blob: 4afb6da33bffb37b280bbb161e4c150bb4d832a0 [file] [log] [blame]
#! /usr/bin/env perl
# Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License"). You may not use
# this file except in compliance with the License. You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# GHASH for ARMv8 Crypto Extension, 64-bit polynomial multiplication.
#
# June 2014
# Initial version was developed in tight cooperation with Ard Biesheuvel
# of Linaro from bits-n-pieces from other assembly modules. Just like
# aesv8-armx.pl this module supports both AArch32 and AArch64 execution modes.
#
# July 2014
# Implement 2x aggregated reduction [see ghash-x86.pl for background
# information].
#
# Current performance in cycles per processed byte:
#
# PMULL[2] 32-bit NEON(*)
# Apple A7 0.92 5.62
# Cortex-A53 1.01 8.39
# Cortex-A57 1.17 7.61
# Denver 0.71 6.02
# Mongoose 1.10 8.06
# Kryo 1.16 8.00
#
# (*) presented for reference/comparison purposes;
$flavour = shift;
$output = shift;
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../../perlasm/arm-xlate.pl" and -f $xlate) or
die "can't locate arm-xlate.pl";
open OUT,"| \"$^X\" $xlate $flavour $output";
*STDOUT=*OUT;
$Xi="x0"; # argument block
$Htbl="x1";
$inp="x2";
$len="x3";
$inc="x12";
{
my ($Xl,$Xm,$Xh,$IN)=map("q$_",(0..3));
my ($t0,$t1,$t2,$xC2,$H,$Hhl,$H2)=map("q$_",(8..14));
$code=<<___;
#include <openssl/arm_arch.h>
.text
___
$code.=".arch armv8-a+crypto\n" if ($flavour =~ /64/);
$code.=<<___ if ($flavour !~ /64/);
.fpu neon
.code 32
#undef __thumb2__
___
################################################################################
# void gcm_init_v8(u128 Htable[16],const u64 H[2]);
#
# input: 128-bit H - secret parameter E(K,0^128)
# output: precomputed table filled with degrees of twisted H;
# H is twisted to handle reverse bitness of GHASH;
# only few of 16 slots of Htable[16] are used;
# data is opaque to outside world (which allows to
# optimize the code independently);
#
$code.=<<___;
.global gcm_init_v8
.type gcm_init_v8,%function
.align 4
gcm_init_v8:
AARCH64_VALID_CALL_TARGET
vld1.64 {$t1},[x1] @ load input H
vmov.i8 $xC2,#0xe1
vshl.i64 $xC2,$xC2,#57 @ 0xc2.0
vext.8 $IN,$t1,$t1,#8
vshr.u64 $t2,$xC2,#63
vdup.32 $t1,${t1}[1]
vext.8 $t0,$t2,$xC2,#8 @ t0=0xc2....01
vshr.u64 $t2,$IN,#63
vshr.s32 $t1,$t1,#31 @ broadcast carry bit
vand $t2,$t2,$t0
vshl.i64 $IN,$IN,#1
vext.8 $t2,$t2,$t2,#8
vand $t0,$t0,$t1
vorr $IN,$IN,$t2 @ H<<<=1
veor $H,$IN,$t0 @ twisted H
vst1.64 {$H},[x0],#16 @ store Htable[0]
@ calculate H^2
vext.8 $t0,$H,$H,#8 @ Karatsuba pre-processing
vpmull.p64 $Xl,$H,$H
veor $t0,$t0,$H
vpmull2.p64 $Xh,$H,$H
vpmull.p64 $Xm,$t0,$t0
vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing
veor $t2,$Xl,$Xh
veor $Xm,$Xm,$t1
veor $Xm,$Xm,$t2
vpmull.p64 $t2,$Xl,$xC2 @ 1st phase
vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
veor $Xl,$Xm,$t2
vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase
vpmull.p64 $Xl,$Xl,$xC2
veor $t2,$t2,$Xh
veor $H2,$Xl,$t2
vext.8 $t1,$H2,$H2,#8 @ Karatsuba pre-processing
veor $t1,$t1,$H2
vext.8 $Hhl,$t0,$t1,#8 @ pack Karatsuba pre-processed
vst1.64 {$Hhl-$H2},[x0] @ store Htable[1..2]
ret
.size gcm_init_v8,.-gcm_init_v8
___
################################################################################
# void gcm_gmult_v8(u64 Xi[2],const u128 Htable[16]);
#
# input: Xi - current hash value;
# Htable - table precomputed in gcm_init_v8;
# output: Xi - next hash value Xi;
#
$code.=<<___;
.global gcm_gmult_v8
.type gcm_gmult_v8,%function
.align 4
gcm_gmult_v8:
AARCH64_VALID_CALL_TARGET
vld1.64 {$t1},[$Xi] @ load Xi
vmov.i8 $xC2,#0xe1
vld1.64 {$H-$Hhl},[$Htbl] @ load twisted H, ...
