| /* Copyright (c) 2019, Google Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| |
| #include <gtest/gtest.h> |
| #include <stdlib.h> |
| |
| #include <openssl/rand.h> |
| |
| #include "internal.h" |
| |
| |
| #if defined(OPENSSL_X86_64) && defined(OPENSSL_LINUX) && \ |
| !defined(BORINGSSL_SHARED_LIBRARY) |
| |
| #include <linux/random.h> |
| #include <sys/ptrace.h> |
| #include <sys/syscall.h> |
| #include <sys/user.h> |
| |
| #if defined(OPENSSL_NO_ASM) |
| static int have_rdrand() { return 0; } |
| #endif |
| |
| // This test can be run with $OPENSSL_ia32cap=~0x4000000000000000 in order to |
| // simulate the absence of RDRAND of machines that have it. |
| |
| // Event represents a system call from urandom.c that is observed by the ptrace |
| // code in |GetTrace|. |
| struct Event { |
| enum class Syscall { |
| kGetRandom, |
| kOpen, |
| kUrandomRead, |
| kUrandomIoctl, |
| kAbort, |
| }; |
| |
| explicit Event(Syscall syscall) : type(syscall) {} |
| |
| bool operator==(const Event &other) const { |
| return type == other.type && length == other.length && |
| flags == other.flags && |
| ((filename == nullptr && other.filename == nullptr) || |
| strcmp(filename, other.filename) == 0); |
| } |
| |
| static Event GetRandom(size_t length, unsigned flags) { |
| Event e(Syscall::kGetRandom); |
| e.length = length; |
| e.flags = flags; |
| return e; |
| } |
| |
| static Event Open(const char *filename) { |
| Event e(Syscall::kOpen); |
| e.filename = filename; |
| return e; |
| } |
| |
| static Event UrandomRead(size_t length) { |
| Event e(Syscall::kUrandomRead); |
| e.length = length; |
| return e; |
| } |
| |
| static Event UrandomIoctl() { |
| Event e(Syscall::kUrandomIoctl); |
| return e; |
| } |
| |
| static Event Abort() { |
| Event e(Syscall::kAbort); |
| return e; |
| } |
| |
| std::string String() const { |
| char buf[256]; |
| |
| switch (type) { |
| case Syscall::kGetRandom: |
| snprintf(buf, sizeof(buf), "getrandom(_, %zu, %d)", length, flags); |
| break; |
| |
| case Syscall::kOpen: |
| snprintf(buf, sizeof(buf), "open(%s, _)", filename); |
| break; |
| |
| case Syscall::kUrandomRead: |
| snprintf(buf, sizeof(buf), "read(urandom_fd, _, %zu)", length); |
| break; |
| |
| case Syscall::kUrandomIoctl: |
| return "ioctl(urandom_fd, RNDGETENTCNT, _)"; |
| |
| case Syscall::kAbort: |
| return "abort()"; |
| } |
| |
| return std::string(buf); |
| } |
| |
| const Syscall type; |
| size_t length = 0; |
| unsigned flags = 0; |
| const char *filename = nullptr; |
| }; |
| |
| static std::string ToString(const std::vector<Event> &trace) { |
| std::string ret; |
| for (const auto &event : trace) { |
| if (!ret.empty()) { |
| ret += ", "; |
| } |
| ret += event.String(); |
| } |
| return ret; |
| } |
| |
| // The following are flags to tell |GetTrace| to inject faults, using ptrace, |
| // into the entropy-related system calls. |
| |
| // getrandom gives |ENOSYS|. |
| static const unsigned NO_GETRANDOM = 1; |
| // opening /dev/urandom fails. |
| static const unsigned NO_URANDOM = 2; |
| // getrandom always returns |EAGAIN| if given |GRNG_NONBLOCK|. |
| static const unsigned GETRANDOM_NOT_READY = 4; |
| // The ioctl on urandom returns only 255 bits of entropy the first time that |
| // it's called. |
| static const unsigned URANDOM_NOT_READY = 8; |
| // getrandom gives |EINVAL| unless |NO_GETRANDOM| is set. |
| static const unsigned GETRANDOM_ERROR = 16; |
| // Reading from /dev/urandom gives |EINVAL|. |
| static const unsigned URANDOM_ERROR = 32; |
| static const unsigned NEXT_FLAG = 64; |
