| #! /usr/bin/env perl |
| # Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved. |
| # |
| # Licensed under the OpenSSL license (the "License"). You may not use |
| # this file except in compliance with the License. You can obtain a copy |
| # in the file LICENSE in the source distribution or at |
| # https://www.openssl.org/source/license.html |
| |
| # |
| # ==================================================================== |
| # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL |
| # project. The module is, however, dual licensed under OpenSSL and |
| # CRYPTOGAMS licenses depending on where you obtain it. For further |
| # details see http://www.openssl.org/~appro/cryptogams/. |
| # ==================================================================== |
| # |
| # GHASH for for PowerISA v2.07. |
| # |
| # July 2014 |
| # |
| # Accurate performance measurements are problematic, because it's |
| # always virtualized setup with possibly throttled processor. |
| # Relative comparison is therefore more informative. This initial |
| # version is ~2.1x slower than hardware-assisted AES-128-CTR, ~12x |
| # faster than "4-bit" integer-only compiler-generated 64-bit code. |
| # "Initial version" means that there is room for futher improvement. |
| |
| # May 2016 |
| # |
| # 2x aggregated reduction improves performance by 50% (resulting |
| # performance on POWER8 is 1 cycle per processed byte), and 4x |
| # aggregated reduction - by 170% or 2.7x (resulting in 0.55 cpb). |
| |
| $flavour=shift; |
| $output =shift; |
| |
| if ($flavour =~ /64/) { |
| $SIZE_T=8; |
| $LRSAVE=2*$SIZE_T; |
| $STU="stdu"; |
| $POP="ld"; |
| $PUSH="std"; |
| $UCMP="cmpld"; |
| $SHRI="srdi"; |
| } elsif ($flavour =~ /32/) { |
| $SIZE_T=4; |
| $LRSAVE=$SIZE_T; |
| $STU="stwu"; |
| $POP="lwz"; |
| $PUSH="stw"; |
| $UCMP="cmplw"; |
| $SHRI="srwi"; |
| } else { die "nonsense $flavour"; } |
| |
| $sp="r1"; |
| $FRAME=6*$SIZE_T+13*16; # 13*16 is for v20-v31 offload |
| |
| $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; |
| ( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or |
| ( $xlate="${dir}../../../perlasm/ppc-xlate.pl" and -f $xlate) or |
| die "can't locate ppc-xlate.pl"; |
| |
| open STDOUT,"| $^X $xlate $flavour $output" || die "can't call $xlate: $!"; |
| |
| my ($Xip,$Htbl,$inp,$len)=map("r$_",(3..6)); # argument block |
