| // Copyright 2014 The BoringSSL Authors | 
 | // | 
 | // Licensed under the Apache License, Version 2.0 (the "License"); | 
 | // you may not use this file except in compliance with the License. | 
 | // You may obtain a copy of the License at | 
 | // | 
 | //     https://www.apache.org/licenses/LICENSE-2.0 | 
 | // | 
 | // Unless required by applicable law or agreed to in writing, software | 
 | // distributed under the License is distributed on an "AS IS" BASIS, | 
 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 | // See the License for the specific language governing permissions and | 
 | // limitations under the License. | 
 |  | 
 | #include <assert.h> | 
 | #include <limits.h> | 
 | #include <string.h> | 
 |  | 
 | #include <openssl/aead.h> | 
 | #include <openssl/cipher.h> | 
 | #include <openssl/err.h> | 
 | #include <openssl/hmac.h> | 
 | #include <openssl/md5.h> | 
 | #include <openssl/mem.h> | 
 | #include <openssl/sha.h> | 
 |  | 
 | #include "../fipsmodule/cipher/internal.h" | 
 | #include "../internal.h" | 
 | #include "internal.h" | 
 |  | 
 |  | 
 | typedef struct { | 
 |   EVP_CIPHER_CTX cipher_ctx; | 
 |   HMAC_CTX *hmac_ctx; | 
 |   // mac_key is the portion of the key used for the MAC. It is retained | 
 |   // separately for the constant-time CBC code. | 
 |   uint8_t mac_key[EVP_MAX_MD_SIZE]; | 
 |   uint8_t mac_key_len; | 
 |   // implicit_iv is one iff this is a pre-TLS-1.1 CBC cipher without an explicit | 
 |   // IV. | 
 |   char implicit_iv; | 
 | } AEAD_TLS_CTX; | 
 |  | 
 | static_assert(EVP_MAX_MD_SIZE < 256, "mac_key_len does not fit in uint8_t"); | 
 |  | 
 | static_assert(sizeof(((EVP_AEAD_CTX *)NULL)->state) >= sizeof(AEAD_TLS_CTX), | 
 |               "AEAD state is too small"); | 
 | static_assert(alignof(union evp_aead_ctx_st_state) >= alignof(AEAD_TLS_CTX), | 
 |               "AEAD state has insufficient alignment"); | 
 |  | 
 | static void aead_tls_cleanup(EVP_AEAD_CTX *ctx) { | 
 |   AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state; | 
 |   EVP_CIPHER_CTX_cleanup(&tls_ctx->cipher_ctx); | 
 |   HMAC_CTX_free(tls_ctx->hmac_ctx); | 
 | } | 
 |  | 
 | static int aead_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, | 
 |                          size_t tag_len, enum evp_aead_direction_t dir, | 
 |                          const EVP_CIPHER *cipher, const EVP_MD *md, | 
 |                          char implicit_iv) { | 
 |   if (tag_len != EVP_AEAD_DEFAULT_TAG_LENGTH && tag_len != EVP_MD_size(md)) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_TAG_SIZE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (key_len != EVP_AEAD_key_length(ctx->aead)) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   size_t mac_key_len = EVP_MD_size(md); | 
 |   size_t enc_key_len = EVP_CIPHER_key_length(cipher); | 
 |   assert(mac_key_len + enc_key_len + | 
 |              (implicit_iv ? EVP_CIPHER_iv_length(cipher) : 0) == | 
 |          key_len); | 
 |  | 
 |   AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state; | 
 |   tls_ctx->hmac_ctx = HMAC_CTX_new(); | 
 |   if (!tls_ctx->hmac_ctx) { | 
 |     return 0; | 
 |   } | 
 |   EVP_CIPHER_CTX_init(&tls_ctx->cipher_ctx); | 
 |   assert(mac_key_len <= EVP_MAX_MD_SIZE); | 
 |   OPENSSL_memcpy(tls_ctx->mac_key, key, mac_key_len); | 
 |   tls_ctx->mac_key_len = (uint8_t)mac_key_len; | 
 |   tls_ctx->implicit_iv = implicit_iv; | 
 |  | 