| |
| // GetTrace runs |thunk| in a forked process and observes the resulting system |
| // calls using ptrace. It simulates a variety of failures based on the contents |
| // of |flags| and records the observed events by appending to |out_trace|. |
| static void GetTrace(std::vector<Event> *out_trace, unsigned flags, |
| std::function<void()> thunk) { |
| const int child_pid = fork(); |
| ASSERT_NE(-1, child_pid); |
| |
| if (child_pid == 0) { |
| // Child process |
| if (ptrace(PTRACE_TRACEME, 0, 0, 0) != 0) { |
| perror("PTRACE_TRACEME"); |
| _exit(1); |
| } |
| raise(SIGSTOP); |
| thunk(); |
| _exit(0); |
| } |
| |
| // Parent process |
| int status; |
| ASSERT_EQ(child_pid, waitpid(child_pid, &status, 0)); |
| ASSERT_TRUE(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP); |
| |
| // Set options so that: |
| // a) the child process is killed once this process dies. |
| // b) System calls result in a WSTOPSIG value of (SIGTRAP | 0x80) rather |
| // than just SIGTRAP. (This doesn't matter here, but it's recommended |
| // practice so that it's distinct from the signal itself.) |
| ASSERT_EQ(0, ptrace(PTRACE_SETOPTIONS, child_pid, nullptr, |
| PTRACE_O_EXITKILL | PTRACE_O_TRACESYSGOOD)) |
| << strerror(errno); |
| |
| // urandom_fd tracks the file descriptor number for /dev/urandom in the child |
| // process, if it opens it. |
| int urandom_fd = -1; |
| |
| for (;;) { |
| // Advance the child to the next system call. |
| ASSERT_EQ(0, ptrace(PTRACE_SYSCALL, child_pid, 0, 0)); |
| ASSERT_EQ(child_pid, waitpid(child_pid, &status, 0)); |
| |
| // The child may have aborted rather than made a system call. |
| if (WIFSTOPPED(status) && WSTOPSIG(status) == SIGABRT) { |
| out_trace->push_back(Event::Abort()); |
| break; |
| } |
| |
| // Otherwise the only valid ptrace event is a system call stop. |
| ASSERT_TRUE(WIFSTOPPED(status) && WSTOPSIG(status) == (SIGTRAP | 0x80)); |
| |
| struct user_regs_struct regs; |
| ASSERT_EQ(0, ptrace(PTRACE_GETREGS, child_pid, nullptr, ®s)); |
| const auto syscall_number = regs.orig_rax; |
| |
| bool is_opening_urandom = false; |
| bool is_urandom_ioctl = false; |
| uintptr_t ioctl_output_addr = 0; |
| // inject_error is zero to indicate that the system call should run |
| // normally. Otherwise it's, e.g. -EINVAL, to indicate that the system call |
| // should not run and that error should be injected on return. |
| int inject_error = 0; |
| |
| switch (syscall_number) { |
| case __NR_getrandom: |
| if (flags & NO_GETRANDOM) { |
| inject_error = -ENOSYS; |
| } else if (flags & GETRANDOM_ERROR) { |
| inject_error = -EINVAL; |
| } else if (flags & GETRANDOM_NOT_READY) { |
| if (regs.rdx & GRND_NONBLOCK) { |
| inject_error = -EAGAIN; |
| } |
| } |
| out_trace->push_back( |
| Event::GetRandom(/*length=*/regs.rsi, /*flags=*/regs.rdx)); |
| break; |
| |
| case __NR_openat: |
| case __NR_open: { |
| // It's assumed that any arguments to open(2) are constants in read-only |
| // memory and thus the pointer in the child's context will also be a |
| // valid pointer in our address space. |
| const char *filename = reinterpret_cast<const char *>( |
| (syscall_number == __NR_openat) ? regs.rsi : regs.rdi); |
| out_trace->push_back(Event::Open(filename)); |
| is_opening_urandom = strcmp(filename, "/dev/urandom") == 0; |
| if (is_opening_urandom && (flags & NO_URANDOM)) { |
| inject_error = -ENOENT; |
| } |
| break; |
| } |
| |
| case __NR_read: { |
| const int read_fd = regs.rdi; |
| if (urandom_fd >= 0 && urandom_fd == read_fd) { |