| |
| my ($Xl,$Xm,$Xh,$IN)=map("v$_",(0..3)); |
| my ($zero,$t0,$t1,$t2,$xC2,$H,$Hh,$Hl,$lemask)=map("v$_",(4..12)); |
| my ($Xl1,$Xm1,$Xh1,$IN1,$H2,$H2h,$H2l)=map("v$_",(13..19)); |
| my $vrsave="r12"; |
| |
| $code=<<___; |
| .machine "any" |
| |
| .text |
| |
| .globl .gcm_init_p8 |
| .align 5 |
| .gcm_init_p8: |
| li r0,-4096 |
| li r8,0x10 |
| mfspr $vrsave,256 |
| li r9,0x20 |
| mtspr 256,r0 |
| li r10,0x30 |
| lvx_u $H,0,r4 # load H |
| |
| vspltisb $xC2,-16 # 0xf0 |
| vspltisb $t0,1 # one |
| vaddubm $xC2,$xC2,$xC2 # 0xe0 |
| vxor $zero,$zero,$zero |
| vor $xC2,$xC2,$t0 # 0xe1 |
| vsldoi $xC2,$xC2,$zero,15 # 0xe1... |
| vsldoi $t1,$zero,$t0,1 # ...1 |
| vaddubm $xC2,$xC2,$xC2 # 0xc2... |
| vspltisb $t2,7 |
| vor $xC2,$xC2,$t1 # 0xc2....01 |
| vspltb $t1,$H,0 # most significant byte |
| vsl $H,$H,$t0 # H<<=1 |
| vsrab $t1,$t1,$t2 # broadcast carry bit |
| vand $t1,$t1,$xC2 |
| vxor $IN,$H,$t1 # twisted H |
| |
| vsldoi $H,$IN,$IN,8 # twist even more ... |
| vsldoi $xC2,$zero,$xC2,8 # 0xc2.0 |
| vsldoi $Hl,$zero,$H,8 # ... and split |
| vsldoi $Hh,$H,$zero,8 |
| |
| stvx_u $xC2,0,r3 # save pre-computed table |
| stvx_u $Hl,r8,r3 |
| li r8,0x40 |
| stvx_u $H, r9,r3 |
| li r9,0x50 |
| stvx_u $Hh,r10,r3 |
| li r10,0x60 |
| |
| vpmsumd $Xl,$IN,$Hl # H.lo·H.lo |
| vpmsumd $Xm,$IN,$H # H.hi·H.lo+H.lo·H.hi |
| vpmsumd $Xh,$IN,$Hh # H.hi·H.hi |
| |
| vpmsumd $t2,$Xl,$xC2 # 1st reduction phase |
| |
| vsldoi $t0,$Xm,$zero,8 |
| vsldoi $t1,$zero,$Xm,8 |
| vxor $Xl,$Xl,$t0 |
| vxor $Xh,$Xh,$t1 |
| |
| vsldoi $Xl,$Xl,$Xl,8 |
| vxor $Xl,$Xl,$t2 |
| |
| vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase |
| vpmsumd $Xl,$Xl,$xC2 |
| vxor $t1,$t1,$Xh |
| vxor $IN1,$Xl,$t1 |
| |
| vsldoi $H2,$IN1,$IN1,8 |
| vsldoi $H2l,$zero,$H2,8 |
| vsldoi $H2h,$H2,$zero,8 |
| |
| stvx_u $H2l,r8,r3 # save H^2 |
| li r8,0x70 |
| stvx_u $H2,r9,r3 |
| li r9,0x80 |
| stvx_u $H2h,r10,r3 |
| li r10,0x90 |
| ___ |
| { |
| my ($t4,$t5,$t6) = ($Hl,$H,$Hh); |
| $code.=<<___; |
| vpmsumd $Xl,$IN,$H2l # H.lo·H^2.lo |
| vpmsumd $Xl1,$IN1,$H2l # H^2.lo·H^2.lo |
| vpmsumd $Xm,$IN,$H2 # H.hi·H^2.lo+H.lo·H^2.hi |
| vpmsumd $Xm1,$IN1,$H2 # H^2.hi·H^2.lo+H^2.lo·H^2.hi |
| vpmsumd $Xh,$IN,$H2h # H.hi·H^2.hi |
| vpmsumd $Xh1,$IN1,$H2h # H^2.hi·H^2.hi |
| |
| vpmsumd $t2,$Xl,$xC2 # 1st reduction phase |