 |   if (!EVP_CipherInit_ex(&tls_ctx->cipher_ctx, cipher, NULL, &key[mac_key_len], | 
 |                          implicit_iv ? &key[mac_key_len + enc_key_len] : NULL, | 
 |                          dir == evp_aead_seal) || | 
 |       !HMAC_Init_ex(tls_ctx->hmac_ctx, key, mac_key_len, md, NULL)) { | 
 |     aead_tls_cleanup(ctx); | 
 |     return 0; | 
 |   } | 
 |   EVP_CIPHER_CTX_set_padding(&tls_ctx->cipher_ctx, 0); | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | static size_t aead_tls_tag_len(const EVP_AEAD_CTX *ctx, const size_t in_len, | 
 |                                const size_t extra_in_len) { | 
 |   assert(extra_in_len == 0); | 
 |   const AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state; | 
 |  | 
 |   const size_t hmac_len = HMAC_size(tls_ctx->hmac_ctx); | 
 |   if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) != EVP_CIPH_CBC_MODE) { | 
 |     // The NULL cipher. | 
 |     return hmac_len; | 
 |   } | 
 |  | 
 |   const size_t block_size = EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx); | 
 |   // An overflow of |in_len + hmac_len| doesn't affect the result mod | 
 |   // |block_size|, provided that |block_size| is a smaller power of two. | 
 |   assert(block_size != 0 && (block_size & (block_size - 1)) == 0); | 
 |   const size_t pad_len = block_size - (in_len + hmac_len) % block_size; | 
 |   return hmac_len + pad_len; | 
 | } | 
 |  | 
 | static int aead_tls_seal_scatter(const EVP_AEAD_CTX *ctx, uint8_t *out, | 
 |                                  uint8_t *out_tag, size_t *out_tag_len, | 
 |                                  const size_t max_out_tag_len, | 
 |                                  const uint8_t *nonce, const size_t nonce_len, | 
 |                                  const uint8_t *in, const size_t in_len, | 
 |                                  const uint8_t *extra_in, | 
 |                                  const size_t extra_in_len, const uint8_t *ad, | 
 |                                  const size_t ad_len) { | 
 |   AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state; | 
 |  | 
 |   if (!tls_ctx->cipher_ctx.encrypt) { | 
 |     // Unlike a normal AEAD, a TLS AEAD may only be used in one direction. | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_OPERATION); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (in_len > INT_MAX) { | 
 |     // EVP_CIPHER takes int as input. | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (max_out_tag_len < aead_tls_tag_len(ctx, in_len, extra_in_len)) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (ad_len != 13 - 2 /* length bytes */) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_AD_SIZE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // To allow for CBC mode which changes cipher length, |ad| doesn't include the | 
 |   // length for legacy ciphers. | 
 |   uint8_t ad_extra[2]; | 
 |   ad_extra[0] = (uint8_t)(in_len >> 8); | 
 |   ad_extra[1] = (uint8_t)(in_len & 0xff); | 
 |  | 
 |   // Compute the MAC. This must be first in case the operation is being done | 
 |   // in-place. | 
 |   uint8_t mac[EVP_MAX_MD_SIZE]; | 
 |   unsigned mac_len; | 
 |   if (!HMAC_Init_ex(tls_ctx->hmac_ctx, NULL, 0, NULL, NULL) || | 
 |       !HMAC_Update(tls_ctx->hmac_ctx, ad, ad_len) || | 
 |       !HMAC_Update(tls_ctx->hmac_ctx, ad_extra, sizeof(ad_extra)) || | 
 |       !HMAC_Update(tls_ctx->hmac_ctx, in, in_len) || | 
