| /* ==================================================================== |
| * Copyright (c) 2006 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * licensing@OpenSSL.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). */ |
| |
| #include <openssl/evp.h> |
| |
| #include <openssl/bio.h> |
| #include <openssl/bn.h> |
| #include <openssl/dsa.h> |
| #include <openssl/ec.h> |
| #include <openssl/ec_key.h> |
| #include <openssl/mem.h> |
| #include <openssl/rsa.h> |
| |
| #include "../rsa/internal.h" |
| |
| |
| static int bn_print(BIO *bp, const char *number, const BIGNUM *num, |
| uint8_t *buf, int off) { |
| if (num == NULL) { |
| return 1; |
| } |
| |
| if (!BIO_indent(bp, off, 128)) { |
| return 0; |
| } |
| if (BN_is_zero(num)) { |
| if (BIO_printf(bp, "%s 0\n", number) <= 0) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| if (BN_num_bytes(num) <= sizeof(long)) { |
| const char *neg = BN_is_negative(num) ? "-" : ""; |
| if (BIO_printf(bp, "%s %s%lu (%s0x%lx)\n", number, neg, |
| (unsigned long)num->d[0], neg, |
| (unsigned long)num->d[0]) <= 0) { |
| return 0; |
| } |
| } else { |
| buf[0] = 0; |
| if (BIO_printf(bp, "%s%s", number, |
| (BN_is_negative(num)) ? " (Negative)" : "") <= 0) { |
| return 0; |
| } |
| int n = BN_bn2bin(num, &buf[1]); |
| |
| if (buf[1] & 0x80) { |
| n++; |
| } else { |
| buf++; |
| } |
| |
| int i; |
| for (i = 0; i < n; i++) { |
| if ((i % 15) == 0) { |
| if (BIO_puts(bp, "\n") <= 0 || |
| !BIO_indent(bp, off + 4, 128)) { |
| return 0; |
| } |
| } |
| if (BIO_printf(bp, "%02x%s", buf[i], ((i + 1) == n) ? "" : ":") <= 0) { |
| return 0; |
| } |
| } |
| if (BIO_write(bp, "\n", 1) <= 0) { |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| static void update_buflen(const BIGNUM *b, size_t *pbuflen) { |
| size_t i; |
| |
| if (!b) { |
| return; |
| } |
| |
| i = BN_num_bytes(b); |
| if (*pbuflen < i) { |
| *pbuflen = i; |
| } |
| } |
| |
| /* RSA keys. */ |
| |
| static int do_rsa_print(BIO *out, const RSA *rsa, int off, |
| int include_private) { |
| const char *s, *str; |
| uint8_t *m = NULL; |
| int ret = 0, mod_len = 0; |
| size_t buf_len = 0; |
| |
| update_buflen(rsa->n, &buf_len); |
| update_buflen(rsa->e, &buf_len); |
| |
| if (include_private) { |
| update_buflen(rsa->d, &buf_len); |
| update_buflen(rsa->p, &buf_len); |
| update_buflen(rsa->q, &buf_len); |
| update_buflen(rsa->dmp1, &buf_len); |
| update_buflen(rsa->dmq1, &buf_len); |
| update_buflen(rsa->iqmp, &buf_len); |
| |
| if (rsa->additional_primes != NULL) { |
| size_t i; |
| |
| for (i = 0; i < sk_RSA_additional_prime_num(rsa->additional_primes); |
| i++) { |
| const RSA_additional_prime *ap = |
| sk_RSA_additional_prime_value(rsa->additional_primes, i); |
| update_buflen(ap->prime, &buf_len); |
| update_buflen(ap->exp, &buf_len); |
| update_buflen(ap->coeff, &buf_len); |
| } |
| } |
| } |
| |
| m = (uint8_t *)OPENSSL_malloc(buf_len + 10); |
| if (m == NULL) { |
| OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| if (rsa->n != NULL) { |
| mod_len = BN_num_bits(rsa->n); |
| } |
| |
