| /* DTLS implementation written by Nagendra Modadugu | 
 |  * (nagendra@cs.stanford.edu) for the OpenSSL project 2005. */ | 
 | /* ==================================================================== | 
 |  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved. | 
 |  * | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions | 
 |  * are met: | 
 |  * | 
 |  * 1. Redistributions of source code must retain the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer. | 
 |  * | 
 |  * 2. Redistributions in binary form must reproduce the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer in | 
 |  *    the documentation and/or other materials provided with the | 
 |  *    distribution. | 
 |  * | 
 |  * 3. All advertising materials mentioning features or use of this | 
 |  *    software must display the following acknowledgment: | 
 |  *    "This product includes software developed by the OpenSSL Project | 
 |  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | 
 |  * | 
 |  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | 
 |  *    endorse or promote products derived from this software without | 
 |  *    prior written permission. For written permission, please contact | 
 |  *    openssl-core@openssl.org. | 
 |  * | 
 |  * 5. Products derived from this software may not be called "OpenSSL" | 
 |  *    nor may "OpenSSL" appear in their names without prior written | 
 |  *    permission of the OpenSSL Project. | 
 |  * | 
 |  * 6. Redistributions of any form whatsoever must retain the following | 
 |  *    acknowledgment: | 
 |  *    "This product includes software developed by the OpenSSL Project | 
 |  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)" | 
 |  * | 
 |  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | 
 |  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 |  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
 |  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR | 
 |  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 |  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
 |  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
 |  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
 |  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
 |  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 |  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
 |  * OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  * ==================================================================== | 
 |  * | 
 |  * This product includes cryptographic software written by Eric Young | 
 |  * (eay@cryptsoft.com).  This product includes software written by Tim | 
 |  * Hudson (tjh@cryptsoft.com). | 
 |  * | 
 |  */ | 
 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | 
 |  * All rights reserved. | 
 |  * | 
 |  * This package is an SSL implementation written | 
 |  * by Eric Young (eay@cryptsoft.com). | 
 |  * The implementation was written so as to conform with Netscapes SSL. | 
 |  * | 
 |  * This library is free for commercial and non-commercial use as long as | 
 |  * the following conditions are aheared to.  The following conditions | 
 |  * apply to all code found in this distribution, be it the RC4, RSA, | 
 |  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation | 
 |  * included with this distribution is covered by the same copyright terms | 
 |  * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 
 |  * | 
 |  * Copyright remains Eric Young's, and as such any Copyright notices in | 
 |  * the code are not to be removed. | 
 |  * If this package is used in a product, Eric Young should be given attribution | 