| out_trace->push_back(Event::UrandomRead(/*length=*/regs.rdx)); |
| if (flags & URANDOM_ERROR) { |
| inject_error = -EINVAL; |
| } |
| } |
| break; |
| } |
| |
| case __NR_ioctl: { |
| const int ioctl_fd = regs.rdi; |
| if (urandom_fd >= 0 && ioctl_fd == urandom_fd && |
| regs.rsi == RNDGETENTCNT) { |
| out_trace->push_back(Event::UrandomIoctl()); |
| is_urandom_ioctl = true; |
| ioctl_output_addr = regs.rdx; |
| } |
| } |
| } |
| |
| if (inject_error) { |
| // Replace the system call number with -1 to cause the kernel to ignore |
| // the call. The -ENOSYS will be replaced later with the value of |
| // |inject_error|. |
| regs.orig_rax = -1; |
| ASSERT_EQ(0, ptrace(PTRACE_SETREGS, child_pid, nullptr, ®s)); |
| } |
| |
| ASSERT_EQ(0, ptrace(PTRACE_SYSCALL, child_pid, 0, 0)); |
| ASSERT_EQ(child_pid, waitpid(child_pid, &status, 0)); |
| // If the system call was exit/exit_group, the process may be terminated |
| // rather than have exited the system call. |
| if (WIFEXITED(status)) { |
| ASSERT_EQ(0, WEXITSTATUS(status)); |
| return; |
| } |
| |
| // Otherwise the next state must be a system call exit stop. This is |
| // indistinguishable from a system call entry, we just have to keep track |
| // and know that these events happen in pairs. |
| ASSERT_TRUE(WIFSTOPPED(status) && WSTOPSIG(status) == (SIGTRAP | 0x80)); |
| |
| if (inject_error) { |
| if (inject_error != -ENOSYS) { |
| ASSERT_EQ(0, ptrace(PTRACE_GETREGS, child_pid, nullptr, ®s)); |
| regs.rax = inject_error; |
| ASSERT_EQ(0, ptrace(PTRACE_SETREGS, child_pid, nullptr, ®s)); |
| } |
| } else if (is_opening_urandom) { |
| ASSERT_EQ(0, ptrace(PTRACE_GETREGS, child_pid, nullptr, ®s)); |
| urandom_fd = regs.rax; |
| } else if (is_urandom_ioctl) { |
| // The result is the number of bits of entropy that the kernel currently |
| // believes that it has. urandom.c waits until 256 bits are ready. |
| int result = 256; |
| |
| // If we are simulating urandom not being ready then we have the ioctl |
| // indicate one too few bits of entropy the first time it's queried. |
| if (flags & URANDOM_NOT_READY) { |
| result--; |
| flags &= ~URANDOM_NOT_READY; |
| } |
| |
| // ptrace always works with ill-defined "words", which appear to be 64-bit |
| // on x86-64. Since the ioctl result is a 32-bit int, do a |
| // read-modify-write to inject the answer. |
| const uintptr_t aligned_addr = ioctl_output_addr & ~7; |
| const uintptr_t offset = ioctl_output_addr - aligned_addr; |
| union { |
| uint64_t word; |
| uint8_t bytes[8]; |
| } u; |
| u.word = ptrace(PTRACE_PEEKDATA, child_pid, |
| reinterpret_cast<void *>(aligned_addr), nullptr); |
| memcpy(&u.bytes[offset], &result, sizeof(result)); |
| ASSERT_EQ(0, ptrace(PTRACE_POKEDATA, child_pid, |
| reinterpret_cast<void *>(aligned_addr), |
| reinterpret_cast<void *>(u.word))); |
| } |
| } |
| } |
| |
| // TestFunction is the function that |GetTrace| is asked to trace. |
| static void TestFunction() { |
| uint8_t byte; |
| RAND_bytes(&byte, sizeof(byte)); |
| RAND_bytes(&byte, sizeof(byte)); |
| } |
| |
| // TestFunctionPRNGModel is a model of how the urandom.c code will behave when |
| // |TestFunction| is run. It should return the same trace of events that |
| // |GetTrace| will observe the real code making. |
| static std::vector<Event> TestFunctionPRNGModel(unsigned flags) { |
| #if defined(BORINGSSL_FIPS) |
| static const bool is_fips = true; |
| #else |
| static const bool is_fips = false; |
| #endif |
| |
| std::vector<Event> ret; |
| bool urandom_probed = false; |
| bool getrandom_ready = false; |