vshl.u64 $xC2,$xC2,#57
#ifndef __ARMEB__
vrev64.8 $t1,$t1
#endif
vext.8 $IN,$t1,$t1,#8
vpmull.p64 $Xl,$H,$IN @ H.lo·Xi.lo
veor $t1,$t1,$IN @ Karatsuba pre-processing
vpmull2.p64 $Xh,$H,$IN @ H.hi·Xi.hi
vpmull.p64 $Xm,$Hhl,$t1 @ (H.lo+H.hi)·(Xi.lo+Xi.hi)
vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing
veor $t2,$Xl,$Xh
veor $Xm,$Xm,$t1
veor $Xm,$Xm,$t2
vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction
vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
veor $Xl,$Xm,$t2
vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction
vpmull.p64 $Xl,$Xl,$xC2
veor $t2,$t2,$Xh
veor $Xl,$Xl,$t2
#ifndef __ARMEB__
vrev64.8 $Xl,$Xl
#endif
vext.8 $Xl,$Xl,$Xl,#8
vst1.64 {$Xl},[$Xi] @ write out Xi
ret
.size gcm_gmult_v8,.-gcm_gmult_v8
___
################################################################################
# void gcm_ghash_v8(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
#
# input: table precomputed in gcm_init_v8;
# current hash value Xi;
# pointer to input data;
# length of input data in bytes, but divisible by block size;
# output: next hash value Xi;
#
$code.=<<___;
.global gcm_ghash_v8
.type gcm_ghash_v8,%function
.align 4
gcm_ghash_v8:
AARCH64_VALID_CALL_TARGET
___
$code.=<<___ if ($flavour !~ /64/);
vstmdb sp!,{d8-d15} @ 32-bit ABI says so
___
$code.=<<___;
vld1.64 {$Xl},[$Xi] @ load [rotated] Xi
@ "[rotated]" means that
@ loaded value would have
@ to be rotated in order to
@ make it appear as in
@ algorithm specification
subs $len,$len,#32 @ see if $len is 32 or larger
mov $inc,#16 @ $inc is used as post-
@ increment for input pointer;
@ as loop is modulo-scheduled
@ $inc is zeroed just in time
@ to preclude overstepping
@ inp[len], which means that
@ last block[s] are actually
@ loaded twice, but last
@ copy is not processed
vld1.64 {$H-$Hhl},[$Htbl],#32 @ load twisted H, ..., H^2
vmov.i8 $xC2,#0xe1
vld1.64 {$H2},[$Htbl]
cclr $inc,eq @ is it time to zero $inc?
