| /* ==================================================================== |
| * Copyright (c) 2001-2011 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== */ |
| |
| #include <assert.h> |
| #include <string.h> |
| |
| #include <openssl/aead.h> |
| #include <openssl/aes.h> |
| #include <openssl/cipher.h> |
| #include <openssl/cpu.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| #include <openssl/nid.h> |
| #include <openssl/rand.h> |
| |
| #include "internal.h" |
| #include "../../internal.h" |
| #include "../aes/internal.h" |
| #include "../modes/internal.h" |
| #include "../delocate.h" |
| |
| |
| OPENSSL_MSVC_PRAGMA(warning(push)) |
| OPENSSL_MSVC_PRAGMA(warning(disable: 4702)) // Unreachable code. |
| |
| #define AES_GCM_NONCE_LENGTH 12 |
| |
| #if defined(BSAES) |
| static void vpaes_ctr32_encrypt_blocks_with_bsaes(const uint8_t *in, |
| uint8_t *out, size_t blocks, |
| const AES_KEY *key, |
| const uint8_t ivec[16]) { |
| // |bsaes_ctr32_encrypt_blocks| is faster than |vpaes_ctr32_encrypt_blocks|, |
| // but it takes at least one full 8-block batch to amortize the conversion. |
| if (blocks < 8) { |
| vpaes_ctr32_encrypt_blocks(in, out, blocks, key, ivec); |
| return; |
| } |
| |
| size_t bsaes_blocks = blocks; |
| if (bsaes_blocks % 8 < 6) { |
| // |bsaes_ctr32_encrypt_blocks| internally works in 8-block batches. If the |
| // final batch is too small (under six blocks), it is faster to loop over |
| // |vpaes_encrypt|. Round |bsaes_blocks| down to a multiple of 8. |
| bsaes_blocks -= bsaes_blocks % 8; |
| } |
| |
| AES_KEY bsaes; |
| vpaes_encrypt_key_to_bsaes(&bsaes, key); |
| bsaes_ctr32_encrypt_blocks(in, out, bsaes_blocks, &bsaes, ivec); |
| OPENSSL_cleanse(&bsaes, sizeof(bsaes)); |
| |
| in += 16 * bsaes_blocks; |
| out += 16 * bsaes_blocks; |
| blocks -= bsaes_blocks; |
| |
| union { |
| uint32_t u32[4]; |
| uint8_t u8[16]; |
| } new_ivec; |
| memcpy(new_ivec.u8, ivec, 16); |
| uint32_t ctr = CRYPTO_bswap4(new_ivec.u32[3]) + bsaes_blocks; |
| new_ivec.u32[3] = CRYPTO_bswap4(ctr); |
| |
| // Finish any remaining blocks with |vpaes_ctr32_encrypt_blocks|. |
| vpaes_ctr32_encrypt_blocks(in, out, blocks, key, new_ivec.u8); |
| } |
| #endif // BSAES |
| |
| typedef struct { |
| union { |
| double align; |
| AES_KEY ks; |
| } ks; |
| block128_f block; |
| union { |
| cbc128_f cbc; |
| ctr128_f ctr; |
| } stream; |
| } EVP_AES_KEY; |
| |
| typedef struct { |
| GCM128_CONTEXT gcm; |
| union { |
| double align; |
| AES_KEY ks; |
| } ks; // AES key schedule to use |
| int key_set; // Set if key initialised |
| int iv_set; // Set if an iv is set |
| uint8_t *iv; // Temporary IV store |
| int ivlen; // IV length |
| int taglen; |
| int iv_gen; // It is OK to generate IVs |
| ctr128_f ctr; |
| } EVP_AES_GCM_CTX; |
| |
| static int aes_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key, |
| const uint8_t *iv, int enc) { |
| int ret, mode; |
| EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; |
| |
| mode = ctx->cipher->flags & EVP_CIPH_MODE_MASK; |
| if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) { |
| if (hwaes_capable()) { |
| ret = aes_hw_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| dat->block = aes_hw_decrypt; |
| dat->stream.cbc = NULL; |
| if (mode == EVP_CIPH_CBC_MODE) { |
| dat->stream.cbc = aes_hw_cbc_encrypt; |
| } |
| } else if (bsaes_capable() && mode == EVP_CIPH_CBC_MODE) { |
| assert(vpaes_capable()); |
| ret = vpaes_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| if (ret == 0) { |
| vpaes_decrypt_key_to_bsaes(&dat->ks.ks, &dat->ks.ks); |
| } |
| // If |dat->stream.cbc| is provided, |dat->block| is never used. |
| dat->block = NULL; |
| dat->stream.cbc = bsaes_cbc_encrypt; |
| } else if (vpaes_capable()) { |
| ret = vpaes_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| dat->block = vpaes_decrypt; |
| dat->stream.cbc = NULL; |
| #if defined(VPAES_CBC) |
