end: |
| if (r != rr && !BN_copy(r, rr)) { |
| goto err; |
| } |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { |
| if (!bn_mul_impl(r, a, b, ctx)) { |
| return 0; |
| } |
| |
| // This additionally fixes any negative zeros created by |bn_mul_impl|. |
| bn_set_minimal_width(r); |
| return 1; |
| } |
| |
| int bn_mul_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { |
| // Prevent negative zeros. |
| if (a->neg || b->neg) { |
| OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); |
| return 0; |
| } |
| |
| return bn_mul_impl(r, a, b, ctx); |
| } |
| |
| void bn_mul_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a, |
| const BN_ULONG *b, size_t num_b) { |
| if (num_r != num_a + num_b) { |
| abort(); |
| } |
| // TODO(davidben): Should this call |bn_mul_comba4| too? |BN_mul| does not |
| // hit that code. |
| if (num_a == 8 && num_b == 8) { |
| bn_mul_comba8(r, a, b); |
| } else { |
| bn_mul_normal(r, a, num_a, b, num_b); |
| } |
| } |
| |
| // tmp must have 2*n words |
| static void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, size_t n, |
| BN_ULONG *tmp) { |
| if (n == 0) { |
| return; |
| } |
| |
| size_t max = n * 2; |
| const BN_ULONG *ap = a; |
| BN_ULONG *rp = r; |
| rp[0] = rp[max - 1] = 0; |
| rp++; |
| |
| // Compute the contribution of a[i] * a[j] for all i < j. |
| if (n > 1) { |
| ap++; |
| rp[n - 1] = bn_mul_words(rp, ap, n - 1, ap[-1]); |
| rp += 2; |
| } |
| if (n > 2) { |
| for (size_t i = n - 2; i > 0; i--) { |
| ap++; |
| rp[i] = bn_mul_add_words(rp, ap, i, ap[-1]); |
| rp += 2; |
| } |
| } |
| |
| // The final result fits in |max| words, so none of the following operations |
| // will overflow. |
| |
| // Double |r|, giving the contribution of a[i] * a[j] for all i != j. |
| bn_add_words(r, r, r, max); |
| |
| // Add in the contribution of a[i] * a[i] for all i. |
| bn_sqr_words(tmp, a, n); |
| bn_add_words(r, r, tmp, max); |
| } |
| |
| // bn_sqr_recursive sets |r| to |a|^2, using |t| as scratch space. |r| has |
| // length 2*|n2|, |a| has length |n2|, and |t| has length 4*|n2|. |n2| must be |
| // a power of two. |
| static void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, size_t n2, |
| BN_ULONG *t) { |
| // |n2| is a power of two. |
| assert(n2 != 0 && (n2 & (n2 - 1)) == 0); |
| |
| if (n2 == 4) { |
| bn_sqr_comba4(r, a); |
| return; |
| } |
| if (n2 == 8) { |
| bn_sqr_comba8(r, a); |
| return; |
| } |
| if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) { |
| bn_sqr_normal(r, a, n2, t); |
| return; |
| } |
| |
| // Split |a| into a0,a1, each of size |n|. |
| // Split |t| into t0,t1,t2,t3, each of size |n|, with the remaining 4*|n| used |
| // for recursive calls. |
| // Split |r| into r0,r1,r2,r3. We must contribute a0^2 to r0,r1, 2*a0*a1 to |
| // r1,r2, and a1^2 to r2,r3. |
| size_t n = n2 / 2; |
| BN_ULONG *t_recursive = &t[n2 * 2]; |
| |
| // t0 = |a0 - a1|. |
| bn_abs_sub_words(t, a, &a[n], n, &t[n]); |
