| /* Copyright (c) 2018, Google Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| |
| #include <openssl/hrss.h> |
| |
| #include <assert.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| |
| #include <openssl/bn.h> |
| #include <openssl/cpu.h> |
| #include <openssl/hmac.h> |
| #include <openssl/mem.h> |
| #include <openssl/sha.h> |
| |
| #if defined(_MSC_VER) |
| #define RESTRICT |
| #else |
| #define RESTRICT restrict |
| #endif |
| |
| #include "../internal.h" |
| #include "internal.h" |
| |
| #if defined(OPENSSL_SSE2) |
| #include <emmintrin.h> |
| #endif |
| |
| #if (defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)) && \ |
| (defined(__ARM_NEON__) || defined(__ARM_NEON)) |
| #include <arm_neon.h> |
| #endif |
| |
| // This is an implementation of [HRSS], but with a KEM transformation based on |
| // [SXY]. The primary references are: |
| |
| // HRSS: https://eprint.iacr.org/2017/667.pdf |
| // HRSSNIST: |
| // https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/NTRU_HRSS_KEM.zip |
| // SXY: https://eprint.iacr.org/2017/1005.pdf |
| // NTRUTN14: |
| // https://assets.onboardsecurity.com/static/downloads/NTRU/resources/NTRUTech014.pdf |
| // NTRUCOMP: https://eprint.iacr.org/2018/1174 |
| // SAFEGCD: https://gcd.cr.yp.to/papers.html#safegcd |
| |
| |
| // Vector operations. |
| // |
| // A couple of functions in this file can use vector operations to meaningful |
| // effect. If we're building for a target that has a supported vector unit, |
| // |HRSS_HAVE_VECTOR_UNIT| will be defined and |vec_t| will be typedefed to a |
| // 128-bit vector. The following functions abstract over the differences between |
| // NEON and SSE2 for implementing some vector operations. |
| |
| // TODO: MSVC can likely also be made to work with vector operations, but ^ must |
| // be replaced with _mm_xor_si128, etc. |
| #if defined(OPENSSL_SSE2) && (defined(__clang__) || !defined(_MSC_VER)) |
| |
| #define HRSS_HAVE_VECTOR_UNIT |
| typedef __m128i vec_t; |
| |
| // vec_capable returns one iff the current platform supports SSE2. |
| static int vec_capable(void) { return 1; } |
| |
| // vec_add performs a pair-wise addition of four uint16s from |a| and |b|. |
| static inline vec_t vec_add(vec_t a, vec_t b) { return _mm_add_epi16(a, b); } |
| |
| // vec_sub performs a pair-wise subtraction of four uint16s from |a| and |b|. |
| static inline vec_t vec_sub(vec_t a, vec_t b) { return _mm_sub_epi16(a, b); } |
| |
| // vec_mul multiplies each uint16_t in |a| by |b| and returns the resulting |
| // vector. |
| static inline vec_t vec_mul(vec_t a, uint16_t b) { |
| return _mm_mullo_epi16(a, _mm_set1_epi16(b)); |
| } |
| |
| // vec_fma multiplies each uint16_t in |b| by |c|, adds the result to |a|, and |
| // returns the resulting vector. |
| static inline vec_t vec_fma(vec_t a, vec_t b, uint16_t c) { |
| return _mm_add_epi16(a, _mm_mullo_epi16(b, _mm_set1_epi16(c))); |
| } |
| |
| // vec3_rshift_word right-shifts the 24 uint16_t's in |v| by one uint16. |
| static inline void vec3_rshift_word(vec_t v[3]) { |
| // Intel's left and right shifting is backwards compared to the order in |
| // memory because they're based on little-endian order of words (and not just |
| // bytes). So the shifts in this function will be backwards from what one |
| // might expect. |
| const __m128i carry0 = _mm_srli_si128(v[0], 14); |
| v[0] = _mm_slli_si128(v[0], 2); |
| |
| const __m128i carry1 = _mm_srli_si128(v[1], 14); |
| v[1] = _mm_slli_si128(v[1], 2); |
| v[1] |= carry0; |
| |
| v[2] = _mm_slli_si128(v[2], 2); |
| v[2] |= carry1; |
| } |
| |
| // vec4_rshift_word right-shifts the 32 uint16_t's in |v| by one uint16. |
| static inline void vec4_rshift_word(vec_t v[4]) { |
| // Intel's left and right shifting is backwards compared to the order in |
| // memory because they're based on little-endian order of words (and not just |
| // bytes). So the shifts in this function will be backwards from what one |
| // might expect. |
| const __m128i carry0 = _mm_srli_si128(v[0], 14); |
| v[0] = _mm_slli_si128(v[0], 2); |
| |
| const __m128i carry1 = _mm_srli_si128(v[1], 14); |
| v[1] = _mm_slli_si128(v[1], 2); |
| v[1] |= carry0; |
| |
| const __m128i carry2 = _mm_srli_si128(v[2], 14); |
| v[2] = _mm_slli_si128(v[2], 2); |
| v[2] |= carry1; |
| |
| v[3] = _mm_slli_si128(v[3], 2); |
| v[3] |= carry2; |
| } |
| |
| // vec_merge_3_5 takes the final three uint16_t's from |left|, appends the first |
| // five from |right|, and returns the resulting vector. |
| static inline vec_t vec_merge_3_5(vec_t left, vec_t right) { |
| return _mm_srli_si128(left, 10) | _mm_slli_si128(right, 6); |
| } |
| |
| // poly3_vec_lshift1 left-shifts the 768 bits in |a_s|, and in |a_a|, by one |
| // bit. |
| static inline void poly3_vec_lshift1(vec_t a_s[6], vec_t a_a[6]) { |
| vec_t carry_s = {0}; |
| vec_t carry_a = {0}; |
| |
| for (int i = 0; i < 6; i++) { |
| vec_t next_carry_s = _mm_srli_epi64(a_s[i], 63); |
| a_s[i] = _mm_slli_epi64(a_s[i], 1); |
| a_s[i] |= _mm_slli_si128(next_carry_s, 8); |
| a_s[i] |= carry_s; |
| carry_s = _mm_srli_si128(next_carry_s, 8); |
| |
| vec_t next_carry_a = _mm_srli_epi64(a_a[i], 63); |
| a_a[i] = _mm_slli_epi64(a_a[i], 1); |
| a_a[i] |= _mm_slli_si128(next_carry_a, 8); |
| a_a[i] |= carry_a; |
| carry_a = _mm_srli_si128(next_carry_a, 8); |
| } |
| } |
| |
| // poly3_vec_rshift1 right-shifts the 768 bits in |a_s|, and in |a_a|, by one |
| // bit. |
| static inline void poly3_vec_rshift1(vec_t a_s[6], vec_t a_a[6]) { |
| vec_t carry_s = {0}; |
| vec_t carry_a = {0}; |
| |
| for (int i = 5; i >= 0; i--) { |
| const vec_t next_carry_s = _mm_slli_epi64(a_s[i], 63); |
| a_s[i] = _mm_srli_epi64(a_s[i], 1); |
| a_s[i] |= _mm_srli_si128(next_carry_s, 8); |
| a_s[i] |= carry_s; |
| carry_s = _mm_slli_si128(next_carry_s, 8); |
| |
| const vec_t next_carry_a = _mm_slli_epi64(a_a[i], 63); |
| a_a[i] = _mm_srli_epi64(a_a[i], 1); |
| a_a[i] |= _mm_srli_si128(next_carry_a, 8); |
| a_a[i] |= carry_a; |
| carry_a = _mm_slli_si128(next_carry_a, 8); |
| } |
| } |
| |
| // vec_broadcast_bit duplicates the least-significant bit in |a| to all bits in |
| // a vector and returns the result. |
| static inline vec_t vec_broadcast_bit(vec_t a) { |
| return _mm_shuffle_epi32(_mm_srai_epi32(_mm_slli_epi64(a, 63), 31), |
| 0b01010101); |
| } |
| |
| // vec_get_word returns the |i|th uint16_t in |v|. (This is a macro because the |
| // compiler requires that |i| be a compile-time constant.) |
| #define vec_get_word(v, i) _mm_extract_epi16(v, i) |
| |
| #elif (defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)) && \ |
| (defined(__ARM_NEON__) || defined(__ARM_NEON)) |
| |
| #define HRSS_HAVE_VECTOR_UNIT |
| typedef uint16x8_t vec_t; |
| |
| // These functions perform the same actions as the SSE2 function of the same |
| // name, above. |
| |
| static int vec_capable(void) { return CRYPTO_is_NEON_capable(); } |
| |
| static inline vec_t vec_add(vec_t a, vec_t b) { return a + b; } |
| |
| static inline vec_t vec_sub(vec_t a, vec_t b) { return a - b; } |
| |
| static inline vec_t vec_mul(vec_t a, uint16_t b) { return vmulq_n_u16(a, b); } |
| |
| static inline vec_t vec_fma(vec_t a, vec_t b, uint16_t c) { |
| return vmlaq_n_u16(a, b, c); |
| } |
| |
| static inline void vec3_rshift_word(vec_t v[3]) { |
| const uint16x8_t kZero = {0}; |
| v[2] = vextq_u16(v[1], v[2], 7); |
| v[1] = vextq_u16(v[0], v[1], 7); |
| v[0] = vextq_u16(kZero, v[0], 7); |
| } |
| |
| static inline void vec4_rshift_word(vec_t v[4]) { |
| const uint16x8_t kZero = {0}; |
| v[3] = vextq_u16(v[2], v[3], 7); |
| v[2] = vextq_u16(v[1], v[2], 7); |
| v[1] = vextq_u16(v[0], v[1], 7); |
| v[0] = vextq_u16(kZero, v[0], 7); |
| } |
| |
| static inline vec_t vec_merge_3_5(vec_t left, vec_t right) { |
| return vextq_u16(left, right, 5); |
| } |
| |
| static inline uint16_t vec_get_word(vec_t v, unsigned i) { |
| return v[i]; |
| } |
| |
| #if !defined(OPENSSL_AARCH64) |
| |
| static inline vec_t vec_broadcast_bit(vec_t a) { |
| a = (vec_t)vshrq_n_s16(((int16x8_t)a) << 15, 15); |
| return vdupq_lane_u16(vget_low_u16(a), 0); |
| } |
| |
| static inline void poly3_vec_lshift1(vec_t a_s[6], vec_t a_a[6]) { |
| vec_t carry_s = {0}; |
| vec_t carry_a = {0}; |
| const vec_t kZero = {0}; |
| |
| for (int i = 0; i < 6; i++) { |
| vec_t next_carry_s = a_s[i] >> 15; |
| a_s[i] <<= 1; |
| a_s[i] |= vextq_u16(kZero, next_carry_s, 7); |
| a_s[i] |= carry_s; |
| carry_s = vextq_u16(next_carry_s, kZero, 7); |
| |
| vec_t next_carry_a = a_a[i] >> 15; |
| a_a[i] <<= 1; |
| a_a[i] |= vextq_u16(kZero, next_carry_a, 7); |
| a_a[i] |= carry_a; |
| carry_a = vextq_u16(next_carry_a, kZero, 7); |
| } |
| } |
| |
| static inline void poly3_vec_rshift1(vec_t a_s[6], vec_t a_a[6]) { |
| vec_t carry_s = {0}; |
| vec_t carry_a = {0}; |
| const vec_t kZero = {0}; |
| |
| for (int i = 5; i >= 0; i--) { |
| vec_t next_carry_s = a_s[i] << 15; |
| a_s[i] >>= 1; |
| a_s[i] |= vextq_u16(next_carry_s, kZero, 1); |
| a_s[i] |= carry_s; |