 |       !HMAC_Final(tls_ctx->hmac_ctx, mac, &mac_len)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // Configure the explicit IV. | 
 |   if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE && | 
 |       !tls_ctx->implicit_iv && | 
 |       !EVP_EncryptInit_ex(&tls_ctx->cipher_ctx, NULL, NULL, NULL, nonce)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // Encrypt the input. | 
 |   int len; | 
 |   if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out, &len, in, (int)in_len)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   unsigned block_size = EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx); | 
 |  | 
 |   // Feed the MAC into the cipher in two steps. First complete the final partial | 
 |   // block from encrypting the input and split the result between |out| and | 
 |   // |out_tag|. Then feed the rest. | 
 |  | 
 |   const size_t early_mac_len = | 
 |       (block_size - (in_len % block_size)) % block_size; | 
 |   if (early_mac_len != 0) { | 
 |     assert(len + block_size - early_mac_len == in_len); | 
 |     uint8_t buf[EVP_MAX_BLOCK_LENGTH]; | 
 |     int buf_len; | 
 |     if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, buf, &buf_len, mac, | 
 |                            (int)early_mac_len)) { | 
 |       return 0; | 
 |     } | 
 |     assert(buf_len == (int)block_size); | 
 |     OPENSSL_memcpy(out + len, buf, block_size - early_mac_len); | 
 |     OPENSSL_memcpy(out_tag, buf + block_size - early_mac_len, early_mac_len); | 
 |   } | 
 |   size_t tag_len = early_mac_len; | 
 |  | 
 |   if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out_tag + tag_len, &len, | 
 |                          mac + tag_len, mac_len - tag_len)) { | 
 |     return 0; | 
 |   } | 
 |   tag_len += len; | 
 |  | 
 |   if (block_size > 1) { | 
 |     assert(block_size <= 256); | 
 |     assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE); | 
 |  | 
 |     // Compute padding and feed that into the cipher. | 
 |     uint8_t padding[256]; | 
 |     unsigned padding_len = block_size - ((in_len + mac_len) % block_size); | 
 |     OPENSSL_memset(padding, padding_len - 1, padding_len); | 
 |     if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out_tag + tag_len, &len, | 
 |                            padding, (int)padding_len)) { | 
 |       return 0; | 
 |     } | 
 |     tag_len += len; | 
 |   } | 
 |  | 
 |   if (!EVP_EncryptFinal_ex(&tls_ctx->cipher_ctx, out_tag + tag_len, &len)) { | 
 |     return 0; | 
 |   } | 
 |   assert(len == 0);  // Padding is explicit. | 
 |   assert(tag_len == aead_tls_tag_len(ctx, in_len, extra_in_len)); | 
 |  | 
 |   *out_tag_len = tag_len; | 
 |   return 1; | 
 | } | 
 |  | 
 | static int aead_tls_open(const EVP_AEAD_CTX *ctx, uint8_t *out, size_t *out_len, | 
 |                          size_t max_out_len, const uint8_t *nonce, | 
 |                          size_t nonce_len, const uint8_t *in, size_t in_len, | 
 |                          const uint8_t *ad, size_t ad_len) { | 
 |   AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state; | 
 |  | 
 |   if (tls_ctx->cipher_ctx.encrypt) { | 
 |     // Unlike a normal AEAD, a TLS AEAD may only be used in one direction. | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_OPERATION); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (in_len < HMAC_size(tls_ctx->hmac_ctx)) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (max_out_len < in_len) { | 
 |     // This requires that the caller provide space for the MAC, even though it | 