 |  * as the author of the parts of the library used. | 
 |  * This can be in the form of a textual message at program startup or | 
 |  * in documentation (online or textual) provided with the package. | 
 |  * | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions | 
 |  * are met: | 
 |  * 1. Redistributions of source code must retain the copyright | 
 |  *    notice, this list of conditions and the following disclaimer. | 
 |  * 2. Redistributions in binary form must reproduce the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer in the | 
 |  *    documentation and/or other materials provided with the distribution. | 
 |  * 3. All advertising materials mentioning features or use of this software | 
 |  *    must display the following acknowledgement: | 
 |  *    "This product includes cryptographic software written by | 
 |  *     Eric Young (eay@cryptsoft.com)" | 
 |  *    The word 'cryptographic' can be left out if the rouines from the library | 
 |  *    being used are not cryptographic related :-). | 
 |  * 4. If you include any Windows specific code (or a derivative thereof) from | 
 |  *    the apps directory (application code) you must include an acknowledgement: | 
 |  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 
 |  * | 
 |  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 
 |  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 |  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 |  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | 
 |  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
 |  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
 |  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
 |  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
 |  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
 |  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
 |  * SUCH DAMAGE. | 
 |  * | 
 |  * The licence and distribution terms for any publically available version or | 
 |  * derivative of this code cannot be changed.  i.e. this code cannot simply be | 
 |  * copied and put under another distribution licence | 
 |  * [including the GNU Public Licence.] */ | 
 |  | 
 | #include <openssl/ssl.h> | 
 |  | 
 | #include <assert.h> | 
 | #include <string.h> | 
 |  | 
 | #include <openssl/bytestring.h> | 
 | #include <openssl/err.h> | 
 |  | 
 | #include "internal.h" | 
 | #include "../crypto/internal.h" | 
 |  | 
 |  | 
 | BSSL_NAMESPACE_BEGIN | 
 |  | 
 | // dtls1_bitmap_should_discard returns one if |seq_num| has been seen in | 
 | // |bitmap| or is stale. Otherwise it returns zero. | 
 | static bool dtls1_bitmap_should_discard(DTLS1_BITMAP *bitmap, | 
 |                                         uint64_t seq_num) { | 
 |   const size_t kWindowSize = bitmap->map.size(); | 
 |  | 
 |   if (seq_num > bitmap->max_seq_num) { | 
 |     return false; | 
 |   } | 
 |   uint64_t idx = bitmap->max_seq_num - seq_num; | 
 |   return idx >= kWindowSize || bitmap->map[idx]; | 
 | } | 
 |  | 
 | // dtls1_bitmap_record updates |bitmap| to record receipt of sequence number | 
 | // |seq_num|. It slides the window forward if needed. It is an error to call | 
 | // this function on a stale sequence number. | 
 | static void dtls1_bitmap_record(DTLS1_BITMAP *bitmap, uint64_t seq_num) { | 
 |   const size_t kWindowSize = bitmap->map.size(); | 
 |  | 
 |   // Shift the window if necessary. | 
 |   if (seq_num > bitmap->max_seq_num) { | 
 |     uint64_t shift = seq_num - bitmap->max_seq_num; | 
 |     if (shift >= kWindowSize) { | 
 |       bitmap->map.reset(); | 
 |     } else { | 
 |       bitmap->map <<= shift; | 