| carry_s = vextq_u16(kZero, next_carry_s, 1); |
| |
| vec_t next_carry_a = a_a[i] << 15; |
| a_a[i] >>= 1; |
| a_a[i] |= vextq_u16(next_carry_a, kZero, 1); |
| a_a[i] |= carry_a; |
| carry_a = vextq_u16(kZero, next_carry_a, 1); |
| } |
| } |
| |
| #endif // !OPENSSL_AARCH64 |
| |
| #endif // (ARM || AARCH64) && NEON |
| |
| // Polynomials in this scheme have N terms. |
| // #define N 701 |
| |
| // Underlying data types and arithmetic operations. |
| // ------------------------------------------------ |
| |
| // Binary polynomials. |
| |
| // poly2 represents a degree-N polynomial over GF(2). The words are in little- |
| // endian order, i.e. the coefficient of x^0 is the LSB of the first word. The |
| // final word is only partially used since N is not a multiple of the word size. |
| |
| // Defined in internal.h: |
| // struct poly2 { |
| // crypto_word_t v[WORDS_PER_POLY]; |
| // }; |
| |
| OPENSSL_UNUSED static void hexdump(const void *void_in, size_t len) { |
| const uint8_t *in = (const uint8_t *)void_in; |
| for (size_t i = 0; i < len; i++) { |
| printf("%02x", in[i]); |
| } |
| printf("\n"); |
| } |
| |
| static void poly2_zero(struct poly2 *p) { |
| OPENSSL_memset(&p->v[0], 0, sizeof(crypto_word_t) * WORDS_PER_POLY); |
| } |
| |
| // word_reverse returns |in| with the bits in reverse order. |
| static crypto_word_t word_reverse(crypto_word_t in) { |
| #if defined(OPENSSL_64_BIT) |
| static const crypto_word_t kMasks[6] = { |
| UINT64_C(0x5555555555555555), |
| UINT64_C(0x3333333333333333), |
| UINT64_C(0x0f0f0f0f0f0f0f0f), |
| UINT64_C(0x00ff00ff00ff00ff), |
| UINT64_C(0x0000ffff0000ffff), |
| UINT64_C(0x00000000ffffffff), |
| }; |
| #else |
| static const crypto_word_t kMasks[5] = { |
| 0x55555555, |
| 0x33333333, |
| 0x0f0f0f0f, |
| 0x00ff00ff, |
| 0x0000ffff, |
| }; |
| #endif |
| |
| for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kMasks); i++) { |
| in = ((in >> (1 << i)) & kMasks[i]) | ((in & kMasks[i]) << (1 << i)); |
| } |
| |
| return in; |
| } |
| |
| // lsb_to_all replicates the least-significant bit of |v| to all bits of the |
| // word. This is used in bit-slicing operations to make a vector from a fixed |
| // value. |
| static crypto_word_t lsb_to_all(crypto_word_t v) { return 0u - (v & 1); } |
| |
| // poly2_mod_phiN reduces |p| by Φ(N). |
| static void poly2_mod_phiN(struct poly2 *p) { |
| // m is the term at x^700, replicated to every bit. |
| const crypto_word_t m = |
| lsb_to_all(p->v[WORDS_PER_POLY - 1] >> (BITS_IN_LAST_WORD - 1)); |
| for (size_t i = 0; i < WORDS_PER_POLY; i++) { |
| p->v[i] ^= m; |
| } |
| p->v[WORDS_PER_POLY - 1] &= (UINT64_C(1) << (BITS_IN_LAST_WORD - 1)) - 1; |
| } |
| |
| // poly2_reverse_700 reverses the order of the first 700 bits of |in| and writes |
| // the result to |out|. |
| static void poly2_reverse_700(struct poly2 *out, const struct poly2 *in) { |
| struct poly2 t; |
| for (size_t i = 0; i < WORDS_PER_POLY; i++) { |
| t.v[i] = word_reverse(in->v[i]); |
| } |
| |
| static const size_t shift = BITS_PER_WORD - ((N-1) % BITS_PER_WORD); |
| for (size_t i = 0; i < WORDS_PER_POLY-1; i++) { |
| out->v[i] = t.v[WORDS_PER_POLY-1-i] >> shift; |
| out->v[i] |= t.v[WORDS_PER_POLY-2-i] << (BITS_PER_WORD - shift); |
| } |
| out->v[WORDS_PER_POLY-1] = t.v[0] >> shift; |
| } |
| |
| // poly2_cswap exchanges the values of |a| and |b| if |swap| is all ones. |
| static void poly2_cswap(struct poly2 *a, struct poly2 *b, crypto_word_t swap) { |
| for (size_t i = 0; i < WORDS_PER_POLY; i++) { |
| const crypto_word_t sum = swap & (a->v[i] ^ b->v[i]); |
| a->v[i] ^= sum; |
| b->v[i] ^= sum; |
| } |
| } |
| |
| // poly2_fmadd sets |out| to |out| + |in| * m, where m is either |
| // |CONSTTIME_TRUE_W| or |CONSTTIME_FALSE_W|. |
| static void poly2_fmadd(struct poly2 *out, const struct poly2 *in, |
| crypto_word_t m) { |
| for (size_t i = 0; i < WORDS_PER_POLY; i++) { |
| out->v[i] ^= in->v[i] & m; |
| } |
| } |
| |
| // poly2_lshift1 left-shifts |p| by one bit. |
| static void poly2_lshift1(struct poly2 *p) { |
| crypto_word_t carry = 0; |
| for (size_t i = 0; i < WORDS_PER_POLY; i++) { |
| const crypto_word_t next_carry = p->v[i] >> (BITS_PER_WORD - 1); |
| p->v[i] <<= 1; |
| p->v[i] |= carry; |
| carry = next_carry; |
| } |
| } |
| |
| // poly2_rshift1 right-shifts |p| by one bit. |
| static void poly2_rshift1(struct poly2 *p) { |
| crypto_word_t carry = 0; |
| for (size_t i = WORDS_PER_POLY - 1; i < WORDS_PER_POLY; i--) { |
| const crypto_word_t next_carry = p->v[i] & 1; |
| p->v[i] >>= 1; |
| p->v[i] |= carry << (BITS_PER_WORD - 1); |
| carry = next_carry; |
| } |
| } |
| |
| // poly2_clear_top_bits clears the bits in the final word that are only for |
| // alignment. |
| static void poly2_clear_top_bits(struct poly2 *p) { |
| p->v[WORDS_PER_POLY - 1] &= (UINT64_C(1) << BITS_IN_LAST_WORD) - 1; |
| } |
| |
| // poly2_top_bits_are_clear returns one iff the extra bits in the final words of |
| // |p| are zero. |
| static int poly2_top_bits_are_clear(const struct poly2 *p) { |
| return (p->v[WORDS_PER_POLY - 1] & |
| ~((UINT64_C(1) << BITS_IN_LAST_WORD) - 1)) == 0; |
| } |
| |
| // Ternary polynomials. |
| |
| // poly3 represents a degree-N polynomial over GF(3). Each coefficient is |
| // bitsliced across the |s| and |a| arrays, like this: |
| // |
| // s | a | value |
| // ----------------- |
| // 0 | 0 | 0 |
| // 0 | 1 | 1 |
| // 1 | 1 | -1 (aka 2) |
| // 1 | 0 | <invalid> |
| // |
| // ('s' is for sign, and 'a' is the absolute value.) |
| // |
| // Once bitsliced as such, the following circuits can be used to implement |
| // addition and multiplication mod 3: |
| // |
| // (s3, a3) = (s1, a1) × (s2, a2) |
| // a3 = a1 ∧ a2 |
| // s3 = (s1 ⊕ s2) ∧ a3 |
| // |
| // (s3, a3) = (s1, a1) + (s2, a2) |
| // t = s1 ⊕ a2 |
| // s3 = t ∧ (s2 ⊕ a1) |
| // a3 = (a1 ⊕ a2) ∨ (t ⊕ s2) |
| // |
| // (s3, a3) = (s1, a1) - (s2, a2) |
| // t = a1 ⊕ a2 |
| // s3 = (s1 ⊕ a2) ∧ (t ⊕ s2) |
| // a3 = t ∨ (s1 ⊕ s2) |
| // |
| // Negating a value just involves XORing s by a. |
| // |
| // struct poly3 { |
| // struct poly2 s, a; |
| // }; |
| |
| OPENSSL_UNUSED static void poly3_print(const struct poly3 *in) { |
| struct poly3 p; |
| OPENSSL_memcpy(&p, in, sizeof(p)); |
| p.s.v[WORDS_PER_POLY - 1] &= ((crypto_word_t)1 << BITS_IN_LAST_WORD) - 1; |
| p.a.v[WORDS_PER_POLY - 1] &= ((crypto_word_t)1 << BITS_IN_LAST_WORD) - 1; |
| |
| printf("{["); |
| for (unsigned i = 0; i < WORDS_PER_POLY; i++) { |
| if (i) { |
| printf(" "); |
| } |
| printf(BN_HEX_FMT2, p.s.v[i]); |
| } |
| printf("] ["); |
| for (unsigned i = 0; i < WORDS_PER_POLY; i++) { |
| if (i) { |
| printf(" "); |
| } |
| printf(BN_HEX_FMT2, p.a.v[i]); |
| } |
| printf("]}\n"); |
| } |
| |
| static void poly3_zero(struct poly3 *p) { |
| poly2_zero(&p->s); |
| poly2_zero(&p->a); |
| } |
| |
| // poly3_reverse_700 reverses the order of the first 700 terms of |in| and |
| // writes them to |out|. |
| static void poly3_reverse_700(struct poly3 *out, const struct poly3 *in) { |
| poly2_reverse_700(&out->a, &in->a); |
| poly2_reverse_700(&out->s, &in->s); |
| } |
| |
| // poly3_word_mul sets (|out_s|, |out_a|) to (|s1|, |a1|) × (|s2|, |a2|). |
| static void poly3_word_mul(crypto_word_t *out_s, crypto_word_t *out_a, |
| const crypto_word_t s1, const crypto_word_t a1, |
| const crypto_word_t s2, const crypto_word_t a2) { |
| *out_a = a1 & a2; |
| *out_s = (s1 ^ s2) & *out_a; |
| } |
| |
| // poly3_word_add sets (|out_s|, |out_a|) to (|s1|, |a1|) + (|s2|, |a2|). |
| static void poly3_word_add(crypto_word_t *out_s, crypto_word_t *out_a, |
| const crypto_word_t s1, const crypto_word_t a1, |
| const crypto_word_t s2, const crypto_word_t a2) { |
| const crypto_word_t t = s1 ^ a2; |
| *out_s = t & (s2 ^ a1); |
| *out_a = (a1 ^ a2) | (t ^ s2); |
| } |
| |
| // poly3_word_sub sets (|out_s|, |out_a|) to (|s1|, |a1|) - (|s2|, |a2|). |
| static void poly3_word_sub(crypto_word_t *out_s, crypto_word_t *out_a, |
| const crypto_word_t s1, const crypto_word_t a1, |
| const crypto_word_t s2, const crypto_word_t a2) { |
| const crypto_word_t t = a1 ^ a2; |
| *out_s = (s1 ^ a2) & (t ^ s2); |
| *out_a = t | (s1 ^ s2); |
| } |
| |
| // poly3_mul_const sets |p| to |p|×m, where m = (ms, ma). |
| static void poly3_mul_const(struct poly3 *p, crypto_word_t ms, |
| crypto_word_t ma) { |
| ms = lsb_to_all(ms); |
| ma = lsb_to_all(ma); |
| |
| for (size_t i = 0; i < WORDS_PER_POLY; i++) { |
| poly3_word_mul(&p->s.v[i], &p->a.v[i], p->s.v[i], p->a.v[i], ms, ma); |
| } |
| } |
| |
| // poly3_fmadd sets |out| to |out| - |in|×m, where m is (ms, ma). |
| static void poly3_fmsub(struct poly3 *RESTRICT out, |
| const struct poly3 *RESTRICT in, crypto_word_t ms, |
| crypto_word_t ma) { |
| crypto_word_t product_s, product_a; |
| for (size_t i = 0; i < WORDS_PER_POLY; i++) { |
| poly3_word_mul(&product_s, &product_a, in->s.v[i], in->a.v[i], ms, ma); |
| poly3_word_sub(&out->s.v[i], &out->a.v[i], out->s.v[i], out->a.v[i], |
| product_s, product_a); |
| } |
| } |
| |