| vpmsumd $t6,$Xl1,$xC2 # 1st reduction phase |
| |
| vsldoi $t0,$Xm,$zero,8 |
| vsldoi $t1,$zero,$Xm,8 |
| vsldoi $t4,$Xm1,$zero,8 |
| vsldoi $t5,$zero,$Xm1,8 |
| vxor $Xl,$Xl,$t0 |
| vxor $Xh,$Xh,$t1 |
| vxor $Xl1,$Xl1,$t4 |
| vxor $Xh1,$Xh1,$t5 |
| |
| vsldoi $Xl,$Xl,$Xl,8 |
| vsldoi $Xl1,$Xl1,$Xl1,8 |
| vxor $Xl,$Xl,$t2 |
| vxor $Xl1,$Xl1,$t6 |
| |
| vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase |
| vsldoi $t5,$Xl1,$Xl1,8 # 2nd reduction phase |
| vpmsumd $Xl,$Xl,$xC2 |
| vpmsumd $Xl1,$Xl1,$xC2 |
| vxor $t1,$t1,$Xh |
| vxor $t5,$t5,$Xh1 |
| vxor $Xl,$Xl,$t1 |
| vxor $Xl1,$Xl1,$t5 |
| |
| vsldoi $H,$Xl,$Xl,8 |
| vsldoi $H2,$Xl1,$Xl1,8 |
| vsldoi $Hl,$zero,$H,8 |
| vsldoi $Hh,$H,$zero,8 |
| vsldoi $H2l,$zero,$H2,8 |
| vsldoi $H2h,$H2,$zero,8 |
| |
| stvx_u $Hl,r8,r3 # save H^3 |
| li r8,0xa0 |
| stvx_u $H,r9,r3 |
| li r9,0xb0 |
| stvx_u $Hh,r10,r3 |
| li r10,0xc0 |
| stvx_u $H2l,r8,r3 # save H^4 |
| stvx_u $H2,r9,r3 |
| stvx_u $H2h,r10,r3 |
| |
| mtspr 256,$vrsave |
| blr |
| .long 0 |
| .byte 0,12,0x14,0,0,0,2,0 |
| .long 0 |
| .size .gcm_init_p8,.-.gcm_init_p8 |
| ___ |
| } |
| $code.=<<___; |
| .globl .gcm_gmult_p8 |
| .align 5 |
| .gcm_gmult_p8: |
| lis r0,0xfff8 |
| li r8,0x10 |
| mfspr $vrsave,256 |
| li r9,0x20 |
| mtspr 256,r0 |
| li r10,0x30 |
| lvx_u $IN,0,$Xip # load Xi |
| |
| lvx_u $Hl,r8,$Htbl # load pre-computed table |
| le?lvsl $lemask,r0,r0 |
| lvx_u $H, r9,$Htbl |
| le?vspltisb $t0,0x07 |
| lvx_u $Hh,r10,$Htbl |
| le?vxor $lemask,$lemask,$t0 |
| lvx_u $xC2,0,$Htbl |
| le?vperm $IN,$IN,$IN,$lemask |
| vxor $zero,$zero,$zero |
| |
| vpmsumd $Xl,$IN,$Hl # H.lo·Xi.lo |
| vpmsumd $Xm,$IN,$H # H.hi·Xi.lo+H.lo·Xi.hi |
| vpmsumd $Xh,$IN,$Hh # H.hi·Xi.hi |
| |
| vpmsumd $t2,$Xl,$xC2 # 1st reduction phase |
| |
| vsldoi $t0,$Xm,$zero,8 |
| vsldoi $t1,$zero,$Xm,8 |
| vxor $Xl,$Xl,$t0 |
| vxor $Xh,$Xh,$t1 |
| |
| vsldoi $Xl,$Xl,$Xl,8 |
| vxor $Xl,$Xl,$t2 |
| |
| vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase |
| vpmsumd $Xl,$Xl,$xC2 |
| vxor $t1,$t1,$Xh |
| vxor $Xl,$Xl,$t1 |
| |
| le?vperm $Xl,$Xl,$Xl,$lemask |
| stvx_u $Xl,0,$Xip # write out Xi |
| |
| mtspr 256,$vrsave |
| blr |
| .long 0 |
| .byte 0,12,0x14,0,0,0,2,0 |
| .long 0 |
| .size .gcm_gmult_p8,.-.gcm_gmult_p8 |
| |
| .globl .gcm_ghash_p8 |
| .align 5 |
| .gcm_ghash_p8: |
| li r0,-4096 |
| li r8,0x10 |