 |     } | 
 |     bitmap->max_seq_num = seq_num; | 
 |   } | 
 |  | 
 |   uint64_t idx = bitmap->max_seq_num - seq_num; | 
 |   if (idx < kWindowSize) { | 
 |     bitmap->map[idx] = true; | 
 |   } | 
 | } | 
 |  | 
 | // reconstruct_epoch finds the largest epoch that ends with the epoch bits from | 
 | // |wire_epoch| that is less than or equal to |current_epoch|, to match the | 
 | // epoch reconstruction algorithm described in RFC 9147 section 4.2.2. | 
 | static uint16_t reconstruct_epoch(uint8_t wire_epoch, uint16_t current_epoch) { | 
 |   uint16_t current_epoch_high = current_epoch & 0xfffc; | 
 |   uint16_t epoch = (wire_epoch & 0x3) | current_epoch_high; | 
 |   if (epoch > current_epoch && current_epoch_high > 0) { | 
 |     epoch -= 0x4; | 
 |   } | 
 |   return epoch; | 
 | } | 
 |  | 
 | uint64_t reconstruct_seqnum(uint16_t wire_seq, uint64_t seq_mask, | 
 |                             uint64_t max_valid_seqnum) { | 
 |   uint64_t max_seqnum_plus_one = max_valid_seqnum + 1; | 
 |   uint64_t diff = (wire_seq - max_seqnum_plus_one) & seq_mask; | 
 |   uint64_t step = seq_mask + 1; | 
 |   uint64_t seqnum = max_seqnum_plus_one + diff; | 
 |   // seqnum is computed as the addition of 3 non-negative values | 
 |   // (max_valid_seqnum, 1, and diff). The values 1 and diff are small (relative | 
 |   // to the size of a uint64_t), while max_valid_seqnum can span the range of | 
 |   // all uint64_t values. If seqnum is less than max_valid_seqnum, then the | 
 |   // addition overflowed. | 
 |   bool overflowed = seqnum < max_valid_seqnum; | 
 |   // If the diff is larger than half the step size, then the closest seqnum | 
 |   // to max_seqnum_plus_one (in Z_{2^64}) is seqnum minus step instead of | 
 |   // seqnum. | 
 |   bool closer_is_less = diff > step / 2; | 
 |   // Subtracting step from seqnum will cause underflow if seqnum is too small. | 
 |   bool would_underflow = seqnum < step; | 
 |   if (overflowed || (closer_is_less && !would_underflow)) { | 
 |     seqnum -= step; | 
 |   } | 
 |   return seqnum; | 
 | } | 
 |  | 
 | static bool parse_dtls13_record_header(SSL *ssl, CBS *in, Span<uint8_t> packet, | 
 |                                        uint8_t type, CBS *out_body, | 
 |                                        uint64_t *out_sequence, | 
 |                                        uint16_t *out_epoch, | 
 |                                        size_t *out_header_len) { | 
 |   // TODO(crbug.com/boringssl/715): Decrypt the sequence number before | 
 |   // decoding it. | 
 |   if ((type & 0x10) == 0x10) { | 
 |     // Connection ID bit set, which we didn't negotiate. | 
 |     return false; | 
 |   } | 
 |  | 
 |   // TODO(crbug.com/boringssl/715): Add a runner test that performs many | 
 |   // key updates to verify epoch reconstruction works for epochs larger than | 
 |   // 3. | 
 |   *out_epoch = reconstruct_epoch(type, ssl->d1->r_epoch); | 
 |   size_t seqlen = 1; | 
 |   if ((type & 0x08) == 0x08) { | 
 |     // If this bit is set, the sequence number is 16 bits long, otherwise it is | 
 |     // 8 bits. The seqlen variable tracks the length of the sequence number in | 
 |     // bytes. | 
 |     seqlen = 2; | 
 |   } | 
 |   if (!CBS_skip(in, seqlen)) { | 
 |     // The record header was incomplete or malformed. | 
 |     return false; | 
 |   } | 
 |   *out_header_len = packet.size() - CBS_len(in); | 
 |   if ((type & 0x04) == 0x04) { | 
 |     *out_header_len += 2; | 
 |     // 16-bit length present | 
 |     if (!CBS_get_u16_length_prefixed(in, out_body)) { | 
 |       // The record header was incomplete or malformed. | 
