|  | // Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include <openssl/asn1.h> | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <limits.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <openssl/bytestring.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/mem.h> | 
|  |  | 
|  | #include "../internal.h" | 
|  | #include "internal.h" | 
|  |  | 
|  |  | 
|  | ASN1_INTEGER *ASN1_INTEGER_dup(const ASN1_INTEGER *x) { | 
|  | return ASN1_STRING_dup(x); | 
|  | } | 
|  |  | 
|  | int ASN1_INTEGER_cmp(const ASN1_INTEGER *x, const ASN1_INTEGER *y) { | 
|  | // Compare signs. | 
|  | int neg = x->type & V_ASN1_NEG; | 
|  | if (neg != (y->type & V_ASN1_NEG)) { | 
|  | return neg ? -1 : 1; | 
|  | } | 
|  |  | 
|  | int ret = ASN1_STRING_cmp(x, y); | 
|  | if (neg) { | 
|  | // This could be |-ret|, but |ASN1_STRING_cmp| is not forbidden from | 
|  | // returning |INT_MIN|. | 
|  | if (ret < 0) { | 
|  | return 1; | 
|  | } else if (ret > 0) { | 
|  | return -1; | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | // negate_twos_complement negates |len| bytes from |buf| in-place, interpreted | 
|  | // as a signed, big-endian two's complement value. | 
|  | static void negate_twos_complement(uint8_t *buf, size_t len) { | 
|  | uint8_t borrow = 0; | 
|  | for (size_t i = len - 1; i < len; i--) { | 
|  | uint8_t t = buf[i]; | 
|  | buf[i] = 0u - borrow - t; | 
|  | borrow |= t != 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int is_all_zeros(const uint8_t *in, size_t len) { | 
|  | for (size_t i = 0; i < len; i++) { | 
|  | if (in[i] != 0) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int asn1_marshal_integer(CBB *out, const ASN1_INTEGER *in, CBS_ASN1_TAG tag) { | 
|  | int len = i2c_ASN1_INTEGER(in, nullptr); | 
|  | if (len <= 0) { | 
|  | return 0; | 
|  | } | 
|  | tag = tag == 0 ? CBS_ASN1_INTEGER : tag; | 
|  | CBB child; | 
|  | uint8_t *ptr; | 
|  | return CBB_add_asn1(out, &child, tag) &&     // | 
|  | CBB_add_space(&child, &ptr, static_cast<size_t>(len)) &&   // | 
|  | i2c_ASN1_INTEGER(in, &ptr) == len &&  // | 
|  | CBB_flush(out); | 
|  | } | 
|  |  | 
|  | int i2c_ASN1_INTEGER(const ASN1_INTEGER *in, unsigned char **outp) { | 
|  | if (in == NULL) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // |ASN1_INTEGER|s should be represented minimally, but it is possible to | 
|  | // construct invalid ones. Skip leading zeros so this does not produce an | 
|  | // invalid encoding or break invariants. | 
|  | CBS cbs; | 
|  | CBS_init(&cbs, in->data, in->length); | 
|  | while (CBS_len(&cbs) > 0 && CBS_data(&cbs)[0] == 0) { | 
|  | CBS_skip(&cbs, 1); | 
|  | } | 
|  |  | 
|  | int is_negative = (in->type & V_ASN1_NEG) != 0; | 
|  | size_t pad; | 
|  | CBS copy = cbs; | 
|  | uint8_t msb; | 
|  | if (!CBS_get_u8(©, &msb)) { | 
|  | // Zero is represented as a single byte. | 
|  | is_negative = 0; | 
|  | pad = 1; | 
|  | } else if (is_negative) { | 
|  | // 0x80...01 through 0xff...ff have a two's complement of 0x7f...ff | 
|  | // through 0x00...01 and need an extra byte to be negative. | 
|  | // 0x01...00 through 0x80...00 have a two's complement of 0xfe...ff | 
|  | // through 0x80...00 and can be negated as-is. | 
|  | pad = msb > 0x80 || | 
|  | (msb == 0x80 && !is_all_zeros(CBS_data(©), CBS_len(©))); | 
|  | } else { | 