vext.8 $Xl,$Xl,$Xl,#8 @ rotate Xi
vld1.64 {$t0},[$inp],#16 @ load [rotated] I[0]
vshl.u64 $xC2,$xC2,#57 @ compose 0xc2.0 constant
#ifndef __ARMEB__
vrev64.8 $t0,$t0
vrev64.8 $Xl,$Xl
#endif
vext.8 $IN,$t0,$t0,#8 @ rotate I[0]
b.lo .Lodd_tail_v8 @ $len was less than 32
___
{ my ($Xln,$Xmn,$Xhn,$In) = map("q$_",(4..7));
#######
# Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
# [(H*Ii+1) + (H*Xi+1)] mod P =
# [(H*Ii+1) + H^2*(Ii+Xi)] mod P
#
$code.=<<___;
vld1.64 {$t1},[$inp],$inc @ load [rotated] I[1]
#ifndef __ARMEB__
vrev64.8 $t1,$t1
#endif
vext.8 $In,$t1,$t1,#8
veor $IN,$IN,$Xl @ I[i]^=Xi
vpmull.p64 $Xln,$H,$In @ H·Ii+1
veor $t1,$t1,$In @ Karatsuba pre-processing
vpmull2.p64 $Xhn,$H,$In
b .Loop_mod2x_v8
.align 4
.Loop_mod2x_v8:
vext.8 $t2,$IN,$IN,#8
subs $len,$len,#32 @ is there more data?
vpmull.p64 $Xl,$H2,$IN @ H^2.lo·Xi.lo
cclr $inc,lo @ is it time to zero $inc?
vpmull.p64 $Xmn,$Hhl,$t1
veor $t2,$t2,$IN @ Karatsuba pre-processing
vpmull2.p64 $Xh,$H2,$IN @ H^2.hi·Xi.hi
veor $Xl,$Xl,$Xln @ accumulate
vpmull2.p64 $Xm,$Hhl,$t2 @ (H^2.lo+H^2.hi)·(Xi.lo+Xi.hi)
vld1.64 {$t0},[$inp],$inc @ load [rotated] I[i+2]
veor $Xh,$Xh,$Xhn
cclr $inc,eq @ is it time to zero $inc?
veor $Xm,$Xm,$Xmn
vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing
veor $t2,$Xl,$Xh
veor $Xm,$Xm,$t1
vld1.64 {$t1},[$inp],$inc @ load [rotated] I[i+3]
#ifndef __ARMEB__
vrev64.8 $t0,$t0
#endif
veor $Xm,$Xm,$t2
vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction
#ifndef __ARMEB__
vrev64.8 $t1,$t1
#endif
vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
vext.8 $In,$t1,$t1,#8
vext.8 $IN,$t0,$t0,#8
veor $Xl,$Xm,$t2
vpmull.p64 $Xln,$H,$In @ H·Ii+1
veor $IN,$IN,$Xh @ accumulate $IN early
vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction
vpmull.p64 $Xl,$Xl,$xC2
veor $IN,$IN,$t2
veor $t1,$t1,$In @ Karatsuba pre-processing
veor $IN,$IN,$Xl
vpmull2.p64 $Xhn,$H,$In
b.hs .Loop_mod2x_v8 @ there was at least 32 more bytes
veor $Xh,$Xh,$t2
vext.8 $IN,$t0,$t0,#8 @ re-construct $IN
adds $len,$len,#32 @ re-construct $len
veor $Xl,$Xl,$Xh @ re-construct $Xl
b.eq .Ldone_v8 @ is $len zero?