| // final_bit_to_all replicates the bit in the final position of the last word to |
| // all the bits in the word. |
| static crypto_word_t final_bit_to_all(crypto_word_t v) { |
| return lsb_to_all(v >> (BITS_IN_LAST_WORD - 1)); |
| } |
| |
| // poly3_top_bits_are_clear returns one iff the extra bits in the final words of |
| // |p| are zero. |
| OPENSSL_UNUSED static int poly3_top_bits_are_clear(const struct poly3 *p) { |
| return poly2_top_bits_are_clear(&p->s) && poly2_top_bits_are_clear(&p->a); |
| } |
| |
| // poly3_mod_phiN reduces |p| by Φ(N). |
| static void poly3_mod_phiN(struct poly3 *p) { |
| // In order to reduce by Φ(N) we subtract by the value of the greatest |
| // coefficient. |
| const crypto_word_t factor_s = final_bit_to_all(p->s.v[WORDS_PER_POLY - 1]); |
| const crypto_word_t factor_a = final_bit_to_all(p->a.v[WORDS_PER_POLY - 1]); |
| |
| for (size_t i = 0; i < WORDS_PER_POLY; i++) { |
| poly3_word_sub(&p->s.v[i], &p->a.v[i], p->s.v[i], p->a.v[i], factor_s, |
| factor_a); |
| } |
| |
| poly2_clear_top_bits(&p->s); |
| poly2_clear_top_bits(&p->a); |
| } |
| |
| static void poly3_cswap(struct poly3 *a, struct poly3 *b, crypto_word_t swap) { |
| poly2_cswap(&a->s, &b->s, swap); |
| poly2_cswap(&a->a, &b->a, swap); |
| } |
| |
| static void poly3_lshift1(struct poly3 *p) { |
| poly2_lshift1(&p->s); |
| poly2_lshift1(&p->a); |
| } |
| |
| static void poly3_rshift1(struct poly3 *p) { |
| poly2_rshift1(&p->s); |
| poly2_rshift1(&p->a); |
| } |
| |
| // poly3_span represents a pointer into a poly3. |
| struct poly3_span { |
| crypto_word_t *s; |
| crypto_word_t *a; |
| }; |
| |
| // poly3_span_add adds |n| words of values from |a| and |b| and writes the |
| // result to |out|. |
| static void poly3_span_add(const struct poly3_span *out, |
| const struct poly3_span *a, |
| const struct poly3_span *b, size_t n) { |
| for (size_t i = 0; i < n; i++) { |
| poly3_word_add(&out->s[i], &out->a[i], a->s[i], a->a[i], b->s[i], b->a[i]); |
| } |
| } |
| |
| // poly3_span_sub subtracts |n| words of |b| from |n| words of |a|. |
| static void poly3_span_sub(const struct poly3_span *a, |
| const struct poly3_span *b, size_t n) { |
| for (size_t i = 0; i < n; i++) { |
| poly3_word_sub(&a->s[i], &a->a[i], a->s[i], a->a[i], b->s[i], b->a[i]); |
| } |
| } |
| |
| // poly3_mul_aux is a recursive function that multiplies |n| words from |a| and |
| // |b| and writes 2×|n| words to |out|. Each call uses 2*ceil(n/2) elements of |
| // |scratch| and the function recurses, except if |n| == 1, when |scratch| isn't |
| // used and the recursion stops. For |n| in {11, 22}, the transitive total |
| // amount of |scratch| needed happens to be 2n+2. |
| static void poly3_mul_aux(const struct poly3_span *out, |
| const struct poly3_span *scratch, |
| const struct poly3_span *a, |
| const struct poly3_span *b, size_t n) { |
| if (n == 1) { |
| crypto_word_t r_s_low = 0, r_s_high = 0, r_a_low = 0, r_a_high = 0; |
| crypto_word_t b_s = b->s[0], b_a = b->a[0]; |
| const crypto_word_t a_s = a->s[0], a_a = a->a[0]; |
| |
| for (size_t i = 0; i < BITS_PER_WORD; i++) { |
| // Multiply (s, a) by the next value from (b_s, b_a). |
| crypto_word_t m_s, m_a; |
| poly3_word_mul(&m_s, &m_a, a_s, a_a, lsb_to_all(b_s), lsb_to_all(b_a)); |
| b_s >>= 1; |
| b_a >>= 1; |
| |
| if (i == 0) { |
| // Special case otherwise the code tries to shift by BITS_PER_WORD |
| // below, which is undefined. |
| r_s_low = m_s; |
| r_a_low = m_a; |
| continue; |
| } |
| |
| // Shift the multiplication result to the correct position. |
| const crypto_word_t m_s_low = m_s << i; |
| const crypto_word_t m_s_high = m_s >> (BITS_PER_WORD - i); |
| const crypto_word_t m_a_low = m_a << i; |
| const crypto_word_t m_a_high = m_a >> (BITS_PER_WORD - i); |
| |
| // Add into the result. |
| poly3_word_add(&r_s_low, &r_a_low, r_s_low, r_a_low, m_s_low, m_a_low); |
| poly3_word_add(&r_s_high, &r_a_high, r_s_high, r_a_high, m_s_high, |
| m_a_high); |
| } |
| |
| out->s[0] = r_s_low; |
| out->s[1] = r_s_high; |
| out->a[0] = r_a_low; |
| out->a[1] = r_a_high; |
| return; |
| } |
| |
| // Karatsuba multiplication. |
| // https://en.wikipedia.org/wiki/Karatsuba_algorithm |
| |
| // When |n| is odd, the two "halves" will have different lengths. The first |
| // is always the smaller. |
| const size_t low_len = n / 2; |
| const size_t high_len = n - low_len; |
| const struct poly3_span a_high = {&a->s[low_len], &a->a[low_len]}; |
| const struct poly3_span b_high = {&b->s[low_len], &b->a[low_len]}; |
| |
| // Store a_1 + a_0 in the first half of |out| and b_1 + b_0 in the second |
| // half. |
| const struct poly3_span a_cross_sum = *out; |
| const struct poly3_span b_cross_sum = {&out->s[high_len], &out->a[high_len]}; |
| poly3_span_add(&a_cross_sum, a, &a_high, low_len); |
| poly3_span_add(&b_cross_sum, b, &b_high, low_len); |
| if (high_len != low_len) { |
| a_cross_sum.s[low_len] = a_high.s[low_len]; |
| a_cross_sum.a[low_len] = a_high.a[low_len]; |
| b_cross_sum.s[low_len] = b_high.s[low_len]; |
| b_cross_sum.a[low_len] = b_high.a[low_len]; |
| } |
| |
| const struct poly3_span child_scratch = {&scratch->s[2 * high_len], |
| &scratch->a[2 * high_len]}; |
| const struct poly3_span out_mid = {&out->s[low_len], &out->a[low_len]}; |
| const struct poly3_span out_high = {&out->s[2 * low_len], |
| &out->a[2 * low_len]}; |
| |
| // Calculate (a_1 + a_0) × (b_1 + b_0) and write to scratch buffer. |
| poly3_mul_aux(scratch, &child_scratch, &a_cross_sum, &b_cross_sum, high_len); |
| // Calculate a_1 × b_1. |
| poly3_mul_aux(&out_high, &child_scratch, &a_high, &b_high, high_len); |
| // Calculate a_0 × b_0. |
| poly3_mul_aux(out, &child_scratch, a, b, low_len); |
| |
| // Subtract those last two products from the first. |
| poly3_span_sub(scratch, out, low_len * 2); |
| poly3_span_sub(scratch, &out_high, high_len * 2); |
| |
| // Add the middle product into the output. |
| poly3_span_add(&out_mid, &out_mid, scratch, high_len * 2); |
| } |
| |
| // HRSS_poly3_mul sets |*out| to |x|×|y| mod Φ(N). |
| void HRSS_poly3_mul(struct poly3 *out, const struct poly3 *x, |
| const struct poly3 *y) { |
| crypto_word_t prod_s[WORDS_PER_POLY * 2]; |
| crypto_word_t prod_a[WORDS_PER_POLY * 2]; |
| crypto_word_t scratch_s[WORDS_PER_POLY * 2 + 2]; |
| crypto_word_t scratch_a[WORDS_PER_POLY * 2 + 2]; |
| const struct poly3_span prod_span = {prod_s, prod_a}; |
| const struct poly3_span scratch_span = {scratch_s, scratch_a}; |
| const struct poly3_span x_span = {(crypto_word_t *)x->s.v, |
| (crypto_word_t *)x->a.v}; |
| const struct poly3_span y_span = {(crypto_word_t *)y->s.v, |
| (crypto_word_t *)y->a.v}; |
| |
| poly3_mul_aux(&prod_span, &scratch_span, &x_span, &y_span, WORDS_PER_POLY); |
| |
| // |prod| needs to be reduced mod (𝑥^n - 1), which just involves adding the |
| // upper-half to the lower-half. However, N is 701, which isn't a multiple of |
| // BITS_PER_WORD, so the upper-half vectors all have to be shifted before |
| // being added to the lower-half. |
| for (size_t i = 0; i < WORDS_PER_POLY; i++) { |
| crypto_word_t v_s = prod_s[WORDS_PER_POLY + i - 1] >> BITS_IN_LAST_WORD; |
| v_s |= prod_s[WORDS_PER_POLY + i] << (BITS_PER_WORD - BITS_IN_LAST_WORD); |
| crypto_word_t v_a = prod_a[WORDS_PER_POLY + i - 1] >> BITS_IN_LAST_WORD; |
| v_a |= prod_a[WORDS_PER_POLY + i] << (BITS_PER_WORD - BITS_IN_LAST_WORD); |
| |
| poly3_word_add(&out->s.v[i], &out->a.v[i], prod_s[i], prod_a[i], v_s, v_a); |
| } |
| |
| poly3_mod_phiN(out); |
| } |
| |
| #if defined(HRSS_HAVE_VECTOR_UNIT) && !defined(OPENSSL_AARCH64) |
| |
| // poly3_vec_cswap swaps (|a_s|, |a_a|) and (|b_s|, |b_a|) if |swap| is |
| // |0xff..ff|. Otherwise, |swap| must be zero. |
| static inline void poly3_vec_cswap(vec_t a_s[6], vec_t a_a[6], vec_t b_s[6], |
| vec_t b_a[6], const vec_t swap) { |
| for (int i = 0; i < 6; i++) { |
| const vec_t sum_s = swap & (a_s[i] ^ b_s[i]); |
| a_s[i] ^= sum_s; |
| b_s[i] ^= sum_s; |
| |
| const vec_t sum_a = swap & (a_a[i] ^ b_a[i]); |
| a_a[i] ^= sum_a; |
| b_a[i] ^= sum_a; |
| } |
| } |
| |
| // poly3_vec_fmsub subtracts (|ms|, |ma|) × (|b_s|, |b_a|) from (|a_s|, |a_a|). |
| static inline void poly3_vec_fmsub(vec_t a_s[6], vec_t a_a[6], vec_t b_s[6], |
| vec_t b_a[6], const vec_t ms, |
| const vec_t ma) { |
| for (int i = 0; i < 6; i++) { |
| // See the bitslice formula, above. |
| const vec_t s = b_s[i]; |
| const vec_t a = b_a[i]; |
| const vec_t product_a = a & ma; |
| const vec_t product_s = (s ^ ms) & product_a; |
| |
| const vec_t out_s = a_s[i]; |
| const vec_t out_a = a_a[i]; |
| const vec_t t = out_a ^ product_a; |
| a_s[i] = (out_s ^ product_a) & (t ^ product_s); |
| a_a[i] = t | (out_s ^ product_s); |
| } |
| } |
| |
| // poly3_invert_vec sets |*out| to |in|^-1, i.e. such that |out|×|in| == 1 mod |
| // Φ(N). |
| static void poly3_invert_vec(struct poly3 *out, const struct poly3 *in) { |
| // This algorithm is taken from section 7.1 of [SAFEGCD]. |
| const vec_t kZero = {0}; |
| const vec_t kOne = {1}; |
