|  | // Copyright 2023 The BoringSSL Authors | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include <openssl/base.h> | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <stdlib.h> | 
|  |  | 
|  | #include "../../internal.h" | 
|  | #include "./internal.h" | 
|  |  | 
|  |  | 
|  | // keccak_f implements the Keccak-1600 permutation as described at | 
|  | // https://keccak.team/keccak_specs_summary.html. Each lane is represented as a | 
|  | // 64-bit value and the 5×5 lanes are stored as an array in row-major order. | 
|  | static void keccak_f(uint64_t state[25]) { | 
|  | static const int kNumRounds = 24; | 
|  | for (int round = 0; round < kNumRounds; round++) { | 
|  | // θ step | 
|  | uint64_t c[5]; | 
|  | for (int x = 0; x < 5; x++) { | 
|  | c[x] = state[x] ^ state[x + 5] ^ state[x + 10] ^ state[x + 15] ^ | 
|  | state[x + 20]; | 
|  | } | 
|  |  | 
|  | for (int x = 0; x < 5; x++) { | 
|  | const uint64_t d = c[(x + 4) % 5] ^ CRYPTO_rotl_u64(c[(x + 1) % 5], 1); | 
|  | for (int y = 0; y < 5; y++) { | 
|  | state[y * 5 + x] ^= d; | 
|  | } | 
|  | } | 
|  |  | 
|  | // ρ and π steps. | 
|  | // | 
|  | // These steps involve a mapping of the state matrix. Each input point, | 
|  | // (x,y), is rotated and written to the point (y, 2x + 3y). In the Keccak | 
|  | // pseudo-code a separate array is used because an in-place operation would | 
|  | // overwrite some values that are subsequently needed. However, the mapping | 
|  | // forms a trail through 24 of the 25 values so we can do it in place with | 
|  | // only a single temporary variable. | 
|  | // | 
|  | // Start with (1, 0). The value here will be mapped and end up at (0, 2). | 
|  | // That value will end up at (2, 1), then (1, 2), and so on. After 24 | 
|  | // steps, 24 of the 25 values have been hit (as this mapping is injective) | 
|  | // and the sequence will repeat. All that remains is to handle the element | 
|  | // at (0, 0), but the rotation for that element is zero, and it goes to (0, | 
|  | // 0), so we can ignore it. | 
|  | uint64_t prev_value = state[1]; | 
|  | #define PI_RHO_STEP(index, rotation)                              \ | 
|  | do {                                                            \ | 
|  | const uint64_t value = CRYPTO_rotl_u64(prev_value, rotation); \ | 
|  | prev_value = state[index];                                    \ | 
|  | state[index] = value;                                         \ | 
|  | } while (0) | 
|  |  | 
|  | PI_RHO_STEP(10, 1); | 
|  | PI_RHO_STEP(7, 3); | 
|  | PI_RHO_STEP(11, 6); | 
|  | PI_RHO_STEP(17, 10); | 
|  | PI_RHO_STEP(18, 15); | 
|  | PI_RHO_STEP(3, 21); | 
|  | PI_RHO_STEP(5, 28); | 
|  | PI_RHO_STEP(16, 36); | 
|  | PI_RHO_STEP(8, 45); | 
|  | PI_RHO_STEP(21, 55); | 
|  | PI_RHO_STEP(24, 2); | 
|  | PI_RHO_STEP(4, 14); | 
|  | PI_RHO_STEP(15, 27); | 
|  | PI_RHO_STEP(23, 41); | 
|  | PI_RHO_STEP(19, 56); | 
|  | PI_RHO_STEP(13, 8); | 
|  | PI_RHO_STEP(12, 25); | 
|  | PI_RHO_STEP(2, 43); | 
|  | PI_RHO_STEP(20, 62); | 
|  | PI_RHO_STEP(14, 18); | 
|  | PI_RHO_STEP(22, 39); | 
|  | PI_RHO_STEP(9, 61); | 
|  | PI_RHO_STEP(6, 20); | 
|  | PI_RHO_STEP(1, 44); | 
|  |  | 
|  | #undef PI_RHO_STEP | 
|  |  | 
|  | // χ step | 
|  | for (int y = 0; y < 5; y++) { | 
|  | const int row_index = 5 * y; | 
|  | const uint64_t orig_x0 = state[row_index]; | 
|  | const uint64_t orig_x1 = state[row_index + 1]; | 