| // t2,t3 = t0^2 = |a0 - a1|^2 = a0^2 - 2*a0*a1 + a1^2 |
| bn_sqr_recursive(&t[n2], t, n, t_recursive); |
| |
| // r0,r1 = a0^2 |
| bn_sqr_recursive(r, a, n, t_recursive); |
| |
| // r2,r3 = a1^2 |
| bn_sqr_recursive(&r[n2], &a[n], n, t_recursive); |
| |
| // t0,t1,c = r0,r1 + r2,r3 = a0^2 + a1^2 |
| BN_ULONG c = bn_add_words(t, r, &r[n2], n2); |
| // t2,t3,c = t0,t1,c - t2,t3 = 2*a0*a1 |
| c -= bn_sub_words(&t[n2], t, &t[n2], n2); |
| |
| // We now have our three components. Add them together. |
| // r1,r2,c = r1,r2 + t2,t3,c |
| c += bn_add_words(&r[n], &r[n], &t[n2], n2); |
| |
| // Propagate the carry bit to the end. |
| for (size_t i = n + n2; i < n2 + n2; i++) { |
| BN_ULONG old = r[i]; |
| r[i] = old + c; |
| c = r[i] < old; |
| } |
| |
| // The square should fit without carries. |
| assert(c == 0); |
| } |
| |
| int BN_mul_word(BIGNUM *bn, BN_ULONG w) { |
| if (!bn->width) { |
| return 1; |
| } |
| |
| if (w == 0) { |
| BN_zero(bn); |
| return 1; |
| } |
| |
| BN_ULONG ll = bn_mul_words(bn->d, bn->d, bn->width, w); |
| if (ll) { |
| if (!bn_wexpand(bn, bn->width + 1)) { |
| return 0; |
| } |
| bn->d[bn->width++] = ll; |
| } |
| |
| return 1; |
| } |
| |
| int bn_sqr_consttime(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) { |
| int al = a->width; |
| if (al <= 0) { |
| r->width = 0; |
| r->neg = 0; |
| return 1; |
| } |
| |
| int ret = 0; |
| BN_CTX_start(ctx); |
| BIGNUM *rr = (a != r) ? r : BN_CTX_get(ctx); |
| BIGNUM *tmp = BN_CTX_get(ctx); |
| if (!rr || !tmp) { |
| goto err; |
| } |
| |
| int max = 2 * al; // Non-zero (from above) |
| if (!bn_wexpand(rr, max)) { |
| goto err; |
| } |
| |
| if (al == 4) { |
| bn_sqr_comba4(rr->d, a->d); |
| } else if (al == 8) { |
| bn_sqr_comba8(rr->d, a->d); |
| } else { |
| if (al < BN_SQR_RECURSIVE_SIZE_NORMAL) { |
| BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL * 2]; |
| bn_sqr_normal(rr->d, a->d, al, t); |
| } else { |
| // If |al| is a power of two, we can use |bn_sqr_recursive|. |
| if (al != 0 && (al & (al - 1)) == 0) { |
| if (!bn_wexpand(tmp, al * 4)) { |
| goto err; |
| } |
| bn_sqr_recursive(rr->d, a->d, al, tmp->d); |
| } else { |
| if (!bn_wexpand(tmp, max)) { |
| goto err; |
| } |
| bn_sqr_normal(rr->d, a->d, al, tmp->d); |
| } |
| } |
| } |
| |
| rr->neg = 0; |
| rr->width = max; |
| |
| if (rr != r && !BN_copy(r, rr)) { |
| goto err; |
| } |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) { |
| if (!bn_sqr_consttime(r, a, ctx)) { |
| return 0; |
| } |
| |
| bn_set_minimal_width(r); |
| return 1; |
| } |
| |
| void bn_sqr_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a) { |
| if (num_r != 2 * num_a || num_a > BN_SMALL_MAX_WORDS) { |
| abort(); |
| } |
| if (num_a == 4) { |
| bn_sqr_comba4(r, a); |
| } else if (num_a == 8) { |
| bn_sqr_comba8(r, a); |
| } else { |
| BN_ULONG tmp[2 * BN_SMALL_MAX_WORDS]; |
| bn_sqr_normal(r, a, num_a, tmp); |
| OPENSSL_cleanse(tmp, 2 * num_a * sizeof(BN_ULONG)); |
| } |
| } |