 |     // will always be removed on return. | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (ad_len != 13 - 2 /* length bytes */) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_AD_SIZE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (in_len > INT_MAX) { | 
 |     // EVP_CIPHER takes int as input. | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // Configure the explicit IV. | 
 |   if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE && | 
 |       !tls_ctx->implicit_iv && | 
 |       !EVP_DecryptInit_ex(&tls_ctx->cipher_ctx, NULL, NULL, NULL, nonce)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // Decrypt to get the plaintext + MAC + padding. | 
 |   size_t total = 0; | 
 |   int len; | 
 |   if (!EVP_DecryptUpdate(&tls_ctx->cipher_ctx, out, &len, in, (int)in_len)) { | 
 |     return 0; | 
 |   } | 
 |   total += len; | 
 |   if (!EVP_DecryptFinal_ex(&tls_ctx->cipher_ctx, out + total, &len)) { | 
 |     return 0; | 
 |   } | 
 |   total += len; | 
 |   assert(total == in_len); | 
 |  | 
 |   CONSTTIME_SECRET(out, total); | 
 |  | 
 |   // Remove CBC padding. Code from here on is timing-sensitive with respect to | 
 |   // |padding_ok| and |data_plus_mac_len| for CBC ciphers. | 
 |   size_t data_plus_mac_len; | 
 |   crypto_word_t padding_ok; | 
 |   if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE) { | 
 |     if (!EVP_tls_cbc_remove_padding( | 
 |             &padding_ok, &data_plus_mac_len, out, total, | 
 |             EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx), | 
 |             HMAC_size(tls_ctx->hmac_ctx))) { | 
 |       // Publicly invalid. This can be rejected in non-constant time. | 
 |       OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); | 
 |       return 0; | 
 |     } | 
 |   } else { | 
 |     padding_ok = CONSTTIME_TRUE_W; | 
 |     data_plus_mac_len = total; | 
 |     // |data_plus_mac_len| = |total| = |in_len| at this point. |in_len| has | 
 |     // already been checked against the MAC size at the top of the function. | 
 |     assert(data_plus_mac_len >= HMAC_size(tls_ctx->hmac_ctx)); | 
 |   } | 
 |   size_t data_len = data_plus_mac_len - HMAC_size(tls_ctx->hmac_ctx); | 
 |  | 
 |   // At this point, if the padding is valid, the first |data_plus_mac_len| bytes | 
 |   // after |out| are the plaintext and MAC. Otherwise, |data_plus_mac_len| is | 
 |   // still large enough to extract a MAC, but it will be irrelevant. | 
 |  | 
 |   // To allow for CBC mode which changes cipher length, |ad| doesn't include the | 
 |   // length for legacy ciphers. | 
 |   uint8_t ad_fixed[13]; | 
 |   OPENSSL_memcpy(ad_fixed, ad, 11); | 
 |   ad_fixed[11] = (uint8_t)(data_len >> 8); | 
 |   ad_fixed[12] = (uint8_t)(data_len & 0xff); | 
 |   ad_len += 2; | 
 |  | 
 |   // Compute the MAC and extract the one in the record. | 
 |   uint8_t mac[EVP_MAX_MD_SIZE]; | 
 |   size_t mac_len; | 
 |   uint8_t record_mac_tmp[EVP_MAX_MD_SIZE]; | 
 |   uint8_t *record_mac; | 
 |   if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE && | 
 |       EVP_tls_cbc_record_digest_supported(tls_ctx->hmac_ctx->md)) { | 
 |     if (!EVP_tls_cbc_digest_record(tls_ctx->hmac_ctx->md, mac, &mac_len, | 
 |                                    ad_fixed, out, data_len, total, | 
 |                                    tls_ctx->mac_key, tls_ctx->mac_key_len)) { | 
 |       OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); | 