|  | state[row_index] ^= ~orig_x1 & state[row_index + 2]; | 
|  | state[row_index + 1] ^= ~state[row_index + 2] & state[row_index + 3]; | 
|  | state[row_index + 2] ^= ~state[row_index + 3] & state[row_index + 4]; | 
|  | state[row_index + 3] ^= ~state[row_index + 4] & orig_x0; | 
|  | state[row_index + 4] ^= ~orig_x0 & orig_x1; | 
|  | } | 
|  |  | 
|  | // ι step | 
|  | // | 
|  | // From https://keccak.team/files/Keccak-reference-3.0.pdf, section | 
|  | // 1.2, the round constants are based on the output of a LFSR. Thus, as | 
|  | // suggested in the appendix of of | 
|  | // https://keccak.team/keccak_specs_summary.html, the values are | 
|  | // simply encoded here. | 
|  | static const uint64_t kRoundConstants[24] = { | 
|  | 0x0000000000000001, 0x0000000000008082, 0x800000000000808a, | 
|  | 0x8000000080008000, 0x000000000000808b, 0x0000000080000001, | 
|  | 0x8000000080008081, 0x8000000000008009, 0x000000000000008a, | 
|  | 0x0000000000000088, 0x0000000080008009, 0x000000008000000a, | 
|  | 0x000000008000808b, 0x800000000000008b, 0x8000000000008089, | 
|  | 0x8000000000008003, 0x8000000000008002, 0x8000000000000080, | 
|  | 0x000000000000800a, 0x800000008000000a, 0x8000000080008081, | 
|  | 0x8000000000008080, 0x0000000080000001, 0x8000000080008008, | 
|  | }; | 
|  |  | 
|  | state[0] ^= kRoundConstants[round]; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void keccak_init(struct BORINGSSL_keccak_st *ctx, | 
|  | enum boringssl_keccak_config_t config) { | 
|  | size_t required_out_len; | 
|  | size_t capacity_bytes; | 
|  | switch (config) { | 
|  | case boringssl_sha3_256: | 
|  | capacity_bytes = 512 / 8; | 
|  | required_out_len = 32; | 
|  | break; | 
|  | case boringssl_sha3_512: | 
|  | capacity_bytes = 1024 / 8; | 
|  | required_out_len = 64; | 
|  | break; | 
|  | case boringssl_shake128: | 
|  | capacity_bytes = 256 / 8; | 
|  | required_out_len = 0; | 
|  | break; | 
|  | case boringssl_shake256: | 
|  | capacity_bytes = 512 / 8; | 
|  | required_out_len = 0; | 
|  | break; | 
|  | default: | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | OPENSSL_memset(ctx, 0, sizeof(*ctx)); | 
|  | ctx->config = config; | 
|  | ctx->phase = boringssl_keccak_phase_absorb; | 
|  | ctx->required_out_len = required_out_len; | 
|  | ctx->rate_bytes = 200 - capacity_bytes; | 
|  | assert(ctx->rate_bytes % 8 == 0); | 
|  | } | 
|  |  | 
|  | void BORINGSSL_keccak(uint8_t *out, size_t out_len, const uint8_t *in, | 
|  | size_t in_len, enum boringssl_keccak_config_t config) { | 
|  | struct BORINGSSL_keccak_st ctx; | 
|  | keccak_init(&ctx, config); | 
|  | if (ctx.required_out_len != 0 && out_len != ctx.required_out_len) { | 
|  | abort(); | 
|  | } | 
|  | BORINGSSL_keccak_absorb(&ctx, in, in_len); | 
|  | BORINGSSL_keccak_squeeze(&ctx, out, out_len); | 
|  | } | 
|  |  | 
|  | void BORINGSSL_keccak_init(struct BORINGSSL_keccak_st *ctx, | 
|  | enum boringssl_keccak_config_t config) { | 
|  | keccak_init(ctx, config); | 
|  | } | 
|  |  | 
|  | void BORINGSSL_keccak_absorb(struct BORINGSSL_keccak_st *ctx, const uint8_t *in, | 
|  | size_t in_len) { | 
|  | if (ctx->phase == boringssl_keccak_phase_squeeze) { | 
|  | // It's illegal to call absorb() again after calling squeeze(). | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | const size_t rate_words = ctx->rate_bytes / 8; | 