 |       return false; | 
 |     } | 
 |   } else { | 
 |     // No length present - the remaining contents are the whole packet. | 
 |     // CBS_get_bytes is used here to advance |in| to the end so that future | 
 |     // code that computes the number of consumed bytes functions correctly. | 
 |     if (!CBS_get_bytes(in, out_body, CBS_len(in))) { | 
 |       return false; | 
 |     } | 
 |   } | 
 |  | 
 |   // Decrypt and reconstruct the sequence number: | 
 |   uint8_t mask[AES_BLOCK_SIZE]; | 
 |   SSLAEADContext *aead = ssl->s3->aead_read_ctx.get(); | 
 |   if (!aead->GenerateRecordNumberMask(mask, *out_body)) { | 
 |     // GenerateRecordNumberMask most likely failed because the record body was | 
 |     // not long enough. | 
 |     return false; | 
 |   } | 
 |   // Apply the mask to the sequence number as it exists in the header. The | 
 |   // header (with the decrypted sequence number bytes) is used as the | 
 |   // additional data for the AEAD function. Since we don't support Connection | 
 |   // ID, the sequence number starts immediately after the type byte. | 
 |   uint64_t seq = 0; | 
 |   for (size_t i = 0; i < seqlen; i++) { | 
 |     packet[i + 1] ^= mask[i]; | 
 |     seq = (seq << 8) | packet[i + 1]; | 
 |   } | 
 |   *out_sequence = reconstruct_seqnum(seq, (1 << (seqlen * 8)) - 1, | 
 |                                      ssl->d1->bitmap.max_seq_num); | 
 |   return true; | 
 | } | 
 |  | 
 | static bool parse_dtls_plaintext_record_header( | 
 |     SSL *ssl, CBS *in, size_t packet_size, uint8_t type, CBS *out_body, | 
 |     uint64_t *out_sequence, uint16_t *out_epoch, size_t *out_header_len, | 
 |     uint16_t *out_version) { | 
 |   SSLAEADContext *aead = ssl->s3->aead_read_ctx.get(); | 
 |   uint8_t sequence_bytes[8]; | 
 |   if (!CBS_get_u16(in, out_version) || | 
 |       !CBS_copy_bytes(in, sequence_bytes, sizeof(sequence_bytes))) { | 
 |     return false; | 
 |   } | 
 |   *out_header_len = packet_size - CBS_len(in) + 2; | 
 |   if (!CBS_get_u16_length_prefixed(in, out_body) || | 
 |       CBS_len(out_body) > SSL3_RT_MAX_ENCRYPTED_LENGTH) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   bool version_ok; | 
 |   if (aead->is_null_cipher()) { | 
 |     // Only check the first byte. Enforcing beyond that can prevent decoding | 
 |     // version negotiation failure alerts. | 
 |     version_ok = (*out_version >> 8) == DTLS1_VERSION_MAJOR; | 
 |   } else { | 
 |     version_ok = *out_version == aead->RecordVersion(); | 
 |   } | 
 |  | 
 |   if (!version_ok) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   *out_sequence = CRYPTO_load_u64_be(sequence_bytes); | 
 |   *out_epoch = static_cast<uint16_t>(*out_sequence >> 48); | 
 |  | 
 |   // Discard the packet if we're expecting an encrypted DTLS 1.3 record but we | 
 |   // get the old record header format. | 
 |   if (!aead->is_null_cipher() && aead->ProtocolVersion() >= TLS1_3_VERSION) { | 
 |     return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | enum ssl_open_record_t dtls_open_record(SSL *ssl, uint8_t *out_type, | 
 |                                         Span<uint8_t> *out, | 
 |                                         size_t *out_consumed, | 
 |                                         uint8_t *out_alert, Span<uint8_t> in) { | 
 |   *out_consumed = 0; | 
 |   if (ssl->s3->read_shutdown == ssl_shutdown_close_notify) { | 
 |     return ssl_open_record_close_notify; | 
 |   } | 
 |  | 
 |   if (in.empty()) { | 
 |     return ssl_open_record_partial; | 
 |   } | 
 |  | 
 |   CBS cbs = CBS(in); | 
 |  | 
 |   uint8_t type; | 
 |   size_t record_header_len; | 