| mfspr $vrsave,256 |
| li r9,0x20 |
| mtspr 256,r0 |
| li r10,0x30 |
| lvx_u $Xl,0,$Xip # load Xi |
| |
| lvx_u $Hl,r8,$Htbl # load pre-computed table |
| li r8,0x40 |
| le?lvsl $lemask,r0,r0 |
| lvx_u $H, r9,$Htbl |
| li r9,0x50 |
| le?vspltisb $t0,0x07 |
| lvx_u $Hh,r10,$Htbl |
| li r10,0x60 |
| le?vxor $lemask,$lemask,$t0 |
| lvx_u $xC2,0,$Htbl |
| le?vperm $Xl,$Xl,$Xl,$lemask |
| vxor $zero,$zero,$zero |
| |
| ${UCMP}i $len,64 |
| bge Lgcm_ghash_p8_4x |
| |
| lvx_u $IN,0,$inp |
| addi $inp,$inp,16 |
| subic. $len,$len,16 |
| le?vperm $IN,$IN,$IN,$lemask |
| vxor $IN,$IN,$Xl |
| beq Lshort |
| |
| lvx_u $H2l,r8,$Htbl # load H^2 |
| li r8,16 |
| lvx_u $H2, r9,$Htbl |
| add r9,$inp,$len # end of input |
| lvx_u $H2h,r10,$Htbl |
| be?b Loop_2x |
| |
| .align 5 |
| Loop_2x: |
| lvx_u $IN1,0,$inp |
| le?vperm $IN1,$IN1,$IN1,$lemask |
| |
| subic $len,$len,32 |
| vpmsumd $Xl,$IN,$H2l # H^2.lo·Xi.lo |
| vpmsumd $Xl1,$IN1,$Hl # H.lo·Xi+1.lo |
| subfe r0,r0,r0 # borrow?-1:0 |
| vpmsumd $Xm,$IN,$H2 # H^2.hi·Xi.lo+H^2.lo·Xi.hi |
| vpmsumd $Xm1,$IN1,$H # H.hi·Xi+1.lo+H.lo·Xi+1.hi |
| and r0,r0,$len |
| vpmsumd $Xh,$IN,$H2h # H^2.hi·Xi.hi |
| vpmsumd $Xh1,$IN1,$Hh # H.hi·Xi+1.hi |
| add $inp,$inp,r0 |
| |
| vxor $Xl,$Xl,$Xl1 |
| vxor $Xm,$Xm,$Xm1 |
| |
| vpmsumd $t2,$Xl,$xC2 # 1st reduction phase |
| |
| vsldoi $t0,$Xm,$zero,8 |
| vsldoi $t1,$zero,$Xm,8 |
| vxor $Xh,$Xh,$Xh1 |
| vxor $Xl,$Xl,$t0 |
| vxor $Xh,$Xh,$t1 |
| |
| vsldoi $Xl,$Xl,$Xl,8 |
| vxor $Xl,$Xl,$t2 |
| lvx_u $IN,r8,$inp |
| addi $inp,$inp,32 |
| |
| vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase |
| vpmsumd $Xl,$Xl,$xC2 |
| le?vperm $IN,$IN,$IN,$lemask |
| vxor $t1,$t1,$Xh |
| vxor $IN,$IN,$t1 |
| vxor $IN,$IN,$Xl |
| $UCMP r9,$inp |
| bgt Loop_2x # done yet? |
| |
| cmplwi $len,0 |
| bne Leven |
| |
| Lshort: |
| vpmsumd $Xl,$IN,$Hl # H.lo·Xi.lo |
| vpmsumd $Xm,$IN,$H # H.hi·Xi.lo+H.lo·Xi.hi |
| vpmsumd $Xh,$IN,$Hh # H.hi·Xi.hi |
| |
| vpmsumd $t2,$Xl,$xC2 # 1st reduction phase |
| |
| vsldoi $t0,$Xm,$zero,8 |
| vsldoi $t1,$zero,$Xm,8 |
| vxor $Xl,$Xl,$t0 |
| vxor $Xh,$Xh,$t1 |
| |
| vsldoi $Xl,$Xl,$Xl,8 |
| vxor $Xl,$Xl,$t2 |
| |
| vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase |
| vpmsumd $Xl,$Xl,$xC2 |
| vxor $t1,$t1,$Xh |
| |
| Leven: |
| vxor $Xl,$Xl,$t1 |
| le?vperm $Xl,$Xl,$Xl,$lemask |
| stvx_u $Xl,0,$Xip # write out Xi |