|  | // If the high bit is set, the signed representation needs an extra | 
|  | // byte to be positive. | 
|  | pad = (msb & 0x80) != 0; | 
|  | } | 
|  |  | 
|  | if (CBS_len(&cbs) > INT_MAX - pad) { | 
|  | OPENSSL_PUT_ERROR(ASN1, ERR_R_OVERFLOW); | 
|  | return 0; | 
|  | } | 
|  | int len = (int)(pad + CBS_len(&cbs)); | 
|  | assert(len > 0); | 
|  | if (outp == NULL) { | 
|  | return len; | 
|  | } | 
|  |  | 
|  | if (pad) { | 
|  | (*outp)[0] = 0; | 
|  | } | 
|  | OPENSSL_memcpy(*outp + pad, CBS_data(&cbs), CBS_len(&cbs)); | 
|  | if (is_negative) { | 
|  | negate_twos_complement(*outp, len); | 
|  | assert((*outp)[0] >= 0x80); | 
|  | } else { | 
|  | assert((*outp)[0] < 0x80); | 
|  | } | 
|  | *outp += len; | 
|  | return len; | 
|  | } | 
|  |  | 
|  | ASN1_INTEGER *c2i_ASN1_INTEGER(ASN1_INTEGER **out, const unsigned char **inp, | 
|  | long len) { | 
|  | // This function can handle lengths up to INT_MAX - 1, but the rest of the | 
|  | // legacy ASN.1 code mixes integer types, so avoid exposing it to | 
|  | // ASN1_INTEGERS with larger lengths. | 
|  | if (len < 0 || len > INT_MAX / 2) { | 
|  | OPENSSL_PUT_ERROR(ASN1, ASN1_R_TOO_LONG); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | CBS cbs; | 
|  | CBS_init(&cbs, *inp, (size_t)len); | 
|  | int is_negative; | 
|  | if (!CBS_is_valid_asn1_integer(&cbs, &is_negative)) { | 
|  | OPENSSL_PUT_ERROR(ASN1, ASN1_R_INVALID_INTEGER); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | ASN1_INTEGER *ret = NULL; | 
|  | if (out == NULL || *out == NULL) { | 
|  | ret = ASN1_INTEGER_new(); | 
|  | if (ret == NULL) { | 
|  | return NULL; | 
|  | } | 
|  | } else { | 
|  | ret = *out; | 
|  | } | 
|  |  | 
|  | // Convert to |ASN1_INTEGER|'s sign-and-magnitude representation. First, | 
|  | // determine the size needed for a minimal result. | 
|  | if (is_negative) { | 
|  | // 0xff00...01 through 0xff7f..ff have a two's complement of 0x00ff...ff | 
|  | // through 0x000100...001 and need one leading zero removed. 0x8000...00 | 
|  | // through 0xff00...00 have a two's complement of 0x8000...00 through | 
|  | // 0x0100...00 and will be minimally-encoded as-is. | 
|  | if (CBS_len(&cbs) > 0 && CBS_data(&cbs)[0] == 0xff && | 
|  | !is_all_zeros(CBS_data(&cbs) + 1, CBS_len(&cbs) - 1)) { | 
|  | CBS_skip(&cbs, 1); | 
|  | } | 
|  | } else { | 
|  | // Remove the leading zero byte, if any. | 
|  | if (CBS_len(&cbs) > 0 && CBS_data(&cbs)[0] == 0x00) { | 
|  | CBS_skip(&cbs, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!ASN1_STRING_set(ret, CBS_data(&cbs), CBS_len(&cbs))) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (is_negative) { | 
|  | ret->type = V_ASN1_NEG_INTEGER; | 
|  | negate_twos_complement(ret->data, ret->length); | 
|  | } else { | 
|  | ret->type = V_ASN1_INTEGER; | 
|  | } | 
|  |  | 
|  | // The value should be minimally-encoded. | 
|  | assert(ret->length == 0 || ret->data[0] != 0); | 
|  | // Zero is not negative. | 
|  | assert(!is_negative || ret->length > 0); | 
|  |  | 
|  | *inp += len; | 
|  | if (out != NULL) { | 
|  | *out = ret; | 
|  | } | 
|  | return ret; | 
|  |  | 
|  | err: | 
|  | if (ret != NULL && (out == NULL || *out != ret)) { | 
|  | ASN1_INTEGER_free(ret); | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | int ASN1_INTEGER_set_int64(ASN1_INTEGER *a, int64_t v) { | 
|  | if (v >= 0) { | 