 |   if (!CBS_get_u8(&cbs, &type)) { | 
 |     // The record header was incomplete or malformed. Drop the entire packet. | 
 |     *out_consumed = in.size(); | 
 |     return ssl_open_record_discard; | 
 |   } | 
 |   SSLAEADContext *aead = ssl->s3->aead_read_ctx.get(); | 
 |   uint64_t sequence; | 
 |   uint16_t epoch; | 
 |   uint16_t version = 0; | 
 |   CBS body; | 
 |   bool valid_record_header; | 
 |   // Decode the record header. If the 3 high bits of the type are 001, then the | 
 |   // record header is the DTLS 1.3 format. The DTLS 1.3 format should only be | 
 |   // used for encrypted records with DTLS 1.3. Plaintext records or DTLS 1.2 | 
 |   // records use the old record header format. | 
 |   if ((type & 0xe0) == 0x20 && !aead->is_null_cipher() && | 
 |       aead->ProtocolVersion() >= TLS1_3_VERSION) { | 
 |     valid_record_header = parse_dtls13_record_header( | 
 |         ssl, &cbs, in, type, &body, &sequence, &epoch, &record_header_len); | 
 |   } else { | 
 |     valid_record_header = parse_dtls_plaintext_record_header( | 
 |         ssl, &cbs, in.size(), type, &body, &sequence, &epoch, | 
 |         &record_header_len, &version); | 
 |   } | 
 |   if (!valid_record_header) { | 
 |     // The record header was incomplete or malformed. Drop the entire packet. | 
 |     *out_consumed = in.size(); | 
 |     return ssl_open_record_discard; | 
 |   } | 
 |  | 
 |   Span<const uint8_t> header = in.subspan(0, record_header_len); | 
 |   ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_HEADER, header); | 
 |  | 
 |   if (epoch != ssl->d1->r_epoch || | 
 |       dtls1_bitmap_should_discard(&ssl->d1->bitmap, sequence)) { | 
 |     // Drop this record. It's from the wrong epoch or is a replay. Note that if | 
 |     // |epoch| is the next epoch, the record could be buffered for later. For | 
 |     // simplicity, drop it and expect retransmit to handle it later; DTLS must | 
 |     // handle packet loss anyway. | 
 |     *out_consumed = in.size() - CBS_len(&cbs); | 
 |     return ssl_open_record_discard; | 
 |   } | 
 |  | 
 |   // discard the body in-place. | 
 |   if (!aead->Open( | 
 |           out, type, version, sequence, header, | 
 |           MakeSpan(const_cast<uint8_t *>(CBS_data(&body)), CBS_len(&body)))) { | 
 |     // Bad packets are silently dropped in DTLS. See section 4.2.1 of RFC 6347. | 
 |     // Clear the error queue of any errors decryption may have added. Drop the | 
 |     // entire packet as it must not have come from the peer. | 
 |     // | 
 |     // TODO(davidben): This doesn't distinguish malloc failures from encryption | 
 |     // failures. | 
 |     ERR_clear_error(); | 
 |     *out_consumed = in.size() - CBS_len(&cbs); | 
 |     return ssl_open_record_discard; | 
 |   } | 
 |   *out_consumed = in.size() - CBS_len(&cbs); | 
 |  | 
 |   // DTLS 1.3 hides the record type inside the encrypted data. | 
 |   bool has_padding = | 
 |       !aead->is_null_cipher() && aead->ProtocolVersion() >= TLS1_3_VERSION; | 
 |   // Check the plaintext length. | 
 |   size_t plaintext_limit = SSL3_RT_MAX_PLAIN_LENGTH + (has_padding ? 1 : 0); | 
 |   if (out->size() > plaintext_limit) { | 
 |     OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG); | 
 |     *out_alert = SSL_AD_RECORD_OVERFLOW; | 
 |     return ssl_open_record_error; | 
 |   } | 
 |  | 
 |   if (has_padding) { | 
 |     do { | 
 |       if (out->empty()) { | 
 |         OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC); | 
 |         *out_alert = SSL_AD_DECRYPT_ERROR; | 
 |         return ssl_open_record_error; | 
 |       } | 
 |       type = out->back(); | 