| |
| mtspr 256,$vrsave |
| blr |
| .long 0 |
| .byte 0,12,0x14,0,0,0,4,0 |
| .long 0 |
| ___ |
| { |
| my ($Xl3,$Xm2,$IN2,$H3l,$H3,$H3h, |
| $Xh3,$Xm3,$IN3,$H4l,$H4,$H4h) = map("v$_",(20..31)); |
| my $IN0=$IN; |
| my ($H21l,$H21h,$loperm,$hiperm) = ($Hl,$Hh,$H2l,$H2h); |
| |
| $code.=<<___; |
| .align 5 |
| .gcm_ghash_p8_4x: |
| Lgcm_ghash_p8_4x: |
| $STU $sp,-$FRAME($sp) |
| li r10,`15+6*$SIZE_T` |
| li r11,`31+6*$SIZE_T` |
| stvx v20,r10,$sp |
| addi r10,r10,32 |
| stvx v21,r11,$sp |
| addi r11,r11,32 |
| stvx v22,r10,$sp |
| addi r10,r10,32 |
| stvx v23,r11,$sp |
| addi r11,r11,32 |
| stvx v24,r10,$sp |
| addi r10,r10,32 |
| stvx v25,r11,$sp |
| addi r11,r11,32 |
| stvx v26,r10,$sp |
| addi r10,r10,32 |
| stvx v27,r11,$sp |
| addi r11,r11,32 |
| stvx v28,r10,$sp |
| addi r10,r10,32 |
| stvx v29,r11,$sp |
| addi r11,r11,32 |
| stvx v30,r10,$sp |
| li r10,0x60 |
| stvx v31,r11,$sp |
| li r0,-1 |
| stw $vrsave,`$FRAME-4`($sp) # save vrsave |
| mtspr 256,r0 # preserve all AltiVec registers |
| |
| lvsl $t0,0,r8 # 0x0001..0e0f |
| #lvx_u $H2l,r8,$Htbl # load H^2 |
| li r8,0x70 |
| lvx_u $H2, r9,$Htbl |
| li r9,0x80 |
| vspltisb $t1,8 # 0x0808..0808 |
| #lvx_u $H2h,r10,$Htbl |
| li r10,0x90 |
| lvx_u $H3l,r8,$Htbl # load H^3 |
| li r8,0xa0 |
| lvx_u $H3, r9,$Htbl |
| li r9,0xb0 |
| lvx_u $H3h,r10,$Htbl |
| li r10,0xc0 |
| lvx_u $H4l,r8,$Htbl # load H^4 |
| li r8,0x10 |
| lvx_u $H4, r9,$Htbl |
| li r9,0x20 |
| lvx_u $H4h,r10,$Htbl |
| li r10,0x30 |
| |
| vsldoi $t2,$zero,$t1,8 # 0x0000..0808 |
| vaddubm $hiperm,$t0,$t2 # 0x0001..1617 |
| vaddubm $loperm,$t1,$hiperm # 0x0809..1e1f |
| |
| $SHRI $len,$len,4 # this allows to use sign bit |
| # as carry |
| lvx_u $IN0,0,$inp # load input |
| lvx_u $IN1,r8,$inp |
| subic. $len,$len,8 |
| lvx_u $IN2,r9,$inp |
| lvx_u $IN3,r10,$inp |
| addi $inp,$inp,0x40 |
| le?vperm $IN0,$IN0,$IN0,$lemask |
| le?vperm $IN1,$IN1,$IN1,$lemask |
| le?vperm $IN2,$IN2,$IN2,$lemask |
| le?vperm $IN3,$IN3,$IN3,$lemask |
| |
| vxor $Xh,$IN0,$Xl |
| |
| vpmsumd $Xl1,$IN1,$H3l |
| vpmsumd $Xm1,$IN1,$H3 |
| vpmsumd $Xh1,$IN1,$H3h |
| |
| vperm $H21l,$H2,$H,$hiperm |
| vperm $t0,$IN2,$IN3,$loperm |
| vperm $H21h,$H2,$H,$loperm |
| vperm $t1,$IN2,$IN3,$hiperm |
| vpmsumd $Xm2,$IN2,$H2 # H^2.lo·Xi+2.hi+H^2.hi·Xi+2.lo |
| vpmsumd $Xl3,$t0,$H21l # H^2.lo·Xi+2.lo+H.lo·Xi+3.lo |