| static const uint8_t kBottomSixtyOne[sizeof(vec_t)] = { |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x1f}; |
| |
| vec_t v_s[6], v_a[6], r_s[6], r_a[6], f_s[6], f_a[6], g_s[6], g_a[6]; |
| // v = 0 |
| memset(&v_s, 0, sizeof(v_s)); |
| memset(&v_a, 0, sizeof(v_a)); |
| // r = 1 |
| memset(&r_s, 0, sizeof(r_s)); |
| memset(&r_a, 0, sizeof(r_a)); |
| r_a[0] = kOne; |
| // f = all ones. |
| memset(f_s, 0, sizeof(f_s)); |
| memset(f_a, 0xff, 5 * sizeof(vec_t)); |
| memcpy(&f_a[5], kBottomSixtyOne, sizeof(kBottomSixtyOne)); |
| // g is the reversal of |in|. |
| struct poly3 in_reversed; |
| poly3_reverse_700(&in_reversed, in); |
| g_s[5] = kZero; |
| memcpy(&g_s, &in_reversed.s.v, WORDS_PER_POLY * sizeof(crypto_word_t)); |
| g_a[5] = kZero; |
| memcpy(&g_a, &in_reversed.a.v, WORDS_PER_POLY * sizeof(crypto_word_t)); |
| |
| int delta = 1; |
| |
| for (size_t i = 0; i < (2*(N-1)) - 1; i++) { |
| poly3_vec_lshift1(v_s, v_a); |
| |
| const crypto_word_t delta_sign_bit = (delta >> (sizeof(delta) * 8 - 1)) & 1; |
| const crypto_word_t delta_is_non_negative = delta_sign_bit - 1; |
| const crypto_word_t delta_is_non_zero = ~constant_time_is_zero_w(delta); |
| const vec_t g_has_constant_term = vec_broadcast_bit(g_a[0]); |
| const vec_t mask_w = |
| {delta_is_non_negative & delta_is_non_zero}; |
| const vec_t mask = vec_broadcast_bit(mask_w) & g_has_constant_term; |
| |
| const vec_t c_a = vec_broadcast_bit(f_a[0] & g_a[0]); |
| const vec_t c_s = vec_broadcast_bit((f_s[0] ^ g_s[0]) & c_a); |
| |
| delta = constant_time_select_int(lsb_to_all(mask[0]), -delta, delta); |
| delta++; |
| |
| poly3_vec_cswap(f_s, f_a, g_s, g_a, mask); |
| poly3_vec_fmsub(g_s, g_a, f_s, f_a, c_s, c_a); |
| poly3_vec_rshift1(g_s, g_a); |
| |
| poly3_vec_cswap(v_s, v_a, r_s, r_a, mask); |
| poly3_vec_fmsub(r_s, r_a, v_s, v_a, c_s, c_a); |
| } |
| |
| assert(delta == 0); |
| memcpy(out->s.v, v_s, WORDS_PER_POLY * sizeof(crypto_word_t)); |
| memcpy(out->a.v, v_a, WORDS_PER_POLY * sizeof(crypto_word_t)); |
| poly3_mul_const(out, vec_get_word(f_s[0], 0), vec_get_word(f_a[0], 0)); |
| poly3_reverse_700(out, out); |
| } |
| |
| #endif // HRSS_HAVE_VECTOR_UNIT |
| |
| // HRSS_poly3_invert sets |*out| to |in|^-1, i.e. such that |out|×|in| == 1 mod |
| // Φ(N). |
| void HRSS_poly3_invert(struct poly3 *out, const struct poly3 *in) { |
| // The vector version of this function seems slightly slower on AArch64, but |
| // is useful on ARMv7 and x86-64. |
| #if defined(HRSS_HAVE_VECTOR_UNIT) && !defined(OPENSSL_AARCH64) |
| if (vec_capable()) { |
| poly3_invert_vec(out, in); |
| return; |
| } |
| #endif |
| |
| // This algorithm is taken from section 7.1 of [SAFEGCD]. |
| struct poly3 v, r, f, g; |
| // v = 0 |
| poly3_zero(&v); |
| // r = 1 |
| poly3_zero(&r); |
| r.a.v[0] = 1; |
| // f = all ones. |
| OPENSSL_memset(&f.s, 0, sizeof(struct poly2)); |
| OPENSSL_memset(&f.a, 0xff, sizeof(struct poly2)); |
| f.a.v[WORDS_PER_POLY - 1] >>= BITS_PER_WORD - BITS_IN_LAST_WORD; |
| // g is the reversal of |in|. |
| poly3_reverse_700(&g, in); |
| int delta = 1; |
| |
| for (size_t i = 0; i < (2*(N-1)) - 1; i++) { |
| poly3_lshift1(&v); |
| |
| const crypto_word_t delta_sign_bit = (delta >> (sizeof(delta) * 8 - 1)) & 1; |
| const crypto_word_t delta_is_non_negative = delta_sign_bit - 1; |
| const crypto_word_t delta_is_non_zero = ~constant_time_is_zero_w(delta); |
| const crypto_word_t g_has_constant_term = lsb_to_all(g.a.v[0]); |
| const crypto_word_t mask = |
| g_has_constant_term & delta_is_non_negative & delta_is_non_zero; |
| |
| crypto_word_t c_s, c_a; |
| poly3_word_mul(&c_s, &c_a, f.s.v[0], f.a.v[0], g.s.v[0], g.a.v[0]); |
| c_s = lsb_to_all(c_s); |
| c_a = lsb_to_all(c_a); |
| |
| delta = constant_time_select_int(mask, -delta, delta); |
| delta++; |
| |
| poly3_cswap(&f, &g, mask); |
| poly3_fmsub(&g, &f, c_s, c_a); |
| poly3_rshift1(&g); |
| |
| poly3_cswap(&v, &r, mask); |
| poly3_fmsub(&r, &v, c_s, c_a); |
| } |
| |
| assert(delta == 0); |
| poly3_mul_const(&v, f.s.v[0], f.a.v[0]); |
| poly3_reverse_700(out, &v); |
| } |
| |
| // Polynomials in Q. |
| |
| // Coefficients are reduced mod Q. (Q is clearly not prime, therefore the |
| // coefficients do not form a field.) |
| #define Q 8192 |
| |
| // VECS_PER_POLY is the number of 128-bit vectors needed to represent a |
| // polynomial. |
| #define COEFFICIENTS_PER_VEC (sizeof(vec_t) / sizeof(uint16_t)) |
| #define VECS_PER_POLY ((N + COEFFICIENTS_PER_VEC - 1) / COEFFICIENTS_PER_VEC) |
| |
| // poly represents a polynomial with coefficients mod Q. Note that, while Q is a |
| // power of two, this does not operate in GF(Q). That would be a binary field |
| // but this is simply mod Q. Thus the coefficients are not a field. |
| // |
| // Coefficients are ordered little-endian, thus the coefficient of x^0 is the |
| // first element of the array. |
| struct poly { |
| #if defined(HRSS_HAVE_VECTOR_UNIT) |
| union { |
| // N + 3 = 704, which is a multiple of 64 and thus aligns things, esp for |
| // the vector code. |
| uint16_t v[N + 3]; |
| vec_t vectors[VECS_PER_POLY]; |
| }; |
| #else |
| // Even if !HRSS_HAVE_VECTOR_UNIT, external assembly may be called that |
| // requires alignment. |
| alignas(16) uint16_t v[N + 3]; |
| #endif |
| }; |
| |
| OPENSSL_UNUSED static void poly_print(const struct poly *p) { |
| printf("["); |
| for (unsigned i = 0; i < N; i++) { |
| if (i) { |
| printf(" "); |
| } |
| printf("%d", p->v[i]); |
| } |
| printf("]\n"); |
| } |
| |
| #if defined(HRSS_HAVE_VECTOR_UNIT) |
| |
| // poly_mul_vec_aux is a recursive function that multiplies |n| words from |a| |
| // and |b| and writes 2×|n| words to |out|. Each call uses 2*ceil(n/2) elements |
| // of |scratch| and the function recurses, except if |n| < 3, when |scratch| |
| // isn't used and the recursion stops. If |n| == |VECS_PER_POLY| then |scratch| |
| // needs 172 elements. |
| static void poly_mul_vec_aux(vec_t *restrict out, vec_t *restrict scratch, |
| const vec_t *restrict a, const vec_t *restrict b, |
| const size_t n) { |
| // In [HRSS], the technique they used for polynomial multiplication is |
| // described: they start with Toom-4 at the top level and then two layers of |
| // Karatsuba. Karatsuba is a specific instance of the general Toom–Cook |
| // decomposition, which splits an input n-ways and produces 2n-1 |
| // multiplications of those parts. So, starting with 704 coefficients (rounded |
| // up from 701 to have more factors of two), Toom-4 gives seven |
| // multiplications of degree-174 polynomials. Each round of Karatsuba (which |
| // is Toom-2) increases the number of multiplications by a factor of three |
| // while halving the size of the values being multiplied. So two rounds gives |
| // 63 multiplications of degree-44 polynomials. Then they (I think) form |
| // vectors by gathering all 63 coefficients of each power together, for each |
| // input, and doing more rounds of Karatsuba on the vectors until they bottom- |
| // out somewhere with schoolbook multiplication. |
| // |
| // I tried something like that for NEON. NEON vectors are 128 bits so hold |
| // eight coefficients. I wrote a function that did Karatsuba on eight |
| // multiplications at the same time, using such vectors, and a Go script that |
| // decomposed from degree-704, with Karatsuba in non-transposed form, until it |
| // reached multiplications of degree-44. It batched up those 81 |
| // multiplications into lots of eight with a single one left over (which was |
| // handled directly). |
| // |
| // It worked, but it was significantly slower than the dumb algorithm used |
| // below. Potentially that was because I misunderstood how [HRSS] did it, or |
| // because Clang is bad at generating good code from NEON intrinsics on ARMv7. |
| // (Which is true: the code generated by Clang for the below is pretty crap.) |
| // |
| // This algorithm is much simpler. It just does Karatsuba decomposition all |
| // the way down and never transposes. When it gets down to degree-16 or |
| // degree-24 values, they are multiplied using schoolbook multiplication and |
| // vector intrinsics. The vector operations form each of the eight phase- |
| // shifts of one of the inputs, point-wise multiply, and then add into the |
| // result at the correct place. This means that 33% (degree-16) or 25% |
| // (degree-24) of the multiplies and adds are wasted, but it does ok. |
| if (n == 2) { |
| vec_t result[4]; |
| vec_t vec_a[3]; |
| static const vec_t kZero = {0}; |
| vec_a[0] = a[0]; |
| vec_a[1] = a[1]; |
| vec_a[2] = kZero; |
| |
| result[0] = vec_mul(vec_a[0], vec_get_word(b[0], 0)); |
| result[1] = vec_mul(vec_a[1], vec_get_word(b[0], 0)); |
| |
| result[1] = vec_fma(result[1], vec_a[0], vec_get_word(b[1], 0)); |
| result[2] = vec_mul(vec_a[1], vec_get_word(b[1], 0)); |
| result[3] = kZero; |
| |
| vec3_rshift_word(vec_a); |
| |
| #define BLOCK(x, y) \ |
| do { \ |
| result[x + 0] = \ |
| vec_fma(result[x + 0], vec_a[0], vec_get_word(b[y / 8], y % 8)); \ |
| result[x + 1] = \ |