|  | // XOR the input. Accessing |ctx->state| as a |uint8_t*| is allowed by strict | 
|  | // aliasing because we require |uint8_t| to be a character type. | 
|  | uint8_t *state_bytes = (uint8_t *)ctx->state; | 
|  |  | 
|  | // Absorb partial block. | 
|  | if (ctx->absorb_offset != 0) { | 
|  | assert(ctx->absorb_offset < ctx->rate_bytes); | 
|  | size_t first_block_len = ctx->rate_bytes - ctx->absorb_offset; | 
|  | for (size_t i = 0; i < first_block_len && i < in_len; i++) { | 
|  | state_bytes[ctx->absorb_offset + i] ^= in[i]; | 
|  | } | 
|  |  | 
|  | // This input didn't fill the block. | 
|  | if (first_block_len > in_len) { | 
|  | ctx->absorb_offset += in_len; | 
|  | return; | 
|  | } | 
|  |  | 
|  | keccak_f(ctx->state); | 
|  | in += first_block_len; | 
|  | in_len -= first_block_len; | 
|  | } | 
|  |  | 
|  | // Absorb full blocks. | 
|  | while (in_len >= ctx->rate_bytes) { | 
|  | for (size_t i = 0; i < rate_words; i++) { | 
|  | ctx->state[i] ^= CRYPTO_load_u64_le(in + 8 * i); | 
|  | } | 
|  | keccak_f(ctx->state); | 
|  | in += ctx->rate_bytes; | 
|  | in_len -= ctx->rate_bytes; | 
|  | } | 
|  |  | 
|  | // Absorb partial block. | 
|  | assert(in_len < ctx->rate_bytes); | 
|  | for (size_t i = 0; i < in_len; i++) { | 
|  | state_bytes[i] ^= in[i]; | 
|  | } | 
|  | ctx->absorb_offset = in_len; | 
|  | } | 
|  |  | 
|  | static void keccak_finalize(struct BORINGSSL_keccak_st *ctx) { | 
|  | uint8_t terminator; | 
|  | switch (ctx->config) { | 
|  | case boringssl_sha3_256: | 
|  | case boringssl_sha3_512: | 
|  | terminator = 0x06; | 
|  | break; | 
|  | case boringssl_shake128: | 
|  | case boringssl_shake256: | 
|  | terminator = 0x1f; | 
|  | break; | 
|  | default: | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | // XOR the terminator. Accessing |ctx->state| as a |uint8_t*| is allowed by | 
|  | // strict aliasing because we require |uint8_t| to be a character type. | 
|  | uint8_t *state_bytes = (uint8_t *)ctx->state; | 
|  | state_bytes[ctx->absorb_offset] ^= terminator; | 
|  | state_bytes[ctx->rate_bytes - 1] ^= 0x80; | 
|  | keccak_f(ctx->state); | 
|  | } | 
|  |  | 
|  | void BORINGSSL_keccak_squeeze(struct BORINGSSL_keccak_st *ctx, uint8_t *out, | 
|  | size_t out_len) { | 
|  | if (ctx->required_out_len != 0 && | 
|  | (ctx->phase == boringssl_keccak_phase_squeeze || | 
|  | out_len != ctx->required_out_len)) { | 
|  | // The SHA-3 variants must be squeezed in a single call, to confirm that the | 
|  | // output length is correct. | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | if (ctx->phase == boringssl_keccak_phase_absorb) { | 
|  | keccak_finalize(ctx); | 
|  | ctx->phase = boringssl_keccak_phase_squeeze; | 
|  | } | 
|  |  | 
|  | // Accessing |ctx->state| as a |uint8_t*| is allowed by strict aliasing | 
|  | // because we require |uint8_t| to be a character type. | 
|  | const uint8_t *state_bytes = (const uint8_t *)ctx->state; | 
|  | while (out_len) { | 
|  | if (ctx->squeeze_offset == ctx->rate_bytes) { | 
|  | keccak_f(ctx->state); | 
|  | ctx->squeeze_offset = 0; | 
|  | } | 
|  |  | 
|  | size_t remaining = ctx->rate_bytes - ctx->squeeze_offset; | 
|  | size_t todo = out_len; | 
|  | if (todo > remaining) { | 
|  | todo = remaining; | 
|  | } | 
|  | OPENSSL_memcpy(out, &state_bytes[ctx->squeeze_offset], todo); | 
|  | out += todo; | 
|  | out_len -= todo; | 
|  | ctx->squeeze_offset += todo; | 
|  | } | 
|  | } |