___
}
$code.=<<___;
.Lodd_tail_v8:
vext.8 $t2,$Xl,$Xl,#8
veor $IN,$IN,$Xl @ inp^=Xi
veor $t1,$t0,$t2 @ $t1 is rotated inp^Xi
vpmull.p64 $Xl,$H,$IN @ H.lo·Xi.lo
veor $t1,$t1,$IN @ Karatsuba pre-processing
vpmull2.p64 $Xh,$H,$IN @ H.hi·Xi.hi
vpmull.p64 $Xm,$Hhl,$t1 @ (H.lo+H.hi)·(Xi.lo+Xi.hi)
vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing
veor $t2,$Xl,$Xh
veor $Xm,$Xm,$t1
veor $Xm,$Xm,$t2
vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction
vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
veor $Xl,$Xm,$t2
vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction
vpmull.p64 $Xl,$Xl,$xC2
veor $t2,$t2,$Xh
veor $Xl,$Xl,$t2
.Ldone_v8:
#ifndef __ARMEB__
vrev64.8 $Xl,$Xl
#endif
vext.8 $Xl,$Xl,$Xl,#8
vst1.64 {$Xl},[$Xi] @ write out Xi
___
$code.=<<___ if ($flavour !~ /64/);
vldmia sp!,{d8-d15} @ 32-bit ABI says so
___
$code.=<<___;
ret
.size gcm_ghash_v8,.-gcm_ghash_v8
___
}
$code.=<<___;
.asciz "GHASH for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
.align 2
___
if ($flavour =~ /64/) { ######## 64-bit code
sub unvmov {
my $arg=shift;
$arg =~ m/q([0-9]+)#(lo|hi),\s*q([0-9]+)#(lo|hi)/o &&
sprintf "ins v%d.d[%d],v%d.d[%d]",$1,($2 eq "lo")?0:1,$3,($4 eq "lo")?0:1;
}
foreach(split("\n",$code)) {
s/cclr\s+([wx])([^,]+),\s*([a-z]+)/csel $1$2,$1zr,$1$2,$3/o or
s/vmov\.i8/movi/o or # fix up legacy mnemonics
s/vmov\s+(.*)/unvmov($1)/geo or
s/vext\.8/ext/o or
s/vshr\.s/sshr\.s/o or
s/vshr/ushr/o or
s/^(\s+)v/$1/o or # strip off v prefix
s/\bbx\s+lr\b/ret/o;
s/\bq([0-9]+)\b/"v".($1<8?$1:$1+8).".16b"/geo; # old->new registers
s/@\s/\/\//o; # old->new style commentary
# fix up remaining legacy suffixes
s/\.[ui]?8(\s)/$1/o;
s/\.[uis]?32//o and s/\.16b/\.4s/go;
m/\.p64/o and s/\.16b/\.1q/o; # 1st pmull argument
m/l\.p64/o and s/\.16b/\.1d/go; # 2nd and 3rd pmull arguments
s/\.[uisp]?64//o and s/\.16b/\.2d/go;
s/\.[42]([sd])\[([0-3])\]/\.$1\[$2\]/o;
print $_,"\n";
}
} else { ######## 32-bit code
sub unvdup32 {
my $arg=shift;
$arg =~ m/q([0-9]+),\s*q([0-9]+)\[([0-3])\]/o &&
sprintf "vdup.32 q%d,d%d[%d]",$1,2*$2+($3>>1),$3&1;
}
sub unvpmullp64 {
my ($mnemonic,$arg)=@_;
if ($arg =~ m/q([0-9]+),\s*q([0-9]+),\s*q([0-9]+)/o) {
my $word = 0xf2a00e00|(($1&7)<<13)|(($1&8)<<19)
|(($2&7)<<17)|(($2&8)<<4)
|(($3&7)<<1) |(($3&8)<<2);
$word |= 0x00010001 if ($mnemonic =~ "2");
# since ARMv7 instructions are always encoded little-endian.
# correct solution is to use .inst directive, but older
# assemblers don't implement it:-(
sprintf ".byte\t0x%02x,0x%02x,0x%02x,0x%02x\t@ %s %s",
$word&0xff,($word>>8)&0xff,
($word>>16)&0xff,($word>>24)&0xff,
$mnemonic,$arg;
}
}
foreach(split("\n",$code)) {
s/\b[wx]([0-9]+)\b/r$1/go; # new->old registers
s/\bv([0-9])\.[12468]+[bsd]\b/q$1/go; # new->old registers
s/\/\/\s?/@ /o; # new->old style commentary
# fix up remaining new-style suffixes
s/\],#[0-9]+/]!/o;
s/cclr\s+([^,]+),\s*([a-z]+)/mov$2 $1,#0/o or
s/vdup\.32\s+(.*)/unvdup32($1)/geo or
s/v?(pmull2?)\.p64\s+(.*)/unvpmullp64($1,$2)/geo or
s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo or
s/^(\s+)b\./$1b/o or
s/^(\s+)ret/$1bx\tlr/o;
print $_,"\n";
}
}
close STDOUT or die "error closing STDOUT"; # enforce flush