| vec_fma(result[x + 1], vec_a[1], vec_get_word(b[y / 8], y % 8)); \ |
| result[x + 2] = \ |
| vec_fma(result[x + 2], vec_a[2], vec_get_word(b[y / 8], y % 8)); \ |
| } while (0) |
| |
| BLOCK(0, 1); |
| BLOCK(1, 9); |
| |
| vec3_rshift_word(vec_a); |
| |
| BLOCK(0, 2); |
| BLOCK(1, 10); |
| |
| vec3_rshift_word(vec_a); |
| |
| BLOCK(0, 3); |
| BLOCK(1, 11); |
| |
| vec3_rshift_word(vec_a); |
| |
| BLOCK(0, 4); |
| BLOCK(1, 12); |
| |
| vec3_rshift_word(vec_a); |
| |
| BLOCK(0, 5); |
| BLOCK(1, 13); |
| |
| vec3_rshift_word(vec_a); |
| |
| BLOCK(0, 6); |
| BLOCK(1, 14); |
| |
| vec3_rshift_word(vec_a); |
| |
| BLOCK(0, 7); |
| BLOCK(1, 15); |
| |
| #undef BLOCK |
| |
| memcpy(out, result, sizeof(result)); |
| return; |
| } |
| |
| if (n == 3) { |
| vec_t result[6]; |
| vec_t vec_a[4]; |
| static const vec_t kZero = {0}; |
| vec_a[0] = a[0]; |
| vec_a[1] = a[1]; |
| vec_a[2] = a[2]; |
| vec_a[3] = kZero; |
| |
| result[0] = vec_mul(a[0], vec_get_word(b[0], 0)); |
| result[1] = vec_mul(a[1], vec_get_word(b[0], 0)); |
| result[2] = vec_mul(a[2], vec_get_word(b[0], 0)); |
| |
| #define BLOCK_PRE(x, y) \ |
| do { \ |
| result[x + 0] = \ |
| vec_fma(result[x + 0], vec_a[0], vec_get_word(b[y / 8], y % 8)); \ |
| result[x + 1] = \ |
| vec_fma(result[x + 1], vec_a[1], vec_get_word(b[y / 8], y % 8)); \ |
| result[x + 2] = vec_mul(vec_a[2], vec_get_word(b[y / 8], y % 8)); \ |
| } while (0) |
| |
| BLOCK_PRE(1, 8); |
| BLOCK_PRE(2, 16); |
| |
| result[5] = kZero; |
| |
| vec4_rshift_word(vec_a); |
| |
| #define BLOCK(x, y) \ |
| do { \ |
| result[x + 0] = \ |
| vec_fma(result[x + 0], vec_a[0], vec_get_word(b[y / 8], y % 8)); \ |
| result[x + 1] = \ |
| vec_fma(result[x + 1], vec_a[1], vec_get_word(b[y / 8], y % 8)); \ |
| result[x + 2] = \ |
| vec_fma(result[x + 2], vec_a[2], vec_get_word(b[y / 8], y % 8)); \ |
| result[x + 3] = \ |
| vec_fma(result[x + 3], vec_a[3], vec_get_word(b[y / 8], y % 8)); \ |
| } while (0) |
| |
| BLOCK(0, 1); |
| BLOCK(1, 9); |
| BLOCK(2, 17); |
| |
| vec4_rshift_word(vec_a); |
| |
| BLOCK(0, 2); |
| BLOCK(1, 10); |
| BLOCK(2, 18); |
| |
| vec4_rshift_word(vec_a); |
| |
| BLOCK(0, 3); |
| BLOCK(1, 11); |
| BLOCK(2, 19); |
| |
| vec4_rshift_word(vec_a); |
| |
| BLOCK(0, 4); |
| BLOCK(1, 12); |
| BLOCK(2, 20); |
| |
| vec4_rshift_word(vec_a); |
| |
| BLOCK(0, 5); |
| BLOCK(1, 13); |
| BLOCK(2, 21); |
| |
| vec4_rshift_word(vec_a); |
| |
| BLOCK(0, 6); |
| BLOCK(1, 14); |
| BLOCK(2, 22); |
| |
| vec4_rshift_word(vec_a); |
| |
| BLOCK(0, 7); |
| BLOCK(1, 15); |
| BLOCK(2, 23); |
| |
| #undef BLOCK |
| #undef BLOCK_PRE |
| |
| memcpy(out, result, sizeof(result)); |
| |
| return; |
| } |
| |
| // Karatsuba multiplication. |
| // https://en.wikipedia.org/wiki/Karatsuba_algorithm |
| |
| // When |n| is odd, the two "halves" will have different lengths. The first is |
| // always the smaller. |
| const size_t low_len = n / 2; |
| const size_t high_len = n - low_len; |
| const vec_t *a_high = &a[low_len]; |
| const vec_t *b_high = &b[low_len]; |
| |
| // Store a_1 + a_0 in the first half of |out| and b_1 + b_0 in the second |
| // half. |
| for (size_t i = 0; i < low_len; i++) { |
| out[i] = vec_add(a_high[i], a[i]); |
| out[high_len + i] = vec_add(b_high[i], b[i]); |
| } |
| if (high_len != low_len) { |
| out[low_len] = a_high[low_len]; |
| out[high_len + low_len] = b_high[low_len]; |
| } |
| |
| vec_t *const child_scratch = &scratch[2 * high_len]; |
| // Calculate (a_1 + a_0) × (b_1 + b_0) and write to scratch buffer. |
| poly_mul_vec_aux(scratch, child_scratch, out, &out[high_len], high_len); |
| // Calculate a_1 × b_1. |
| poly_mul_vec_aux(&out[low_len * 2], child_scratch, a_high, b_high, high_len); |
| // Calculate a_0 × b_0. |
| poly_mul_vec_aux(out, child_scratch, a, b, low_len); |
| |
| // Subtract those last two products from the first. |
| for (size_t i = 0; i < low_len * 2; i++) { |
| scratch[i] = vec_sub(scratch[i], vec_add(out[i], out[low_len * 2 + i])); |
| } |
| if (low_len != high_len) { |
| scratch[low_len * 2] = vec_sub(scratch[low_len * 2], out[low_len * 4]); |
| scratch[low_len * 2 + 1] = |
| vec_sub(scratch[low_len * 2 + 1], out[low_len * 4 + 1]); |
| } |
| |
| // Add the middle product into the output. |
| for (size_t i = 0; i < high_len * 2; i++) { |
| out[low_len + i] = vec_add(out[low_len + i], scratch[i]); |
| } |
| } |
| |
| // poly_mul_vec sets |*out| to |x|×|y| mod (𝑥^n - 1). |
| static void poly_mul_vec(struct poly *out, const struct poly *x, |
| const struct poly *y) { |
| OPENSSL_memset((uint16_t *)&x->v[N], 0, 3 * sizeof(uint16_t)); |
| OPENSSL_memset((uint16_t *)&y->v[N], 0, 3 * sizeof(uint16_t)); |
| |
| OPENSSL_STATIC_ASSERT(sizeof(out->v) == sizeof(vec_t) * VECS_PER_POLY, |
| "struct poly is the wrong size"); |
| OPENSSL_STATIC_ASSERT(alignof(struct poly) == alignof(vec_t), |
| "struct poly has incorrect alignment"); |
| |
| vec_t prod[VECS_PER_POLY * 2]; |
| vec_t scratch[172]; |
| poly_mul_vec_aux(prod, scratch, x->vectors, y->vectors, VECS_PER_POLY); |
| |
| // |prod| needs to be reduced mod (𝑥^n - 1), which just involves adding the |
| // upper-half to the lower-half. However, N is 701, which isn't a multiple of |
| // the vector size, so the upper-half vectors all have to be shifted before |
| // being added to the lower-half. |
| vec_t *out_vecs = (vec_t *)out->v; |
| |
| for (size_t i = 0; i < VECS_PER_POLY; i++) { |
| const vec_t prev = prod[VECS_PER_POLY - 1 + i]; |
| const vec_t this = prod[VECS_PER_POLY + i]; |
| out_vecs[i] = vec_add(prod[i], vec_merge_3_5(prev, this)); |
| } |
| |
| OPENSSL_memset(&out->v[N], 0, 3 * sizeof(uint16_t)); |
| } |
| |
| #endif // HRSS_HAVE_VECTOR_UNIT |
| |
| // poly_mul_novec_aux writes the product of |a| and |b| to |out|, using |
| // |scratch| as scratch space. It'll use Karatsuba if the inputs are large |
| // enough to warrant it. Each call uses 2*ceil(n/2) elements of |scratch| and |
| // the function recurses, except if |n| < 64, when |scratch| isn't used and the |
| // recursion stops. If |n| == |N| then |scratch| needs 1318 elements. |
| static void poly_mul_novec_aux(uint16_t *out, uint16_t *scratch, |
| const uint16_t *a, const uint16_t *b, size_t n) { |
| static const size_t kSchoolbookLimit = 64; |
| if (n < kSchoolbookLimit) { |
| OPENSSL_memset(out, 0, sizeof(uint16_t) * n * 2); |
| for (size_t i = 0; i < n; i++) { |
| for (size_t j = 0; j < n; j++) { |
| out[i + j] += (unsigned) a[i] * b[j]; |
| } |
| } |
| |
| return; |
| } |
| |
| // Karatsuba multiplication. |
| // https://en.wikipedia.org/wiki/Karatsuba_algorithm |
| |
| // When |n| is odd, the two "halves" will have different lengths. The |
| // first is always the smaller. |
| const size_t low_len = n / 2; |
| const size_t high_len = n - low_len; |
| const uint16_t *const a_high = &a[low_len]; |
| const uint16_t *const b_high = &b[low_len]; |
| |
| for (size_t i = 0; i < low_len; i++) { |
| out[i] = a_high[i] + a[i]; |
| out[high_len + i] = b_high[i] + b[i]; |
| } |
| if (high_len != low_len) { |
| out[low_len] = a_high[low_len]; |
| out[high_len + low_len] = b_high[low_len]; |
| } |
| |
| uint16_t *const child_scratch = &scratch[2 * high_len]; |
| poly_mul_novec_aux(scratch, child_scratch, out, &out[high_len], high_len); |
| poly_mul_novec_aux(&out[low_len * 2], child_scratch, a_high, b_high, |
| high_len); |
| poly_mul_novec_aux(out, child_scratch, a, b, low_len); |
| |
| for (size_t i = 0; i < low_len * 2; i++) { |
| scratch[i] -= out[i] + out[low_len * 2 + i]; |
| } |
| if (low_len != high_len) { |
| scratch[low_len * 2] -= out[low_len * 4]; |
| assert(out[low_len * 4 + 1] == 0); |
| } |
| |
| for (size_t i = 0; i < high_len * 2; i++) { |
| out[low_len + i] += scratch[i]; |
| } |
| } |
| |
| // poly_mul_novec sets |*out| to |x|×|y| mod (𝑥^n - 1). |
| static void poly_mul_novec(struct poly *out, const struct poly *x, |
| const struct poly *y) { |
| uint16_t prod[2 * N]; |
| uint16_t scratch[1318]; |
| poly_mul_novec_aux(prod, scratch, x->v, y->v, N); |
| |
| for (size_t i = 0; i < N; i++) { |
| out->v[i] = prod[i] + prod[i + N]; |
| } |
| OPENSSL_memset(&out->v[N], 0, 3 * sizeof(uint16_t)); |
| } |
| |
| static void poly_mul(struct poly *r, const struct poly *a, |
| const struct poly *b) { |
| #if defined(POLY_RQ_MUL_ASM) |
| const int has_avx2 = (OPENSSL_ia32cap_P[2] & (1 << 5)) != 0; |
| if (has_avx2) { |
| poly_Rq_mul(r->v, a->v, b->v); |
| return; |
| } |
| #endif |
| |
| #if defined(HRSS_HAVE_VECTOR_UNIT) |
| if (vec_capable()) { |
| poly_mul_vec(r, a, b); |
| return; |
| } |
| #endif |
| |
| // Fallback, non-vector case. |
| poly_mul_novec(r, a, b); |
| } |
| |
| // poly_mul_x_minus_1 sets |p| to |p|×(𝑥 - 1) mod (𝑥^n - 1). |
| static void poly_mul_x_minus_1(struct poly *p) { |
| // Multiplying by (𝑥 - 1) means negating each coefficient and adding in |
| // the value of the previous one. |
| const uint16_t orig_final_coefficient = p->v[N - 1]; |
| |
| for (size_t i = N - 1; i > 0; i--) { |
| p->v[i] = p->v[i - 1] - p->v[i]; |
| } |
| p->v[0] = orig_final_coefficient - p->v[0]; |