|  | return ASN1_INTEGER_set_uint64(a, (uint64_t)v); | 
|  | } | 
|  |  | 
|  | if (!ASN1_INTEGER_set_uint64(a, 0 - (uint64_t)v)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | a->type = V_ASN1_NEG_INTEGER; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int ASN1_ENUMERATED_set_int64(ASN1_ENUMERATED *a, int64_t v) { | 
|  | if (v >= 0) { | 
|  | return ASN1_ENUMERATED_set_uint64(a, (uint64_t)v); | 
|  | } | 
|  |  | 
|  | if (!ASN1_ENUMERATED_set_uint64(a, 0 - (uint64_t)v)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | a->type = V_ASN1_NEG_ENUMERATED; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int ASN1_INTEGER_set(ASN1_INTEGER *a, long v) { | 
|  | static_assert(sizeof(long) <= sizeof(int64_t), "long fits in int64_t"); | 
|  | return ASN1_INTEGER_set_int64(a, v); | 
|  | } | 
|  |  | 
|  | int ASN1_ENUMERATED_set(ASN1_ENUMERATED *a, long v) { | 
|  | static_assert(sizeof(long) <= sizeof(int64_t), "long fits in int64_t"); | 
|  | return ASN1_ENUMERATED_set_int64(a, v); | 
|  | } | 
|  |  | 
|  | static int asn1_string_set_uint64(ASN1_STRING *out, uint64_t v, int type) { | 
|  | uint8_t buf[sizeof(uint64_t)]; | 
|  | CRYPTO_store_u64_be(buf, v); | 
|  | size_t leading_zeros; | 
|  | for (leading_zeros = 0; leading_zeros < sizeof(buf); leading_zeros++) { | 
|  | if (buf[leading_zeros] != 0) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!ASN1_STRING_set(out, buf + leading_zeros, sizeof(buf) - leading_zeros)) { | 
|  | return 0; | 
|  | } | 
|  | out->type = type; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int ASN1_INTEGER_set_uint64(ASN1_INTEGER *out, uint64_t v) { | 
|  | return asn1_string_set_uint64(out, v, V_ASN1_INTEGER); | 
|  | } | 
|  |  | 
|  | int ASN1_ENUMERATED_set_uint64(ASN1_ENUMERATED *out, uint64_t v) { | 
|  | return asn1_string_set_uint64(out, v, V_ASN1_ENUMERATED); | 
|  | } | 
|  |  | 
|  | static int asn1_string_get_abs_uint64(uint64_t *out, const ASN1_STRING *a, | 
|  | int type) { | 
|  | if ((a->type & ~V_ASN1_NEG) != type) { | 
|  | OPENSSL_PUT_ERROR(ASN1, ASN1_R_WRONG_INTEGER_TYPE); | 
|  | return 0; | 
|  | } | 
|  | uint8_t buf[sizeof(uint64_t)] = {0}; | 
|  | if (a->length > (int)sizeof(buf)) { | 
|  | OPENSSL_PUT_ERROR(ASN1, ASN1_R_INVALID_INTEGER); | 
|  | return 0; | 
|  | } | 
|  | OPENSSL_memcpy(buf + sizeof(buf) - a->length, a->data, a->length); | 
|  | *out = CRYPTO_load_u64_be(buf); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int asn1_string_get_uint64(uint64_t *out, const ASN1_STRING *a, | 
|  | int type) { | 
|  | if (!asn1_string_get_abs_uint64(out, a, type)) { | 
|  | return 0; | 
|  | } | 
|  | if (a->type & V_ASN1_NEG) { | 
|  | OPENSSL_PUT_ERROR(ASN1, ASN1_R_INVALID_INTEGER); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int ASN1_INTEGER_get_uint64(uint64_t *out, const ASN1_INTEGER *a) { | 
|  | return asn1_string_get_uint64(out, a, V_ASN1_INTEGER); | 
|  | } | 
|  |  | 
|  | int ASN1_ENUMERATED_get_uint64(uint64_t *out, const ASN1_ENUMERATED *a) { | 
|  | return asn1_string_get_uint64(out, a, V_ASN1_ENUMERATED); | 
|  | } | 
|  |  | 
|  | static int asn1_string_get_int64(int64_t *out, const ASN1_STRING *a, int type) { | 
|  | uint64_t v; | 
|  | if (!asn1_string_get_abs_uint64(&v, a, type)) { | 
|  | return 0; | 
|  | } | 
|  | int64_t i64; | 
|  | int fits_in_i64; | 
|  | // Check |v != 0| to handle manually-constructed negative zeros. | 