 |       return 0; | 
 |     } | 
 |     assert(mac_len == HMAC_size(tls_ctx->hmac_ctx)); | 
 |  | 
 |     record_mac = record_mac_tmp; | 
 |     EVP_tls_cbc_copy_mac(record_mac, mac_len, out, data_plus_mac_len, total); | 
 |   } else { | 
 |     // We should support the constant-time path for all CBC-mode ciphers | 
 |     // implemented. | 
 |     assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) != EVP_CIPH_CBC_MODE); | 
 |  | 
 |     unsigned mac_len_u; | 
 |     if (!HMAC_Init_ex(tls_ctx->hmac_ctx, NULL, 0, NULL, NULL) || | 
 |         !HMAC_Update(tls_ctx->hmac_ctx, ad_fixed, ad_len) || | 
 |         !HMAC_Update(tls_ctx->hmac_ctx, out, data_len) || | 
 |         !HMAC_Final(tls_ctx->hmac_ctx, mac, &mac_len_u)) { | 
 |       return 0; | 
 |     } | 
 |     mac_len = mac_len_u; | 
 |  | 
 |     assert(mac_len == HMAC_size(tls_ctx->hmac_ctx)); | 
 |     record_mac = &out[data_len]; | 
 |   } | 
 |  | 
 |   // Perform the MAC check and the padding check in constant-time. It should be | 
 |   // safe to simply perform the padding check first, but it would not be under a | 
 |   // different choice of MAC location on padding failure. See | 
 |   // EVP_tls_cbc_remove_padding. | 
 |   crypto_word_t good = | 
 |       constant_time_eq_int(CRYPTO_memcmp(record_mac, mac, mac_len), 0); | 
 |   good &= padding_ok; | 
 |   CONSTTIME_DECLASSIFY(&good, sizeof(good)); | 
 |   if (!good) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   CONSTTIME_DECLASSIFY(&data_len, sizeof(data_len)); | 
 |   CONSTTIME_DECLASSIFY(out, data_len); | 
 |  | 
 |   // End of timing-sensitive code. | 
 |  | 
 |   *out_len = data_len; | 
 |   return 1; | 
 | } | 
 |  | 
 | static int aead_aes_128_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, | 
 |                                           size_t key_len, size_t tag_len, | 
 |                                           enum evp_aead_direction_t dir) { | 
 |   return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(), | 
 |                        EVP_sha1(), 0); | 
 | } | 
 |  | 
 | static int aead_aes_128_cbc_sha1_tls_implicit_iv_init( | 
 |     EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len, | 
 |     enum evp_aead_direction_t dir) { | 
 |   return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(), | 
 |                        EVP_sha1(), 1); | 
 | } | 
 |  | 
 | static int aead_aes_128_cbc_sha256_tls_init(EVP_AEAD_CTX *ctx, | 
 |                                             const uint8_t *key, size_t key_len, | 
 |                                             size_t tag_len, | 
 |                                             enum evp_aead_direction_t dir) { | 
 |   return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(), | 
 |                        EVP_sha256(), 0); | 
 | } | 
 |  | 
 | static int aead_aes_256_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, | 
 |                                           size_t key_len, size_t tag_len, | 
 |                                           enum evp_aead_direction_t dir) { | 
 |   return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(), | 
 |                        EVP_sha1(), 0); | 
 | } | 
 |  | 
 | static int aead_aes_256_cbc_sha1_tls_implicit_iv_init( | 
 |     EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len, | 
 |     enum evp_aead_direction_t dir) { | 
 |   return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(), | 