 |       *out = out->subspan(0, out->size() - 1); | 
 |     } while (type == 0); | 
 |   } | 
 |  | 
 |   dtls1_bitmap_record(&ssl->d1->bitmap, sequence); | 
 |  | 
 |   // TODO(davidben): Limit the number of empty records as in TLS? This is only | 
 |   // useful if we also limit discarded packets. | 
 |  | 
 |   if (type == SSL3_RT_ALERT) { | 
 |     return ssl_process_alert(ssl, out_alert, *out); | 
 |   } | 
 |  | 
 |   ssl->s3->warning_alert_count = 0; | 
 |  | 
 |   *out_type = type; | 
 |   return ssl_open_record_success; | 
 | } | 
 |  | 
 | static SSLAEADContext *get_write_aead(const SSL *ssl, uint16_t epoch) { | 
 |   if (epoch == 0) { | 
 |     return ssl->d1->initial_epoch_state->aead_write_ctx.get(); | 
 |   } | 
 |  | 
 |   if (epoch < ssl->d1->w_epoch) { | 
 |     BSSL_CHECK(epoch + 1 == ssl->d1->w_epoch); | 
 |     return ssl->d1->last_epoch_state.aead_write_ctx.get(); | 
 |   } | 
 |  | 
 |   BSSL_CHECK(epoch == ssl->d1->w_epoch); | 
 |   return ssl->s3->aead_write_ctx.get(); | 
 | } | 
 |  | 
 | static bool use_dtls13_record_header(const SSL *ssl, uint16_t epoch) { | 
 |   // Plaintext records in DTLS 1.3 also use the DTLSPlaintext structure for | 
 |   // backwards compatibility. | 
 |   return ssl->s3->version != 0 && ssl_protocol_version(ssl) > TLS1_2_VERSION && | 
 |          epoch > 0; | 
 | } | 
 |  | 
 | size_t dtls_record_header_write_len(const SSL *ssl, uint16_t epoch) { | 
 |   if (!use_dtls13_record_header(ssl, epoch)) { | 
 |     return DTLS_PLAINTEXT_RECORD_HEADER_LENGTH; | 
 |   } | 
 |   // The DTLS 1.3 has a variable length record header. We never send Connection | 
 |   // ID, we always send 16-bit sequence numbers, and we send a length. (Length | 
 |   // can be omitted, but only for the last record of a packet. Since we send | 
 |   // multiple records in one packet, it's easier to implement always sending the | 
 |   // length.) | 
 |   return DTLS1_3_RECORD_HEADER_WRITE_LENGTH; | 
 | } | 
 |  | 
 | size_t dtls_max_seal_overhead(const SSL *ssl, | 
 |                               uint16_t epoch) { | 
 |   size_t ret = dtls_record_header_write_len(ssl, epoch) + | 
 |                get_write_aead(ssl, epoch)->MaxOverhead(); | 
 |   if (use_dtls13_record_header(ssl, epoch)) { | 
 |     // Add 1 byte for the encrypted record type. | 
 |     ret++; | 
 |   } | 
 |   return ret; | 
 | } | 
 |  | 
 | size_t dtls_seal_prefix_len(const SSL *ssl, uint16_t epoch) { | 
 |   return dtls_record_header_write_len(ssl, epoch) + | 
 |          get_write_aead(ssl, epoch)->ExplicitNonceLen(); | 
 | } | 
 |  | 
 | bool dtls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, | 
 |                       uint8_t type, const uint8_t *in, size_t in_len, | 
 |                       uint16_t epoch) { | 
 |   const size_t prefix = dtls_seal_prefix_len(ssl, epoch); | 
 |   if (buffers_alias(in, in_len, out, max_out) && | 
 |       (max_out < prefix || out + prefix != in)) { | 
 |     OPENSSL_PUT_ERROR(SSL, SSL_R_OUTPUT_ALIASES_INPUT); | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Determine the parameters for the current epoch. | 
 |   SSLAEADContext *aead = get_write_aead(ssl, epoch); | 
 |   uint64_t *seq = &ssl->s3->write_sequence; | 
 |   if (epoch == 0) { | 
 |     seq = &ssl->d1->initial_epoch_state->write_sequence; | 
 |   } else if (epoch < ssl->d1->w_epoch) { | 
 |     seq = &ssl->d1->last_epoch_state.write_sequence; | 
 |   } | 
 |  | 
 |   const size_t record_header_len = dtls_record_header_write_len(ssl, epoch); | 
 |  | 
 |   // Ensure the sequence number update does not overflow. | 
 |   const uint64_t kMaxSequenceNumber = (uint64_t{1} << 48) - 1; | 