| } |
| |
| // poly_mod_phiN sets |p| to |p| mod Φ(N). |
| static void poly_mod_phiN(struct poly *p) { |
| const uint16_t coeff700 = p->v[N - 1]; |
| |
| for (unsigned i = 0; i < N; i++) { |
| p->v[i] -= coeff700; |
| } |
| } |
| |
| // poly_clamp reduces each coefficient mod Q. |
| static void poly_clamp(struct poly *p) { |
| for (unsigned i = 0; i < N; i++) { |
| p->v[i] &= Q - 1; |
| } |
| } |
| |
| |
| // Conversion functions |
| // -------------------- |
| |
| // poly2_from_poly sets |*out| to |in| mod 2. |
| static void poly2_from_poly(struct poly2 *out, const struct poly *in) { |
| crypto_word_t *words = out->v; |
| unsigned shift = 0; |
| crypto_word_t word = 0; |
| |
| for (unsigned i = 0; i < N; i++) { |
| word >>= 1; |
| word |= (crypto_word_t)(in->v[i] & 1) << (BITS_PER_WORD - 1); |
| shift++; |
| |
| if (shift == BITS_PER_WORD) { |
| *words = word; |
| words++; |
| word = 0; |
| shift = 0; |
| } |
| } |
| |
| word >>= BITS_PER_WORD - shift; |
| *words = word; |
| } |
| |
| // mod3 treats |a| as a signed number and returns |a| mod 3. |
| static uint16_t mod3(int16_t a) { |
| const int16_t q = ((int32_t)a * 21845) >> 16; |
| int16_t ret = a - 3 * q; |
| // At this point, |ret| is in {0, 1, 2, 3} and that needs to be mapped to {0, |
| // 1, 2, 0}. |
| return ret & ((ret & (ret >> 1)) - 1); |
| } |
| |
| // poly3_from_poly sets |*out| to |in|. |
| static void poly3_from_poly(struct poly3 *out, const struct poly *in) { |
| crypto_word_t *words_s = out->s.v; |
| crypto_word_t *words_a = out->a.v; |
| crypto_word_t s = 0; |
| crypto_word_t a = 0; |
| unsigned shift = 0; |
| |
| for (unsigned i = 0; i < N; i++) { |
| // This duplicates the 13th bit upwards to the top of the uint16, |
| // essentially treating it as a sign bit and converting into a signed int16. |
| // The signed value is reduced mod 3, yielding {0, 1, 2}. |
| const uint16_t v = mod3((int16_t)(in->v[i] << 3) >> 3); |
| s >>= 1; |
| const crypto_word_t s_bit = (crypto_word_t)(v & 2) << (BITS_PER_WORD - 2); |
| s |= s_bit; |
| a >>= 1; |
| a |= s_bit | (crypto_word_t)(v & 1) << (BITS_PER_WORD - 1); |
| shift++; |
| |
| if (shift == BITS_PER_WORD) { |
| *words_s = s; |
| words_s++; |
| *words_a = a; |
| words_a++; |
| s = a = 0; |
| shift = 0; |
| } |
| } |
| |
| s >>= BITS_PER_WORD - shift; |
| a >>= BITS_PER_WORD - shift; |
| *words_s = s; |
| *words_a = a; |
| } |
| |
| // poly3_from_poly_checked sets |*out| to |in|, which has coefficients in {0, 1, |
| // Q-1}. It returns a mask indicating whether all coefficients were found to be |
| // in that set. |
| static crypto_word_t poly3_from_poly_checked(struct poly3 *out, |
| const struct poly *in) { |
| crypto_word_t *words_s = out->s.v; |
| crypto_word_t *words_a = out->a.v; |
| crypto_word_t s = 0; |
| crypto_word_t a = 0; |
| unsigned shift = 0; |
| crypto_word_t ok = CONSTTIME_TRUE_W; |
| |
| for (unsigned i = 0; i < N; i++) { |
| const uint16_t v = in->v[i]; |
| // Maps {0, 1, Q-1} to {0, 1, 2}. |
| uint16_t mod3 = v & 3; |
| mod3 ^= mod3 >> 1; |
| const uint16_t expected = (uint16_t)((~((mod3 >> 1) - 1)) | mod3) % Q; |
| ok &= constant_time_eq_w(v, expected); |
| |
| s >>= 1; |
| const crypto_word_t s_bit = (crypto_word_t)(mod3 & 2) |
| << (BITS_PER_WORD - 2); |
| s |= s_bit; |
| a >>= 1; |
| a |= s_bit | (crypto_word_t)(mod3 & 1) << (BITS_PER_WORD - 1); |
| shift++; |
| |
| if (shift == BITS_PER_WORD) { |
| *words_s = s; |
| words_s++; |
| *words_a = a; |
| words_a++; |
| s = a = 0; |
| shift = 0; |
| } |
| } |
| |
| s >>= BITS_PER_WORD - shift; |
| a >>= BITS_PER_WORD - shift; |
| *words_s = s; |
| *words_a = a; |
| |
| return ok; |
| } |
| |
| static void poly_from_poly2(struct poly *out, const struct poly2 *in) { |
| const crypto_word_t *words = in->v; |
| unsigned shift = 0; |
| crypto_word_t word = *words; |
| |
| for (unsigned i = 0; i < N; i++) { |
| out->v[i] = word & 1; |
| word >>= 1; |
| shift++; |
| |
| if (shift == BITS_PER_WORD) { |
| words++; |
| word = *words; |
| shift = 0; |
| } |
| } |
| } |
| |
| static void poly_from_poly3(struct poly *out, const struct poly3 *in) { |
| const crypto_word_t *words_s = in->s.v; |
| const crypto_word_t *words_a = in->a.v; |
| crypto_word_t word_s = ~(*words_s); |
| crypto_word_t word_a = *words_a; |
| unsigned shift = 0; |
| |
| for (unsigned i = 0; i < N; i++) { |
| out->v[i] = (uint16_t)(word_s & 1) - 1; |
| out->v[i] |= word_a & 1; |
| word_s >>= 1; |
| word_a >>= 1; |
| shift++; |
| |
| if (shift == BITS_PER_WORD) { |
| words_s++; |
| words_a++; |
| word_s = ~(*words_s); |
| word_a = *words_a; |
| shift = 0; |
| } |
| } |
| } |
| |
| // Polynomial inversion |
| // -------------------- |
| |
| // poly_invert_mod2 sets |*out| to |in^-1| (i.e. such that |*out|×|in| = 1 mod |
| // Φ(N)), all mod 2. This isn't useful in itself, but is part of doing inversion |
| // mod Q. |
| static void poly_invert_mod2(struct poly *out, const struct poly *in) { |
| // This algorithm is taken from section 7.1 of [SAFEGCD]. |
| struct poly2 v, r, f, g; |
| |
| // v = 0 |
| poly2_zero(&v); |
| // r = 1 |
| poly2_zero(&r); |
| r.v[0] = 1; |
| // f = all ones. |
| OPENSSL_memset(&f, 0xff, sizeof(struct poly2)); |
| f.v[WORDS_PER_POLY - 1] >>= BITS_PER_WORD - BITS_IN_LAST_WORD; |
| // g is the reversal of |in|. |
| poly2_from_poly(&g, in); |
| poly2_mod_phiN(&g); |
| poly2_reverse_700(&g, &g); |
| int delta = 1; |
| |
| for (size_t i = 0; i < (2*(N-1)) - 1; i++) { |
| poly2_lshift1(&v); |
| |
| const crypto_word_t delta_sign_bit = (delta >> (sizeof(delta) * 8 - 1)) & 1; |
| const crypto_word_t delta_is_non_negative = delta_sign_bit - 1; |
| const crypto_word_t delta_is_non_zero = ~constant_time_is_zero_w(delta); |
| const crypto_word_t g_has_constant_term = lsb_to_all(g.v[0]); |
| const crypto_word_t mask = |
| g_has_constant_term & delta_is_non_negative & delta_is_non_zero; |
| |
| const crypto_word_t c = lsb_to_all(f.v[0] & g.v[0]); |
| |
| delta = constant_time_select_int(mask, -delta, delta); |
| delta++; |
| |
| poly2_cswap(&f, &g, mask); |
| poly2_fmadd(&g, &f, c); |
| poly2_rshift1(&g); |
| |
| poly2_cswap(&v, &r, mask); |
| poly2_fmadd(&r, &v, c); |
| } |
| |
| assert(delta == 0); |
| assert(f.v[0] & 1); |
| poly2_reverse_700(&v, &v); |
| poly_from_poly2(out, &v); |
| } |
| |
| // poly_invert sets |*out| to |in^-1| (i.e. such that |*out|×|in| = 1 mod Φ(N)). |
| static void poly_invert(struct poly *out, const struct poly *in) { |
| // Inversion mod Q, which is done based on the result of inverting mod |
| // 2. See [NTRUTN14] paper, bottom of page two. |
| struct poly a, *b, tmp; |
| |
| // a = -in. |
| for (unsigned i = 0; i < N; i++) { |
| a.v[i] = -in->v[i]; |
| } |
| |
| // b = in^-1 mod 2. |
| b = out; |
| poly_invert_mod2(b, in); |
| |
| // We are working mod Q=2**13 and we need to iterate ceil(log_2(13)) |
| // times, which is four. |
| for (unsigned i = 0; i < 4; i++) { |
| poly_mul(&tmp, &a, b); |
| tmp.v[0] += 2; |
| poly_mul(b, b, &tmp); |
| } |
| } |
| |
| // Marshal and unmarshal functions for various basic types. |
| // -------------------------------------------------------- |
| |
| #define POLY_BYTES 1138 |
| |
| // poly_marshal serialises all but the final coefficient of |in| to |out|. |
| static void poly_marshal(uint8_t out[POLY_BYTES], const struct poly *in) { |
| const uint16_t *p = in->v; |
| |
| for (size_t i = 0; i < N / 8; i++) { |
| out[0] = p[0]; |
| out[1] = (0x1f & (p[0] >> 8)) | ((p[1] & 0x07) << 5); |
| out[2] = p[1] >> 3; |
| out[3] = (3 & (p[1] >> 11)) | ((p[2] & 0x3f) << 2); |
| out[4] = (0x7f & (p[2] >> 6)) | ((p[3] & 0x01) << 7); |
| out[5] = p[3] >> 1; |
| out[6] = (0xf & (p[3] >> 9)) | ((p[4] & 0x0f) << 4); |
| out[7] = p[4] >> 4; |
| out[8] = (1 & (p[4] >> 12)) | ((p[5] & 0x7f) << 1); |
| out[9] = (0x3f & (p[5] >> 7)) | ((p[6] & 0x03) << 6); |
| out[10] = p[6] >> 2; |
| out[11] = (7 & (p[6] >> 10)) | ((p[7] & 0x1f) << 3); |
| out[12] = p[7] >> 5; |
| |
| p += 8; |
| out += 13; |
| } |
| |
| // There are four remaining values. |
| out[0] = p[0]; |
| out[1] = (0x1f & (p[0] >> 8)) | ((p[1] & 0x07) << 5); |
| out[2] = p[1] >> 3; |
| out[3] = (3 & (p[1] >> 11)) | ((p[2] & 0x3f) << 2); |
| out[4] = (0x7f & (p[2] >> 6)) | ((p[3] & 0x01) << 7); |
| out[5] = p[3] >> 1; |
| out[6] = 0xf & (p[3] >> 9); |
| } |
| |
| // poly_unmarshal parses the output of |poly_marshal| and sets |out| such that |
| // all but the final coefficients match, and the final coefficient is calculated |
| // such that evaluating |out| at one results in zero. It returns one on success |
| // or zero if |in| is an invalid encoding. |
| static int poly_unmarshal(struct poly *out, const uint8_t in[POLY_BYTES]) { |
| uint16_t *p = out->v; |
| |
| for (size_t i = 0; i < N / 8; i++) { |
| p[0] = (uint16_t)(in[0]) | (uint16_t)(in[1] & 0x1f) << 8; |
| p[1] = (uint16_t)(in[1] >> 5) | (uint16_t)(in[2]) << 3 | |
| (uint16_t)(in[3] & 3) << 11; |
| p[2] = (uint16_t)(in[3] >> 2) | (uint16_t)(in[4] & 0x7f) << 6; |
| p[3] = (uint16_t)(in[4] >> 7) | (uint16_t)(in[5]) << 1 | |