| vpmsumd $Xm3,$IN3,$H # H.hi·Xi+3.lo +H.lo·Xi+3.hi |
| vpmsumd $Xh3,$t1,$H21h # H^2.hi·Xi+2.hi+H.hi·Xi+3.hi |
| |
| vxor $Xm2,$Xm2,$Xm1 |
| vxor $Xl3,$Xl3,$Xl1 |
| vxor $Xm3,$Xm3,$Xm2 |
| vxor $Xh3,$Xh3,$Xh1 |
| |
| blt Ltail_4x |
| |
| Loop_4x: |
| lvx_u $IN0,0,$inp |
| lvx_u $IN1,r8,$inp |
| subic. $len,$len,4 |
| lvx_u $IN2,r9,$inp |
| lvx_u $IN3,r10,$inp |
| addi $inp,$inp,0x40 |
| le?vperm $IN1,$IN1,$IN1,$lemask |
| le?vperm $IN2,$IN2,$IN2,$lemask |
| le?vperm $IN3,$IN3,$IN3,$lemask |
| le?vperm $IN0,$IN0,$IN0,$lemask |
| |
| vpmsumd $Xl,$Xh,$H4l # H^4.lo·Xi.lo |
| vpmsumd $Xm,$Xh,$H4 # H^4.hi·Xi.lo+H^4.lo·Xi.hi |
| vpmsumd $Xh,$Xh,$H4h # H^4.hi·Xi.hi |
| vpmsumd $Xl1,$IN1,$H3l |
| vpmsumd $Xm1,$IN1,$H3 |
| vpmsumd $Xh1,$IN1,$H3h |
| |
| vxor $Xl,$Xl,$Xl3 |
| vxor $Xm,$Xm,$Xm3 |
| vxor $Xh,$Xh,$Xh3 |
| vperm $t0,$IN2,$IN3,$loperm |
| vperm $t1,$IN2,$IN3,$hiperm |
| |
| vpmsumd $t2,$Xl,$xC2 # 1st reduction phase |
| vpmsumd $Xl3,$t0,$H21l # H.lo·Xi+3.lo +H^2.lo·Xi+2.lo |
| vpmsumd $Xh3,$t1,$H21h # H.hi·Xi+3.hi +H^2.hi·Xi+2.hi |
| |
| vsldoi $t0,$Xm,$zero,8 |
| vsldoi $t1,$zero,$Xm,8 |
| vxor $Xl,$Xl,$t0 |
| vxor $Xh,$Xh,$t1 |
| |
| vsldoi $Xl,$Xl,$Xl,8 |
| vxor $Xl,$Xl,$t2 |
| |
| vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase |
| vpmsumd $Xm2,$IN2,$H2 # H^2.hi·Xi+2.lo+H^2.lo·Xi+2.hi |
| vpmsumd $Xm3,$IN3,$H # H.hi·Xi+3.lo +H.lo·Xi+3.hi |
| vpmsumd $Xl,$Xl,$xC2 |
| |
| vxor $Xl3,$Xl3,$Xl1 |
| vxor $Xh3,$Xh3,$Xh1 |
| vxor $Xh,$Xh,$IN0 |
| vxor $Xm2,$Xm2,$Xm1 |
| vxor $Xh,$Xh,$t1 |
| vxor $Xm3,$Xm3,$Xm2 |
| vxor $Xh,$Xh,$Xl |
| bge Loop_4x |
| |
| Ltail_4x: |
| vpmsumd $Xl,$Xh,$H4l # H^4.lo·Xi.lo |
| vpmsumd $Xm,$Xh,$H4 # H^4.hi·Xi.lo+H^4.lo·Xi.hi |
| vpmsumd $Xh,$Xh,$H4h # H^4.hi·Xi.hi |
| |
| vxor $Xl,$Xl,$Xl3 |
| vxor $Xm,$Xm,$Xm3 |
| |
| vpmsumd $t2,$Xl,$xC2 # 1st reduction phase |
| |
| vsldoi $t0,$Xm,$zero,8 |
| vsldoi $t1,$zero,$Xm,8 |
| vxor $Xh,$Xh,$Xh3 |
| vxor $Xl,$Xl,$t0 |
| vxor $Xh,$Xh,$t1 |
| |
| vsldoi $Xl,$Xl,$Xl,8 |
| vxor $Xl,$Xl,$t2 |
| |
| vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase |
| vpmsumd $Xl,$Xl,$xC2 |
| vxor $t1,$t1,$Xh |
| vxor $Xl,$Xl,$t1 |
| |
| addic. $len,$len,4 |
| beq Ldone_4x |
| |
| lvx_u $IN0,0,$inp |
| ${UCMP}i $len,2 |
| li $len,-4 |
| blt Lone |
| lvx_u $IN1,r8,$inp |
| beq Ltwo |
| |
| Lthree: |
| lvx_u $IN2,r9,$inp |