| if (!BIO_indent(out, off, 128)) { |
| goto err; |
| } |
| |
| if (include_private && rsa->d) { |
| if (BIO_printf(out, "Private-Key: (%d bit)\n", mod_len) <= 0) { |
| goto err; |
| } |
| str = "modulus:"; |
| s = "publicExponent:"; |
| } else { |
| if (BIO_printf(out, "Public-Key: (%d bit)\n", mod_len) <= 0) { |
| goto err; |
| } |
| str = "Modulus:"; |
| s = "Exponent:"; |
| } |
| if (!bn_print(out, str, rsa->n, m, off) || |
| !bn_print(out, s, rsa->e, m, off)) { |
| goto err; |
| } |
| |
| if (include_private) { |
| if (!bn_print(out, "privateExponent:", rsa->d, m, off) || |
| !bn_print(out, "prime1:", rsa->p, m, off) || |
| !bn_print(out, "prime2:", rsa->q, m, off) || |
| !bn_print(out, "exponent1:", rsa->dmp1, m, off) || |
| !bn_print(out, "exponent2:", rsa->dmq1, m, off) || |
| !bn_print(out, "coefficient:", rsa->iqmp, m, off)) { |
| goto err; |
| } |
| |
| if (rsa->additional_primes != NULL && |
| sk_RSA_additional_prime_num(rsa->additional_primes) > 0) { |
| size_t i; |
| |
| if (BIO_printf(out, "otherPrimeInfos:\n") <= 0) { |
| goto err; |
| } |
| for (i = 0; i < sk_RSA_additional_prime_num(rsa->additional_primes); |
| i++) { |
| const RSA_additional_prime *ap = |
| sk_RSA_additional_prime_value(rsa->additional_primes, i); |
| |
| if (BIO_printf(out, "otherPrimeInfo (prime %u):\n", |
| (unsigned)(i + 3)) <= 0 || |
| !bn_print(out, "prime:", ap->prime, m, off) || |
| !bn_print(out, "exponent:", ap->exp, m, off) || |
| !bn_print(out, "coeff:", ap->coeff, m, off)) { |
| goto err; |
| } |
| } |
| } |
| } |
| ret = 1; |
| |
| err: |
| OPENSSL_free(m); |
| return ret; |
| } |
| |
| static int rsa_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent, |
| ASN1_PCTX *ctx) { |
| return do_rsa_print(bp, pkey->pkey.rsa, indent, 0); |
| } |
| |
| static int rsa_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent, |
| ASN1_PCTX *ctx) { |
| return do_rsa_print(bp, pkey->pkey.rsa, indent, 1); |
| } |
| |
| |
| /* DSA keys. */ |
| |
| static int do_dsa_print(BIO *bp, const DSA *x, int off, int ptype) { |
| uint8_t *m = NULL; |
| int ret = 0; |
| size_t buf_len = 0; |
| const char *ktype = NULL; |
| |
| const BIGNUM *priv_key, *pub_key; |
| |
| priv_key = NULL; |
| if (ptype == 2) { |
| priv_key = x->priv_key; |
| } |
| |
| pub_key = NULL; |
| if (ptype > 0) { |
| pub_key = x->pub_key; |
| } |
| |
| ktype = "DSA-Parameters"; |
| if (ptype == 2) { |
| ktype = "Private-Key"; |
| } else if (ptype == 1) { |
| ktype = "Public-Key"; |
| } |
| |
| update_buflen(x->p, &buf_len); |
| update_buflen(x->q, &buf_len); |
| update_buflen(x->g, &buf_len); |
| update_buflen(priv_key, &buf_len); |
| update_buflen(pub_key, &buf_len); |
| |
| m = (uint8_t *)OPENSSL_malloc(buf_len + 10); |
| if (m == NULL) { |
| OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| if (priv_key) { |
| if (!BIO_indent(bp, off, 128) || |
| BIO_printf(bp, "%s: (%d bit)\n", ktype, BN_num_bits(x->p)) <= 0) { |
| goto err; |
| } |
| } |
| |
| if (!bn_print(bp, "priv:", priv_key, m, off) || |
| !bn_print(bp, "pub: ", pub_key, m, off) || |