 |                        EVP_sha1(), 1); | 
 | } | 
 |  | 
 | static int aead_des_ede3_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, | 
 |                                            const uint8_t *key, size_t key_len, | 
 |                                            size_t tag_len, | 
 |                                            enum evp_aead_direction_t dir) { | 
 |   return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_des_ede3_cbc(), | 
 |                        EVP_sha1(), 0); | 
 | } | 
 |  | 
 | static int aead_des_ede3_cbc_sha1_tls_implicit_iv_init( | 
 |     EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len, | 
 |     enum evp_aead_direction_t dir) { | 
 |   return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_des_ede3_cbc(), | 
 |                        EVP_sha1(), 1); | 
 | } | 
 |  | 
 | static int aead_tls_get_iv(const EVP_AEAD_CTX *ctx, const uint8_t **out_iv, | 
 |                            size_t *out_iv_len) { | 
 |   const AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state; | 
 |   const size_t iv_len = EVP_CIPHER_CTX_iv_length(&tls_ctx->cipher_ctx); | 
 |   if (iv_len <= 1) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   *out_iv = tls_ctx->cipher_ctx.iv; | 
 |   *out_iv_len = iv_len; | 
 |   return 1; | 
 | } | 
 |  | 
 | static const EVP_AEAD aead_aes_128_cbc_sha1_tls = { | 
 |     SHA_DIGEST_LENGTH + 16,  // key len (SHA1 + AES128) | 
 |     16,                      // nonce len (IV) | 
 |     16 + SHA_DIGEST_LENGTH,  // overhead (padding + SHA1) | 
 |     SHA_DIGEST_LENGTH,       // max tag length | 
 |     0,                       // seal_scatter_supports_extra_in | 
 |  | 
 |     NULL,  // init | 
 |     aead_aes_128_cbc_sha1_tls_init, | 
 |     aead_tls_cleanup, | 
 |     aead_tls_open, | 
 |     aead_tls_seal_scatter, | 
 |     NULL,  // open_gather | 
 |     NULL,  // get_iv | 
 |     aead_tls_tag_len, | 
 | }; | 
 |  | 
 | static const EVP_AEAD aead_aes_128_cbc_sha1_tls_implicit_iv = { | 
 |     SHA_DIGEST_LENGTH + 16 + 16,  // key len (SHA1 + AES128 + IV) | 
 |     0,                            // nonce len | 
 |     16 + SHA_DIGEST_LENGTH,       // overhead (padding + SHA1) | 
 |     SHA_DIGEST_LENGTH,            // max tag length | 
 |     0,                            // seal_scatter_supports_extra_in | 
 |  | 
 |     NULL,  // init | 
 |     aead_aes_128_cbc_sha1_tls_implicit_iv_init, | 
 |     aead_tls_cleanup, | 
 |     aead_tls_open, | 
 |     aead_tls_seal_scatter, | 
 |     NULL,             // open_gather | 
 |     aead_tls_get_iv,  // get_iv | 
 |     aead_tls_tag_len, | 
 | }; | 
 |  | 
 | static const EVP_AEAD aead_aes_128_cbc_sha256_tls = { | 
 |     SHA256_DIGEST_LENGTH + 16,  // key len (SHA256 + AES128) | 
 |     16,                         // nonce len (IV) | 
 |     16 + SHA256_DIGEST_LENGTH,  // overhead (padding + SHA256) | 
 |     SHA256_DIGEST_LENGTH,       // max tag length | 
 |     0,                          // seal_scatter_supports_extra_in | 
 |  | 
 |     NULL,  // init | 
 |     aead_aes_128_cbc_sha256_tls_init, | 
 |     aead_tls_cleanup, | 
 |     aead_tls_open, | 
 |     aead_tls_seal_scatter, | 
 |     NULL,  // open_gather | 
 |     NULL,  // get_iv | 
 |     aead_tls_tag_len, | 
 | }; | 
 |  | 
 | static const EVP_AEAD aead_aes_256_cbc_sha1_tls = { | 
 |     SHA_DIGEST_LENGTH + 32,  // key len (SHA1 + AES256) | 
 |     16,                      // nonce len (IV) | 