| (uint16_t)(in[6] & 0xf) << 9; |
| p[4] = (uint16_t)(in[6] >> 4) | (uint16_t)(in[7]) << 4 | |
| (uint16_t)(in[8] & 1) << 12; |
| p[5] = (uint16_t)(in[8] >> 1) | (uint16_t)(in[9] & 0x3f) << 7; |
| p[6] = (uint16_t)(in[9] >> 6) | (uint16_t)(in[10]) << 2 | |
| (uint16_t)(in[11] & 7) << 10; |
| p[7] = (uint16_t)(in[11] >> 3) | (uint16_t)(in[12]) << 5; |
| |
| p += 8; |
| in += 13; |
| } |
| |
| // There are four coefficients remaining. |
| p[0] = (uint16_t)(in[0]) | (uint16_t)(in[1] & 0x1f) << 8; |
| p[1] = (uint16_t)(in[1] >> 5) | (uint16_t)(in[2]) << 3 | |
| (uint16_t)(in[3] & 3) << 11; |
| p[2] = (uint16_t)(in[3] >> 2) | (uint16_t)(in[4] & 0x7f) << 6; |
| p[3] = (uint16_t)(in[4] >> 7) | (uint16_t)(in[5]) << 1 | |
| (uint16_t)(in[6] & 0xf) << 9; |
| |
| for (unsigned i = 0; i < N - 1; i++) { |
| out->v[i] = (int16_t)(out->v[i] << 3) >> 3; |
| } |
| |
| // There are four unused bits in the last byte. We require them to be zero. |
| if ((in[6] & 0xf0) != 0) { |
| return 0; |
| } |
| |
| // Set the final coefficient as specifed in [HRSSNIST] 1.9.2 step 6. |
| uint32_t sum = 0; |
| for (size_t i = 0; i < N - 1; i++) { |
| sum += out->v[i]; |
| } |
| |
| out->v[N - 1] = (uint16_t)(0u - sum); |
| |
| return 1; |
| } |
| |
| // mod3_from_modQ maps {0, 1, Q-1, 65535} -> {0, 1, 2, 2}. Note that |v| may |
| // have an invalid value when processing attacker-controlled inputs. |
| static uint16_t mod3_from_modQ(uint16_t v) { |
| v &= 3; |
| return v ^ (v >> 1); |
| } |
| |
| // poly_marshal_mod3 marshals |in| to |out| where the coefficients of |in| are |
| // all in {0, 1, Q-1, 65535} and |in| is mod Φ(N). (Note that coefficients may |
| // have invalid values when processing attacker-controlled inputs.) |
| static void poly_marshal_mod3(uint8_t out[HRSS_POLY3_BYTES], |
| const struct poly *in) { |
| const uint16_t *coeffs = in->v; |
| |
| // Only 700 coefficients are marshaled because in[700] must be zero. |
| assert(coeffs[N-1] == 0); |
| |
| for (size_t i = 0; i < HRSS_POLY3_BYTES; i++) { |
| const uint16_t coeffs0 = mod3_from_modQ(coeffs[0]); |
| const uint16_t coeffs1 = mod3_from_modQ(coeffs[1]); |
| const uint16_t coeffs2 = mod3_from_modQ(coeffs[2]); |
| const uint16_t coeffs3 = mod3_from_modQ(coeffs[3]); |
| const uint16_t coeffs4 = mod3_from_modQ(coeffs[4]); |
| out[i] = coeffs0 + coeffs1 * 3 + coeffs2 * 9 + coeffs3 * 27 + coeffs4 * 81; |
| coeffs += 5; |
| } |
| } |
| |
| // HRSS-specific functions |
| // ----------------------- |
| |
| // poly_short_sample samples a vector of values in {0xffff (i.e. -1), 0, 1}. |
| // This is the same action as the algorithm in [HRSSNIST] section 1.8.1, but |
| // with HRSS-SXY the sampling algorithm is now a private detail of the |
| // implementation (previously it had to match between two parties). This |
| // function uses that freedom to implement a flatter distribution of values. |
| static void poly_short_sample(struct poly *out, |
| const uint8_t in[HRSS_SAMPLE_BYTES]) { |
| OPENSSL_STATIC_ASSERT(HRSS_SAMPLE_BYTES == N - 1, |
| "HRSS_SAMPLE_BYTES incorrect"); |
| for (size_t i = 0; i < N - 1; i++) { |
| uint16_t v = mod3(in[i]); |
| // Map {0, 1, 2} -> {0, 1, 0xffff} |
| v |= ((v >> 1) ^ 1) - 1; |
| out->v[i] = v; |
| } |
| out->v[N - 1] = 0; |
| } |
| |
| // poly_short_sample_plus performs the T+ sample as defined in [HRSSNIST], |
| // section 1.8.2. |
| static void poly_short_sample_plus(struct poly *out, |
| const uint8_t in[HRSS_SAMPLE_BYTES]) { |
| poly_short_sample(out, in); |
| |
| // sum (and the product in the for loop) will overflow. But that's fine |
| // because |sum| is bound by +/- (N-2), and N < 2^15 so it works out. |
| uint16_t sum = 0; |
| for (unsigned i = 0; i < N - 2; i++) { |
| sum += (unsigned) out->v[i] * out->v[i + 1]; |
| } |
| |
| // If the sum is negative, flip the sign of even-positioned coefficients. (See |
| // page 8 of [HRSS].) |
| sum = ((int16_t) sum) >> 15; |
| const uint16_t scale = sum | (~sum & 1); |
| for (unsigned i = 0; i < N; i += 2) { |
| out->v[i] = (unsigned) out->v[i] * scale; |
| } |
| } |
| |
| // poly_lift computes the function discussed in [HRSS], appendix B. |
| static void poly_lift(struct poly *out, const struct poly *a) { |
| // We wish to calculate a/(𝑥-1) mod Φ(N) over GF(3), where Φ(N) is the |
| // Nth cyclotomic polynomial, i.e. 1 + 𝑥 + … + 𝑥^700 (since N is prime). |
| |
| // 1/(𝑥-1) has a fairly basic structure that we can exploit to speed this up: |
| // |
| // R.<x> = PolynomialRing(GF(3)…) |
| // inv = R.cyclotomic_polynomial(1).inverse_mod(R.cyclotomic_polynomial(n)) |
| // list(inv)[:15] |
| // [1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2] |
| // |
| // This three-element pattern of coefficients repeats for the whole |
| // polynomial. |
| // |
| // Next define the overbar operator such that z̅ = z[0] + |
| // reverse(z[1:]). (Index zero of a polynomial here is the coefficient |
| // of the constant term. So index one is the coefficient of 𝑥 and so |
| // on.) |
| // |
| // A less odd way to define this is to see that z̅ negates the indexes, |
| // so z̅[0] = z[-0], z̅[1] = z[-1] and so on. |
| // |
| // The use of z̅ is that, when working mod (𝑥^701 - 1), vz[0] = <v, |
| // z̅>, vz[1] = <v, 𝑥z̅>, …. (Where <a, b> is the inner product: the sum |
| // of the point-wise products.) Although we calculated the inverse mod |
| // Φ(N), we can work mod (𝑥^N - 1) and reduce mod Φ(N) at the end. |
| // (That's because (𝑥^N - 1) is a multiple of Φ(N).) |
| // |
| // When working mod (𝑥^N - 1), multiplication by 𝑥 is a right-rotation |
| // of the list of coefficients. |
| // |
| // Thus we can consider what the pattern of z̅, 𝑥z̅, 𝑥^2z̅, … looks like: |
| // |
| // def reverse(xs): |
| // suffix = list(xs[1:]) |
| // suffix.reverse() |
| // return [xs[0]] + suffix |
| // |
| // def rotate(xs): |
| // return [xs[-1]] + xs[:-1] |
| // |
| // zoverbar = reverse(list(inv) + [0]) |
| // xzoverbar = rotate(reverse(list(inv) + [0])) |
| // x2zoverbar = rotate(rotate(reverse(list(inv) + [0]))) |
| // |
| // zoverbar[:15] |
| // [1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1] |
| // xzoverbar[:15] |
| // [0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0] |
| // x2zoverbar[:15] |
| // [2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2] |
| // |
| // (For a formula for z̅, see lemma two of appendix B.) |
| // |
| // After the first three elements have been taken care of, all then have |
| // a repeating three-element cycle. The next value (𝑥^3z̅) involves |
| // three rotations of the first pattern, thus the three-element cycle |
| // lines up. However, the discontinuity in the first three elements |
| // obviously moves to a different position. Consider the difference |
| // between 𝑥^3z̅ and z̅: |
| // |
| // [x-y for (x,y) in zip(zoverbar, x3zoverbar)][:15] |
| // [0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] |
| // |
| // This pattern of differences is the same for all elements, although it |
| // obviously moves right with the rotations. |
| // |
| // From this, we reach algorithm eight of appendix B. |
| |
| // Handle the first three elements of the inner products. |
| out->v[0] = a->v[0] + a->v[2]; |
| out->v[1] = a->v[1]; |
| out->v[2] = -a->v[0] + a->v[2]; |
| |
| // s0, s1, s2 are added into out->v[0], out->v[1], and out->v[2], |
| // respectively. We do not compute s1 because it's just -(s0 + s1). |
| uint16_t s0 = 0, s2 = 0; |
| for (size_t i = 3; i < 699; i += 3) { |
| s0 += -a->v[i] + a->v[i + 2]; |
| // s1 += a->v[i] - a->v[i + 1]; |
| s2 += a->v[i + 1] - a->v[i + 2]; |
| } |
| |
| // Handle the fact that the three-element pattern doesn't fill the |
| // polynomial exactly (since 701 isn't a multiple of three). |
| s0 -= a->v[699]; |
| // s1 += a->v[699] - a->v[700]; |
| s2 += a->v[700]; |
| |
| // Note that s0 + s1 + s2 = 0. |
| out->v[0] += s0; |
| out->v[1] -= (s0 + s2); // = s1 |
| out->v[2] += s2; |
| |
| // Calculate the remaining inner products by taking advantage of the |
| // fact that the pattern repeats every three cycles and the pattern of |
| // differences moves with the rotation. |
| for (size_t i = 3; i < N; i++) { |
| out->v[i] = (out->v[i - 3] - (a->v[i - 2] + a->v[i - 1] + a->v[i])); |
| } |
| |
| // Reduce mod Φ(N) by subtracting a multiple of out[700] from every |
| // element and convert to mod Q. (See above about adding twice as |
| // subtraction.) |
| const crypto_word_t v = out->v[700]; |
| for (unsigned i = 0; i < N; i++) { |
| const uint16_t vi_mod3 = mod3(out->v[i] - v); |
| // Map {0, 1, 2} to {0, 1, 0xffff}. |
| out->v[i] = (~((vi_mod3 >> 1) - 1)) | vi_mod3; |
| } |
| |
| poly_mul_x_minus_1(out); |
| } |
| |
| struct public_key { |
| struct poly ph; |
| }; |
| |
| struct private_key { |
| struct poly3 f, f_inverse; |
| struct poly ph_inverse; |
| uint8_t hmac_key[32]; |
| }; |
| |
| // public_key_from_external converts an external public key pointer into an |
| // internal one. Externally the alignment is only specified to be eight bytes |