| !bn_print(bp, "P: ", x->p, m, off) || |
| !bn_print(bp, "Q: ", x->q, m, off) || |
| !bn_print(bp, "G: ", x->g, m, off)) { |
| goto err; |
| } |
| ret = 1; |
| |
| err: |
| OPENSSL_free(m); |
| return ret; |
| } |
| |
| static int dsa_param_print(BIO *bp, const EVP_PKEY *pkey, int indent, |
| ASN1_PCTX *ctx) { |
| return do_dsa_print(bp, pkey->pkey.dsa, indent, 0); |
| } |
| |
| static int dsa_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent, |
| ASN1_PCTX *ctx) { |
| return do_dsa_print(bp, pkey->pkey.dsa, indent, 1); |
| } |
| |
| static int dsa_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent, |
| ASN1_PCTX *ctx) { |
| return do_dsa_print(bp, pkey->pkey.dsa, indent, 2); |
| } |
| |
| |
| /* EC keys. */ |
| |
| static int do_EC_KEY_print(BIO *bp, const EC_KEY *x, int off, int ktype) { |
| uint8_t *buffer = NULL; |
| const char *ecstr; |
| size_t buf_len = 0, i; |
| int ret = 0, reason = ERR_R_BIO_LIB; |
| BIGNUM *order = NULL; |
| BN_CTX *ctx = NULL; |
| const EC_GROUP *group; |
| const EC_POINT *public_key; |
| const BIGNUM *priv_key; |
| uint8_t *pub_key_bytes = NULL; |
| size_t pub_key_bytes_len = 0; |
| |
| if (x == NULL || (group = EC_KEY_get0_group(x)) == NULL) { |
| reason = ERR_R_PASSED_NULL_PARAMETER; |
| goto err; |
| } |
| |
| ctx = BN_CTX_new(); |
| if (ctx == NULL) { |
| reason = ERR_R_MALLOC_FAILURE; |
| goto err; |
| } |
| |
| if (ktype > 0) { |
| public_key = EC_KEY_get0_public_key(x); |
| if (public_key != NULL) { |
| pub_key_bytes_len = EC_POINT_point2oct( |
| group, public_key, EC_KEY_get_conv_form(x), NULL, 0, ctx); |
| if (pub_key_bytes_len == 0) { |
| reason = ERR_R_MALLOC_FAILURE; |
| goto err; |
| } |
| pub_key_bytes = OPENSSL_malloc(pub_key_bytes_len); |
| if (pub_key_bytes == NULL) { |
| reason = ERR_R_MALLOC_FAILURE; |
| goto err; |
| } |
| pub_key_bytes_len = |
| EC_POINT_point2oct(group, public_key, EC_KEY_get_conv_form(x), |
| pub_key_bytes, pub_key_bytes_len, ctx); |
| if (pub_key_bytes_len == 0) { |
| reason = ERR_R_MALLOC_FAILURE; |
| goto err; |
| } |
| buf_len = pub_key_bytes_len; |
| } |
| } |
| |
| if (ktype == 2) { |
| priv_key = EC_KEY_get0_private_key(x); |
| if (priv_key && (i = (size_t)BN_num_bytes(priv_key)) > buf_len) { |
| buf_len = i; |
| } |
| } else { |
| priv_key = NULL; |
| } |
| |
| if (ktype > 0) { |
| buf_len += 10; |
| if ((buffer = OPENSSL_malloc(buf_len)) == NULL) { |
| reason = ERR_R_MALLOC_FAILURE; |
| goto err; |
| } |
| } |
| if (ktype == 2) { |
| ecstr = "Private-Key"; |
| } else if (ktype == 1) { |
| ecstr = "Public-Key"; |
| } else { |
| ecstr = "ECDSA-Parameters"; |
| } |
| |
| if (!BIO_indent(bp, off, 128)) { |
| goto err; |
| } |
| order = BN_new(); |
| if (order == NULL || !EC_GROUP_get_order(group, order, NULL) || |
| BIO_printf(bp, "%s: (%d bit)\n", ecstr, BN_num_bits(order)) <= 0) { |
| goto err; |
| } |
| |
| if ((priv_key != NULL) && |
| !bn_print(bp, "priv:", priv_key, buffer, off)) { |
| goto err; |
| } |
| if (pub_key_bytes != NULL) { |
| BIO_hexdump(bp, pub_key_bytes, pub_key_bytes_len, off); |
| } |
| /* TODO(fork): implement */ |