| |
| // Probe for getrandom support |
| ret.push_back(Event::GetRandom(1, GRND_NONBLOCK)); |
| std::function<void()> wait_for_entropy; |
| std::function<bool(bool, size_t)> sysrand; |
| |
| if (flags & NO_GETRANDOM) { |
| ret.push_back(Event::Open("/dev/urandom")); |
| if (flags & NO_URANDOM) { |
| ret.push_back(Event::Abort()); |
| return ret; |
| } |
| |
| wait_for_entropy = [&ret, &urandom_probed, flags] { |
| if (!is_fips || urandom_probed) { |
| return; |
| } |
| |
| // Probe urandom for entropy. |
| ret.push_back(Event::UrandomIoctl()); |
| if (flags & URANDOM_NOT_READY) { |
| // If the first attempt doesn't report enough entropy, probe |
| // repeatedly until it does, which will happen with the second attempt. |
| ret.push_back(Event::UrandomIoctl()); |
| } |
| |
| urandom_probed = true; |
| }; |
| |
| sysrand = [&ret, &wait_for_entropy, flags](bool block, size_t len) { |
| if (block) { |
| wait_for_entropy(); |
| } |
| ret.push_back(Event::UrandomRead(len)); |
| if (flags & URANDOM_ERROR) { |
| ret.push_back(Event::Abort()); |
| return false; |
| } |
| return true; |
| }; |
| } else { |
| if (flags & GETRANDOM_ERROR) { |
| ret.push_back(Event::Abort()); |
| return ret; |
| } |
| |
| getrandom_ready = (flags & GETRANDOM_NOT_READY) == 0; |
| wait_for_entropy = [&ret, &getrandom_ready] { |
| if (getrandom_ready) { |
| return; |
| } |
| |
| ret.push_back(Event::GetRandom(1, GRND_NONBLOCK)); |
| ret.push_back(Event::GetRandom(1, 0)); |
| getrandom_ready = true; |
| }; |
| sysrand = [&ret, &wait_for_entropy](bool block, size_t len) { |
| if (block) { |
| wait_for_entropy(); |
| } |
| ret.push_back(Event::GetRandom(len, block ? 0 : GRND_NONBLOCK)); |
| return true; |
| }; |
| } |
| |
| const size_t kSeedLength = CTR_DRBG_ENTROPY_LEN * (is_fips ? 10 : 1); |
| const size_t kAdditionalDataLength = 32; |
| |
| if (!have_rdrand()) { |
| if (!sysrand(true, kAdditionalDataLength) || |
| // Initialise CRNGT. |
| (is_fips && !sysrand(true, 16)) || |
| !sysrand(true, kSeedLength) || |
| // Second entropy draw. |
| !sysrand(true, kAdditionalDataLength)) { |
| return ret; |
| } |
| } else { |
| // Opportuntistic entropy draw in FIPS mode because RDRAND was used. |
| // In non-FIPS mode it's just drawn from |CRYPTO_sysrand| in a blocking |
| // way. |
| if (!sysrand(!is_fips, CTR_DRBG_ENTROPY_LEN)) { |
| return ret; |
| } |
| } |
| |
| return ret; |
| } |
| |
| // Tests that |TestFunctionPRNGModel| is a correct model for the code in |
| // urandom.c, at least to the limits of the the |Event| type. |
| TEST(URandomTest, Test) { |
| char buf[256]; |
| |
| #define TRACE_FLAG(flag) \ |
| snprintf(buf, sizeof(buf), #flag ": %d", (flags & flag) != 0); \ |
| SCOPED_TRACE(buf); |
| |
| for (unsigned flags = 0; flags < NEXT_FLAG; flags++) { |
| TRACE_FLAG(NO_GETRANDOM); |
| TRACE_FLAG(NO_URANDOM); |
| TRACE_FLAG(GETRANDOM_NOT_READY); |
| TRACE_FLAG(URANDOM_NOT_READY); |
| TRACE_FLAG(GETRANDOM_ERROR); |
| TRACE_FLAG(URANDOM_ERROR); |
| |
| const std::vector<Event> expected_trace = TestFunctionPRNGModel(flags); |
| std::vector<Event> actual_trace; |
| GetTrace(&actual_trace, flags, TestFunction); |
| |
| if (expected_trace != actual_trace) { |
| ADD_FAILURE() << "Expected: " << ToString(expected_trace) |
| << "\nFound: " << ToString(actual_trace); |
| } |
| } |
| } |
| |
| int main(int argc, char **argv) { |
| ::testing::InitGoogleTest(&argc, argv); |
| return RUN_ALL_TESTS(); |
| } |
| |
| #else |
| |
| int main(int argc, char **argv) { return 0; } |
| |
| #endif // X86_64 && LINUX && !SHARED_LIBRARY |