| // but we need 16-byte alignment. We could annotate the external struct with |
| // that alignment but we can only assume that malloced pointers are 8-byte |
| // aligned in any case. (Even if the underlying malloc returns values with |
| // 16-byte alignment, |OPENSSL_malloc| will store an 8-byte size prefix and mess |
| // that up.) |
| static struct public_key *public_key_from_external( |
| struct HRSS_public_key *ext) { |
| OPENSSL_STATIC_ASSERT( |
| sizeof(struct HRSS_public_key) >= sizeof(struct public_key) + 15, |
| "HRSS public key too small"); |
| |
| uintptr_t p = (uintptr_t)ext; |
| p = (p + 15) & ~15; |
| return (struct public_key *)p; |
| } |
| |
| // private_key_from_external does the same thing as |public_key_from_external|, |
| // but for private keys. See the comment on that function about alignment |
| // issues. |
| static struct private_key *private_key_from_external( |
| struct HRSS_private_key *ext) { |
| OPENSSL_STATIC_ASSERT( |
| sizeof(struct HRSS_private_key) >= sizeof(struct private_key) + 15, |
| "HRSS private key too small"); |
| |
| uintptr_t p = (uintptr_t)ext; |
| p = (p + 15) & ~15; |
| return (struct private_key *)p; |
| } |
| |
| void HRSS_generate_key( |
| struct HRSS_public_key *out_pub, struct HRSS_private_key *out_priv, |
| const uint8_t in[HRSS_SAMPLE_BYTES + HRSS_SAMPLE_BYTES + 32]) { |
| struct public_key *pub = public_key_from_external(out_pub); |
| struct private_key *priv = private_key_from_external(out_priv); |
| |
| OPENSSL_memcpy(priv->hmac_key, in + 2 * HRSS_SAMPLE_BYTES, |
| sizeof(priv->hmac_key)); |
| |
| struct poly f; |
| poly_short_sample_plus(&f, in); |
| poly3_from_poly(&priv->f, &f); |
| HRSS_poly3_invert(&priv->f_inverse, &priv->f); |
| |
| // pg_phi1 is p (i.e. 3) × g × Φ(1) (i.e. 𝑥-1). |
| struct poly pg_phi1; |
| poly_short_sample_plus(&pg_phi1, in + HRSS_SAMPLE_BYTES); |
| for (unsigned i = 0; i < N; i++) { |
| pg_phi1.v[i] *= 3; |
| } |
| poly_mul_x_minus_1(&pg_phi1); |
| |
| struct poly pfg_phi1; |
| poly_mul(&pfg_phi1, &f, &pg_phi1); |
| |
| struct poly pfg_phi1_inverse; |
| poly_invert(&pfg_phi1_inverse, &pfg_phi1); |
| |
| poly_mul(&pub->ph, &pfg_phi1_inverse, &pg_phi1); |
| poly_mul(&pub->ph, &pub->ph, &pg_phi1); |
| poly_clamp(&pub->ph); |
| |
| poly_mul(&priv->ph_inverse, &pfg_phi1_inverse, &f); |
| poly_mul(&priv->ph_inverse, &priv->ph_inverse, &f); |
| poly_clamp(&priv->ph_inverse); |
| } |
| |
| static const char kSharedKey[] = "shared key"; |
| |
| void HRSS_encap(uint8_t out_ciphertext[POLY_BYTES], |
| uint8_t out_shared_key[32], |
| const struct HRSS_public_key *in_pub, |
| const uint8_t in[HRSS_SAMPLE_BYTES + HRSS_SAMPLE_BYTES]) { |
| const struct public_key *pub = |
| public_key_from_external((struct HRSS_public_key *)in_pub); |
| struct poly m, r, m_lifted; |
| poly_short_sample(&m, in); |
| poly_short_sample(&r, in + HRSS_SAMPLE_BYTES); |
| poly_lift(&m_lifted, &m); |
| |
| struct poly prh_plus_m; |
| poly_mul(&prh_plus_m, &r, &pub->ph); |
| for (unsigned i = 0; i < N; i++) { |
| prh_plus_m.v[i] += m_lifted.v[i]; |
| } |
| |
| poly_marshal(out_ciphertext, &prh_plus_m); |
| |
| uint8_t m_bytes[HRSS_POLY3_BYTES], r_bytes[HRSS_POLY3_BYTES]; |
| poly_marshal_mod3(m_bytes, &m); |
| poly_marshal_mod3(r_bytes, &r); |
| |
| SHA256_CTX hash_ctx; |
| SHA256_Init(&hash_ctx); |
| SHA256_Update(&hash_ctx, kSharedKey, sizeof(kSharedKey)); |
| SHA256_Update(&hash_ctx, m_bytes, sizeof(m_bytes)); |
| SHA256_Update(&hash_ctx, r_bytes, sizeof(r_bytes)); |
| SHA256_Update(&hash_ctx, out_ciphertext, POLY_BYTES); |
| SHA256_Final(out_shared_key, &hash_ctx); |
| } |
| |
| void HRSS_decap(uint8_t out_shared_key[HRSS_KEY_BYTES], |
| const struct HRSS_private_key *in_priv, |
| const uint8_t *ciphertext, size_t ciphertext_len) { |
| const struct private_key *priv = |
| private_key_from_external((struct HRSS_private_key *)in_priv); |
| |
| // This is HMAC, expanded inline rather than using the |HMAC| function so that |
| // we can avoid dealing with possible allocation failures and so keep this |
| // function infallible. |
| uint8_t masked_key[SHA256_CBLOCK]; |
| OPENSSL_STATIC_ASSERT(sizeof(priv->hmac_key) <= sizeof(masked_key), |
| "HRSS HMAC key larger than SHA-256 block size"); |
| for (size_t i = 0; i < sizeof(priv->hmac_key); i++) { |
| masked_key[i] = priv->hmac_key[i] ^ 0x36; |
| } |
| OPENSSL_memset(masked_key + sizeof(priv->hmac_key), 0x36, |
| sizeof(masked_key) - sizeof(priv->hmac_key)); |
| |
| SHA256_CTX hash_ctx; |
| SHA256_Init(&hash_ctx); |
| SHA256_Update(&hash_ctx, masked_key, sizeof(masked_key)); |
| SHA256_Update(&hash_ctx, ciphertext, ciphertext_len); |
| uint8_t inner_digest[SHA256_DIGEST_LENGTH]; |
| SHA256_Final(inner_digest, &hash_ctx); |
| |
| for (size_t i = 0; i < sizeof(priv->hmac_key); i++) { |
| masked_key[i] ^= (0x5c ^ 0x36); |
| } |
| OPENSSL_memset(masked_key + sizeof(priv->hmac_key), 0x5c, |
| sizeof(masked_key) - sizeof(priv->hmac_key)); |
| |
| SHA256_Init(&hash_ctx); |
| SHA256_Update(&hash_ctx, masked_key, sizeof(masked_key)); |
| SHA256_Update(&hash_ctx, inner_digest, sizeof(inner_digest)); |
| OPENSSL_STATIC_ASSERT(HRSS_KEY_BYTES == SHA256_DIGEST_LENGTH, |
| "HRSS shared key length incorrect"); |
| SHA256_Final(out_shared_key, &hash_ctx); |
| |
| struct poly c; |
| // If the ciphertext is publicly invalid then a random shared key is still |
| // returned to simply the logic of the caller, but this path is not constant |
| // time. |
| if (ciphertext_len != HRSS_CIPHERTEXT_BYTES || |
| !poly_unmarshal(&c, ciphertext)) { |
| return; |
| } |
| |
| struct poly f, cf; |
| struct poly3 cf3, m3; |
| poly_from_poly3(&f, &priv->f); |
| poly_mul(&cf, &c, &f); |
| poly3_from_poly(&cf3, &cf); |
| // Note that cf3 is not reduced mod Φ(N). That reduction is deferred. |
| HRSS_poly3_mul(&m3, &cf3, &priv->f_inverse); |
| |
| struct poly m, m_lifted; |
| poly_from_poly3(&m, &m3); |
| poly_lift(&m_lifted, &m); |
| |
| struct poly r; |
| for (unsigned i = 0; i < N; i++) { |
| r.v[i] = c.v[i] - m_lifted.v[i]; |
| } |
| poly_mul(&r, &r, &priv->ph_inverse); |
| poly_mod_phiN(&r); |
| poly_clamp(&r); |
| |
| struct poly3 r3; |
| crypto_word_t ok = poly3_from_poly_checked(&r3, &r); |
| |
| // [NTRUCOMP] section 5.1 includes ReEnc2 and a proof that it's valid. Rather |
| // than do an expensive |poly_mul|, it rebuilds |c'| from |c - lift(m)| |
| // (called |b|) with: |
| // t = (−b(1)/N) mod Q |
| // c' = b + tΦ(N) + lift(m) mod Q |
| // |
| // When polynomials are transmitted, the final coefficient is omitted and |
| // |poly_unmarshal| sets it such that f(1) == 0. Thus c(1) == 0. Also, |
| // |poly_lift| multiplies the result by (x-1) and therefore evaluating a |
| // lifted polynomial at 1 is also zero. Thus lift(m)(1) == 0 and so |
| // (c - lift(m))(1) == 0. |
| // |
| // Although we defer the reduction above, |b| is conceptually reduced mod |
| // Φ(N). In order to do that reduction one subtracts |c[N-1]| from every |
| // coefficient. Therefore b(1) = -c[N-1]×N. The value of |t|, above, then is |
| // just recovering |c[N-1]|, and adding tΦ(N) is simply undoing the reduction. |
| // Therefore b + tΦ(N) + lift(m) = c by construction and we don't need to |
| // recover |c| at all so long as we do the checks in |
| // |poly3_from_poly_checked|. |
| // |
| // The |poly_marshal| here then is just confirming that |poly_unmarshal| is |
| // strict and could be omitted. |
| |
| uint8_t expected_ciphertext[HRSS_CIPHERTEXT_BYTES]; |
| OPENSSL_STATIC_ASSERT(HRSS_CIPHERTEXT_BYTES == POLY_BYTES, |
| "ciphertext is the wrong size"); |
| assert(ciphertext_len == sizeof(expected_ciphertext)); |
| poly_marshal(expected_ciphertext, &c); |
| |
| uint8_t m_bytes[HRSS_POLY3_BYTES]; |
| uint8_t r_bytes[HRSS_POLY3_BYTES]; |
| poly_marshal_mod3(m_bytes, &m); |
| poly_marshal_mod3(r_bytes, &r); |
| |
| ok &= constant_time_is_zero_w(CRYPTO_memcmp(ciphertext, expected_ciphertext, |
| sizeof(expected_ciphertext))); |
| |
| uint8_t shared_key[32]; |
| SHA256_Init(&hash_ctx); |
| SHA256_Update(&hash_ctx, kSharedKey, sizeof(kSharedKey)); |
| SHA256_Update(&hash_ctx, m_bytes, sizeof(m_bytes)); |
| SHA256_Update(&hash_ctx, r_bytes, sizeof(r_bytes)); |
| SHA256_Update(&hash_ctx, expected_ciphertext, sizeof(expected_ciphertext)); |
| SHA256_Final(shared_key, &hash_ctx); |
| |
| for (unsigned i = 0; i < sizeof(shared_key); i++) { |
| out_shared_key[i] = |
| constant_time_select_8(ok, shared_key[i], out_shared_key[i]); |
| } |
| } |
| |
| void HRSS_marshal_public_key(uint8_t out[HRSS_PUBLIC_KEY_BYTES], |
| const struct HRSS_public_key *in_pub) { |
| const struct public_key *pub = |
| public_key_from_external((struct HRSS_public_key *)in_pub); |
| poly_marshal(out, &pub->ph); |
| } |
| |
| int HRSS_parse_public_key(struct HRSS_public_key *out, |
| const uint8_t in[HRSS_PUBLIC_KEY_BYTES]) { |
| struct public_key *pub = public_key_from_external(out); |
| if (!poly_unmarshal(&pub->ph, in)) { |
| return 0; |
| } |
| OPENSSL_memset(&pub->ph.v[N], 0, 3 * sizeof(uint16_t)); |
| return 1; |
| } |