|  | if ((a->type & V_ASN1_NEG) && v != 0) { | 
|  | i64 = (int64_t)(0u - v); | 
|  | fits_in_i64 = i64 < 0; | 
|  | } else { | 
|  | i64 = (int64_t)v; | 
|  | fits_in_i64 = i64 >= 0; | 
|  | } | 
|  | if (!fits_in_i64) { | 
|  | OPENSSL_PUT_ERROR(ASN1, ASN1_R_INVALID_INTEGER); | 
|  | return 0; | 
|  | } | 
|  | *out = i64; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int ASN1_INTEGER_get_int64(int64_t *out, const ASN1_INTEGER *a) { | 
|  | return asn1_string_get_int64(out, a, V_ASN1_INTEGER); | 
|  | } | 
|  |  | 
|  | int ASN1_ENUMERATED_get_int64(int64_t *out, const ASN1_ENUMERATED *a) { | 
|  | return asn1_string_get_int64(out, a, V_ASN1_ENUMERATED); | 
|  | } | 
|  |  | 
|  | static long asn1_string_get_long(const ASN1_STRING *a, int type) { | 
|  | if (a == NULL) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int64_t v; | 
|  | if (!asn1_string_get_int64(&v, a, type) ||  // | 
|  | v < LONG_MIN || v > LONG_MAX) { | 
|  | // This function's return value does not distinguish overflow from -1. | 
|  | ERR_clear_error(); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return (long)v; | 
|  | } | 
|  |  | 
|  | long ASN1_INTEGER_get(const ASN1_INTEGER *a) { | 
|  | return asn1_string_get_long(a, V_ASN1_INTEGER); | 
|  | } | 
|  |  | 
|  | long ASN1_ENUMERATED_get(const ASN1_ENUMERATED *a) { | 
|  | return asn1_string_get_long(a, V_ASN1_ENUMERATED); | 
|  | } | 
|  |  | 
|  | static ASN1_STRING *bn_to_asn1_string(const BIGNUM *bn, ASN1_STRING *ai, | 
|  | int type) { | 
|  | ASN1_INTEGER *ret; | 
|  | if (ai == NULL) { | 
|  | ret = ASN1_STRING_type_new(type); | 
|  | } else { | 
|  | ret = ai; | 
|  | } | 
|  | int len; | 
|  | if (ret == NULL) { | 
|  | OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (BN_is_negative(bn) && !BN_is_zero(bn)) { | 
|  | ret->type = type | V_ASN1_NEG; | 
|  | } else { | 
|  | ret->type = type; | 
|  | } | 
|  |  | 
|  | len = BN_num_bytes(bn); | 
|  | if (!ASN1_STRING_set(ret, NULL, len) || | 
|  | !BN_bn2bin_padded(ret->data, len, bn)) { | 
|  | goto err; | 
|  | } | 
|  | return ret; | 
|  |  | 
|  | err: | 
|  | if (ret != ai) { | 
|  | ASN1_STRING_free(ret); | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | ASN1_INTEGER *BN_to_ASN1_INTEGER(const BIGNUM *bn, ASN1_INTEGER *ai) { | 
|  | return bn_to_asn1_string(bn, ai, V_ASN1_INTEGER); | 
|  | } | 
|  |  | 
|  | ASN1_ENUMERATED *BN_to_ASN1_ENUMERATED(const BIGNUM *bn, ASN1_ENUMERATED *ai) { | 
|  | return bn_to_asn1_string(bn, ai, V_ASN1_ENUMERATED); | 
|  | } | 
|  |  | 
|  | static BIGNUM *asn1_string_to_bn(const ASN1_STRING *ai, BIGNUM *bn, int type) { | 
|  | if ((ai->type & ~V_ASN1_NEG) != type) { | 
|  | OPENSSL_PUT_ERROR(ASN1, ASN1_R_WRONG_INTEGER_TYPE); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | BIGNUM *ret; | 
|  | if ((ret = BN_bin2bn(ai->data, ai->length, bn)) == NULL) { | 
|  | OPENSSL_PUT_ERROR(ASN1, ASN1_R_BN_LIB); | 
|  | } else if (ai->type & V_ASN1_NEG) { | 
|  | BN_set_negative(ret, 1); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | BIGNUM *ASN1_INTEGER_to_BN(const ASN1_INTEGER *ai, BIGNUM *bn) { | 
|  | return asn1_string_to_bn(ai, bn, V_ASN1_INTEGER); | 
|  | } | 
|  |  | 
|  | BIGNUM *ASN1_ENUMERATED_to_BN(const ASN1_ENUMERATED *ai, BIGNUM *bn) { | 
|  | return asn1_string_to_bn(ai, bn, V_ASN1_ENUMERATED); | 
|  | } |