| le?vperm $IN0,$IN0,$IN0,$lemask |
| le?vperm $IN1,$IN1,$IN1,$lemask |
| le?vperm $IN2,$IN2,$IN2,$lemask |
| |
| vxor $Xh,$IN0,$Xl |
| vmr $H4l,$H3l |
| vmr $H4, $H3 |
| vmr $H4h,$H3h |
| |
| vperm $t0,$IN1,$IN2,$loperm |
| vperm $t1,$IN1,$IN2,$hiperm |
| vpmsumd $Xm2,$IN1,$H2 # H^2.lo·Xi+1.hi+H^2.hi·Xi+1.lo |
| vpmsumd $Xm3,$IN2,$H # H.hi·Xi+2.lo +H.lo·Xi+2.hi |
| vpmsumd $Xl3,$t0,$H21l # H^2.lo·Xi+1.lo+H.lo·Xi+2.lo |
| vpmsumd $Xh3,$t1,$H21h # H^2.hi·Xi+1.hi+H.hi·Xi+2.hi |
| |
| vxor $Xm3,$Xm3,$Xm2 |
| b Ltail_4x |
| |
| .align 4 |
| Ltwo: |
| le?vperm $IN0,$IN0,$IN0,$lemask |
| le?vperm $IN1,$IN1,$IN1,$lemask |
| |
| vxor $Xh,$IN0,$Xl |
| vperm $t0,$zero,$IN1,$loperm |
| vperm $t1,$zero,$IN1,$hiperm |
| |
| vsldoi $H4l,$zero,$H2,8 |
| vmr $H4, $H2 |
| vsldoi $H4h,$H2,$zero,8 |
| |
| vpmsumd $Xl3,$t0, $H21l # H.lo·Xi+1.lo |
| vpmsumd $Xm3,$IN1,$H # H.hi·Xi+1.lo+H.lo·Xi+2.hi |
| vpmsumd $Xh3,$t1, $H21h # H.hi·Xi+1.hi |
| |
| b Ltail_4x |
| |
| .align 4 |
| Lone: |
| le?vperm $IN0,$IN0,$IN0,$lemask |
| |
| vsldoi $H4l,$zero,$H,8 |
| vmr $H4, $H |
| vsldoi $H4h,$H,$zero,8 |
| |
| vxor $Xh,$IN0,$Xl |
| vxor $Xl3,$Xl3,$Xl3 |
| vxor $Xm3,$Xm3,$Xm3 |
| vxor $Xh3,$Xh3,$Xh3 |
| |
| b Ltail_4x |
| |
| Ldone_4x: |
| le?vperm $Xl,$Xl,$Xl,$lemask |
| stvx_u $Xl,0,$Xip # write out Xi |
| |
| li r10,`15+6*$SIZE_T` |
| li r11,`31+6*$SIZE_T` |
| mtspr 256,$vrsave |
| lvx v20,r10,$sp |
| addi r10,r10,32 |
| lvx v21,r11,$sp |
| addi r11,r11,32 |
| lvx v22,r10,$sp |
| addi r10,r10,32 |
| lvx v23,r11,$sp |
| addi r11,r11,32 |
| lvx v24,r10,$sp |
| addi r10,r10,32 |
| lvx v25,r11,$sp |
| addi r11,r11,32 |
| lvx v26,r10,$sp |
| addi r10,r10,32 |
| lvx v27,r11,$sp |
| addi r11,r11,32 |
| lvx v28,r10,$sp |
| addi r10,r10,32 |
| lvx v29,r11,$sp |
| addi r11,r11,32 |
| lvx v30,r10,$sp |
| lvx v31,r11,$sp |
| addi $sp,$sp,$FRAME |
| blr |
| .long 0 |
| .byte 0,12,0x04,0,0x80,0,4,0 |
| .long 0 |
| ___ |
| } |
| $code.=<<___; |
| .size .gcm_ghash_p8,.-.gcm_ghash_p8 |
| |
| .asciz "GHASH for PowerISA 2.07, CRYPTOGAMS by <appro\@openssl.org>" |
| .align 2 |
| ___ |
| |
| foreach (split("\n",$code)) { |
| s/\`([^\`]*)\`/eval $1/geo; |
| |
| if ($flavour =~ /le$/o) { # little-endian |
| s/le\?//o or |
| s/be\?/#be#/o; |
| } else { |
| s/le\?/#le#/o or |
| s/be\?//o; |
| } |
| print $_,"\n"; |
| } |
| |
| close STDOUT; # enforce flush |