 |   if (*seq + 1 > kMaxSequenceNumber) { | 
 |     OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); | 
 |     return false; | 
 |   } | 
 |  | 
 |   uint16_t record_version = ssl->s3->aead_write_ctx->RecordVersion(); | 
 |   uint64_t seq_with_epoch = (uint64_t{epoch} << 48) | *seq; | 
 |  | 
 |   bool dtls13_header = use_dtls13_record_header(ssl, epoch); | 
 |   uint8_t *extra_in = NULL; | 
 |   size_t extra_in_len = 0; | 
 |   if (dtls13_header) { | 
 |     extra_in = &type; | 
 |     extra_in_len = 1; | 
 |   } | 
 |  | 
 |   size_t ciphertext_len; | 
 |   if (!aead->CiphertextLen(&ciphertext_len, in_len, extra_in_len)) { | 
 |     OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE); | 
 |     return false; | 
 |   } | 
 |   if (max_out < record_header_len + ciphertext_len) { | 
 |     OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFER_TOO_SMALL); | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (dtls13_header) { | 
 |     // The first byte of the DTLS 1.3 record header has the following format: | 
 |     // 0 1 2 3 4 5 6 7 | 
 |     // +-+-+-+-+-+-+-+-+ | 
 |     // |0|0|1|C|S|L|E E| | 
 |     // +-+-+-+-+-+-+-+-+ | 
 |     // | 
 |     // We set C=0 (no Connection ID), S=1 (16-bit sequence number), L=1 (length | 
 |     // is present), which is a mask of 0x2c. The E E bits are the low-order two | 
 |     // bits of the epoch. | 
 |     // | 
 |     // +-+-+-+-+-+-+-+-+ | 
 |     // |0|0|1|0|1|1|E E| | 
 |     // +-+-+-+-+-+-+-+-+ | 
 |     out[0] = 0x2c | (epoch & 0x3); | 
 |     out[1] = *seq >> 8; | 
 |     out[2] = *seq & 0xff; | 
 |     out[3] = ciphertext_len >> 8; | 
 |     out[4] = ciphertext_len & 0xff; | 
 |     // DTLS 1.3 uses the sequence number without the epoch for the AEAD. | 
 |     seq_with_epoch = *seq; | 
 |   } else { | 
 |     out[0] = type; | 
 |     out[1] = record_version >> 8; | 
 |     out[2] = record_version & 0xff; | 
 |     CRYPTO_store_u64_be(&out[3], seq_with_epoch); | 
 |     out[11] = ciphertext_len >> 8; | 
 |     out[12] = ciphertext_len & 0xff; | 
 |   } | 
 |   Span<const uint8_t> header = MakeConstSpan(out, record_header_len); | 
 |  | 
 |  | 
 |   if (!aead->SealScatter(out + record_header_len, out + prefix, | 
 |                          out + prefix + in_len, type, record_version, | 
 |                          seq_with_epoch, header, in, in_len, extra_in, | 
 |                          extra_in_len)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Perform record number encryption (RFC 9147 section 4.2.3). | 
 |   if (dtls13_header) { | 
 |     // Record number encryption uses bytes from the ciphertext as a sample to | 
 |     // generate the mask used for encryption. For simplicity, pass in the whole | 
 |     // ciphertext as the sample - GenerateRecordNumberMask will read only what | 
 |     // it needs (and error if |sample| is too short). | 
 |     Span<const uint8_t> sample = | 
 |         MakeConstSpan(out + record_header_len, ciphertext_len); | 
 |     // AES cipher suites require the mask be exactly AES_BLOCK_SIZE; ChaCha20 | 
 |     // cipher suites have no requirements on the mask size. We only need the | 
 |     // first two bytes from the mask. | 
 |     uint8_t mask[AES_BLOCK_SIZE]; | 
 |     if (!aead->GenerateRecordNumberMask(mask, sample)) { | 
 |       return false; | 
 |     } | 
 |     out[1] ^= mask[0]; | 
 |     out[2] ^= mask[1]; | 
 |   } | 
 |  | 
 |   (*seq)++; | 
 |   *out_len = record_header_len + ciphertext_len; | 
 |   ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_HEADER, header); | 
 |   return true; | 
 | } | 
 |  | 
 | BSSL_NAMESPACE_END |