| /* |
| if (!ECPKParameters_print(bp, group, off)) |
| goto err; */ |
| ret = 1; |
| |
| err: |
| if (!ret) { |
| OPENSSL_PUT_ERROR(EVP, reason); |
| } |
| OPENSSL_free(pub_key_bytes); |
| BN_free(order); |
| BN_CTX_free(ctx); |
| OPENSSL_free(buffer); |
| return ret; |
| } |
| |
| static int eckey_param_print(BIO *bp, const EVP_PKEY *pkey, int indent, |
| ASN1_PCTX *ctx) { |
| return do_EC_KEY_print(bp, pkey->pkey.ec, indent, 0); |
| } |
| |
| static int eckey_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent, |
| ASN1_PCTX *ctx) { |
| return do_EC_KEY_print(bp, pkey->pkey.ec, indent, 1); |
| } |
| |
| |
| static int eckey_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent, |
| ASN1_PCTX *ctx) { |
| return do_EC_KEY_print(bp, pkey->pkey.ec, indent, 2); |
| } |
| |
| |
| typedef struct { |
| int type; |
| int (*pub_print)(BIO *out, const EVP_PKEY *pkey, int indent, ASN1_PCTX *pctx); |
| int (*priv_print)(BIO *out, const EVP_PKEY *pkey, int indent, |
| ASN1_PCTX *pctx); |
| int (*param_print)(BIO *out, const EVP_PKEY *pkey, int indent, |
| ASN1_PCTX *pctx); |
| } EVP_PKEY_PRINT_METHOD; |
| |
| static EVP_PKEY_PRINT_METHOD kPrintMethods[] = { |
| { |
| EVP_PKEY_RSA, |
| rsa_pub_print, |
| rsa_priv_print, |
| NULL /* param_print */, |
| }, |
| { |
| EVP_PKEY_DSA, |
| dsa_pub_print, |
| dsa_priv_print, |
| dsa_param_print, |
| }, |
| { |
| EVP_PKEY_EC, |
| eckey_pub_print, |
| eckey_priv_print, |
| eckey_param_print, |
| }, |
| }; |
| |
| static size_t kPrintMethodsLen = |
| sizeof(kPrintMethods) / sizeof(kPrintMethods[0]); |
| |
| static EVP_PKEY_PRINT_METHOD *find_method(int type) { |
| size_t i; |
| for (i = 0; i < kPrintMethodsLen; i++) { |
| if (kPrintMethods[i].type == type) { |
| return &kPrintMethods[i]; |
| } |
| } |
| return NULL; |
| } |
| |
| static int print_unsupported(BIO *out, const EVP_PKEY *pkey, int indent, |
| const char *kstr) { |
| BIO_indent(out, indent, 128); |
| BIO_printf(out, "%s algorithm unsupported\n", kstr); |
| return 1; |
| } |
| |
| int EVP_PKEY_print_public(BIO *out, const EVP_PKEY *pkey, int indent, |
| ASN1_PCTX *pctx) { |
| EVP_PKEY_PRINT_METHOD *method = find_method(pkey->type); |
| if (method != NULL && method->pub_print != NULL) { |
| return method->pub_print(out, pkey, indent, pctx); |
| } |
| return print_unsupported(out, pkey, indent, "Public Key"); |
| } |
| |
| int EVP_PKEY_print_private(BIO *out, const EVP_PKEY *pkey, int indent, |
| ASN1_PCTX *pctx) { |
| EVP_PKEY_PRINT_METHOD *method = find_method(pkey->type); |
| if (method != NULL && method->priv_print != NULL) { |
| return method->priv_print(out, pkey, indent, pctx); |
| } |
| return print_unsupported(out, pkey, indent, "Private Key"); |
| } |
| |
| int EVP_PKEY_print_params(BIO *out, const EVP_PKEY *pkey, int indent, |
| ASN1_PCTX *pctx) { |
| EVP_PKEY_PRINT_METHOD *method = find_method(pkey->type); |
| if (method != NULL && method->param_print != NULL) { |
| return method->param_print(out, pkey, indent, pctx); |
| } |
| return print_unsupported(out, pkey, indent, "Parameters"); |
| } |