 |     16 + SHA_DIGEST_LENGTH,  // overhead (padding + SHA1) | 
 |     SHA_DIGEST_LENGTH,       // max tag length | 
 |     0,                       // seal_scatter_supports_extra_in | 
 |  | 
 |     NULL,  // init | 
 |     aead_aes_256_cbc_sha1_tls_init, | 
 |     aead_tls_cleanup, | 
 |     aead_tls_open, | 
 |     aead_tls_seal_scatter, | 
 |     NULL,  // open_gather | 
 |     NULL,  // get_iv | 
 |     aead_tls_tag_len, | 
 | }; | 
 |  | 
 | static const EVP_AEAD aead_aes_256_cbc_sha1_tls_implicit_iv = { | 
 |     SHA_DIGEST_LENGTH + 32 + 16,  // key len (SHA1 + AES256 + IV) | 
 |     0,                            // nonce len | 
 |     16 + SHA_DIGEST_LENGTH,       // overhead (padding + SHA1) | 
 |     SHA_DIGEST_LENGTH,            // max tag length | 
 |     0,                            // seal_scatter_supports_extra_in | 
 |  | 
 |     NULL,  // init | 
 |     aead_aes_256_cbc_sha1_tls_implicit_iv_init, | 
 |     aead_tls_cleanup, | 
 |     aead_tls_open, | 
 |     aead_tls_seal_scatter, | 
 |     NULL,             // open_gather | 
 |     aead_tls_get_iv,  // get_iv | 
 |     aead_tls_tag_len, | 
 | }; | 
 |  | 
 | static const EVP_AEAD aead_des_ede3_cbc_sha1_tls = { | 
 |     SHA_DIGEST_LENGTH + 24,  // key len (SHA1 + 3DES) | 
 |     8,                       // nonce len (IV) | 
 |     8 + SHA_DIGEST_LENGTH,   // overhead (padding + SHA1) | 
 |     SHA_DIGEST_LENGTH,       // max tag length | 
 |     0,                       // seal_scatter_supports_extra_in | 
 |  | 
 |     NULL,  // init | 
 |     aead_des_ede3_cbc_sha1_tls_init, | 
 |     aead_tls_cleanup, | 
 |     aead_tls_open, | 
 |     aead_tls_seal_scatter, | 
 |     NULL,  // open_gather | 
 |     NULL,  // get_iv | 
 |     aead_tls_tag_len, | 
 | }; | 
 |  | 
 | static const EVP_AEAD aead_des_ede3_cbc_sha1_tls_implicit_iv = { | 
 |     SHA_DIGEST_LENGTH + 24 + 8,  // key len (SHA1 + 3DES + IV) | 
 |     0,                           // nonce len | 
 |     8 + SHA_DIGEST_LENGTH,       // overhead (padding + SHA1) | 
 |     SHA_DIGEST_LENGTH,           // max tag length | 
 |     0,                           // seal_scatter_supports_extra_in | 
 |  | 
 |     NULL,  // init | 
 |     aead_des_ede3_cbc_sha1_tls_implicit_iv_init, | 
 |     aead_tls_cleanup, | 
 |     aead_tls_open, | 
 |     aead_tls_seal_scatter, | 
 |     NULL,             // open_gather | 
 |     aead_tls_get_iv,  // get_iv | 
 |     aead_tls_tag_len, | 
 | }; | 
 |  | 
 | const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls(void) { | 
 |   return &aead_aes_128_cbc_sha1_tls; | 
 | } | 
 |  | 
 | const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls_implicit_iv(void) { | 
 |   return &aead_aes_128_cbc_sha1_tls_implicit_iv; | 
 | } | 
 |  | 
 | const EVP_AEAD *EVP_aead_aes_128_cbc_sha256_tls(void) { | 
 |   return &aead_aes_128_cbc_sha256_tls; | 
 | } | 
 |  | 
 | const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls(void) { | 
 |   return &aead_aes_256_cbc_sha1_tls; | 
 | } | 
 |  | 
 | const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls_implicit_iv(void) { | 
 |   return &aead_aes_256_cbc_sha1_tls_implicit_iv; | 
 | } | 
 |  | 
 | const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls(void) { | 
 |   return &aead_des_ede3_cbc_sha1_tls; | 
 | } | 
 |  | 
 | const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv(void) { | 
 |   return &aead_des_ede3_cbc_sha1_tls_implicit_iv; | 
 | } |