| if (mode == EVP_CIPH_CBC_MODE) { |
| dat->stream.cbc = vpaes_cbc_encrypt; |
| } |
| #endif |
| } else { |
| ret = aes_nohw_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| dat->block = aes_nohw_decrypt; |
| dat->stream.cbc = NULL; |
| if (mode == EVP_CIPH_CBC_MODE) { |
| dat->stream.cbc = aes_nohw_cbc_encrypt; |
| } |
| } |
| } else if (hwaes_capable()) { |
| ret = aes_hw_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| dat->block = aes_hw_encrypt; |
| dat->stream.cbc = NULL; |
| if (mode == EVP_CIPH_CBC_MODE) { |
| dat->stream.cbc = aes_hw_cbc_encrypt; |
| } else if (mode == EVP_CIPH_CTR_MODE) { |
| dat->stream.ctr = aes_hw_ctr32_encrypt_blocks; |
| } |
| } else if (vpaes_capable()) { |
| ret = vpaes_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| dat->block = vpaes_encrypt; |
| dat->stream.cbc = NULL; |
| #if defined(VPAES_CBC) |
| if (mode == EVP_CIPH_CBC_MODE) { |
| dat->stream.cbc = vpaes_cbc_encrypt; |
| } |
| #endif |
| if (mode == EVP_CIPH_CTR_MODE) { |
| #if defined(BSAES) |
| assert(bsaes_capable()); |
| dat->stream.ctr = vpaes_ctr32_encrypt_blocks_with_bsaes; |
| #elif defined(VPAES_CTR32) |
| dat->stream.ctr = vpaes_ctr32_encrypt_blocks; |
| #endif |
| } |
| } else { |
| ret = aes_nohw_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| dat->block = aes_nohw_encrypt; |
| dat->stream.cbc = NULL; |
| if (mode == EVP_CIPH_CBC_MODE) { |
| dat->stream.cbc = aes_nohw_cbc_encrypt; |
| } |
| } |
| |
| if (ret < 0) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_AES_KEY_SETUP_FAILED); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, |
| size_t len) { |
| EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; |
| |
| if (dat->stream.cbc) { |
| (*dat->stream.cbc)(in, out, len, &dat->ks.ks, ctx->iv, ctx->encrypt); |
| } else if (ctx->encrypt) { |
| CRYPTO_cbc128_encrypt(in, out, len, &dat->ks.ks, ctx->iv, dat->block); |
| } else { |
| CRYPTO_cbc128_decrypt(in, out, len, &dat->ks.ks, ctx->iv, dat->block); |
| } |
| |
| return 1; |
| } |
| |
| static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, |
| size_t len) { |
| size_t bl = ctx->cipher->block_size; |
| EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; |
| |
| if (len < bl) { |
| return 1; |
| } |
| |
| len -= bl; |
| for (size_t i = 0; i <= len; i += bl) { |
| (*dat->block)(in + i, out + i, &dat->ks.ks); |
| } |
| |
| return 1; |
| } |
| |
| static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, |
| size_t len) { |
| EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; |
| |
| if (dat->stream.ctr) { |
| CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks.ks, ctx->iv, ctx->buf, |
| &ctx->num, dat->stream.ctr); |
| } else { |
| CRYPTO_ctr128_encrypt(in, out, len, &dat->ks.ks, ctx->iv, ctx->buf, |
| &ctx->num, dat->block); |
| } |
| return 1; |
| } |
| |
| static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, |
| size_t len) { |
| EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; |
| |
| CRYPTO_ofb128_encrypt(in, out, len, &dat->ks.ks, ctx->iv, &ctx->num, |
| dat->block); |
| return 1; |
| } |
| |
| ctr128_f aes_ctr_set_key(AES_KEY *aes_key, GCM128_KEY *gcm_key, |
| block128_f *out_block, const uint8_t *key, |
| size_t key_bytes) { |
| if (hwaes_capable()) { |
| aes_hw_set_encrypt_key(key, key_bytes * 8, aes_key); |
| if (gcm_key != NULL) { |
| CRYPTO_gcm128_init_key(gcm_key, aes_key, aes_hw_encrypt, 1); |
| } |
| if (out_block) { |
| *out_block = aes_hw_encrypt; |
| } |
| return aes_hw_ctr32_encrypt_blocks; |
| } |
| |
| if (vpaes_capable()) { |
| vpaes_set_encrypt_key(key, key_bytes * 8, aes_key); |
| if (out_block) { |
| *out_block = vpaes_encrypt; |
| } |
| if (gcm_key != NULL) { |
| CRYPTO_gcm128_init_key(gcm_key, aes_key, vpaes_encrypt, 0); |
| } |
| #if defined(BSAES) |
| assert(bsaes_capable()); |
| return vpaes_ctr32_encrypt_blocks_with_bsaes; |
| #elif defined(VPAES_CTR32) |
| return vpaes_ctr32_encrypt_blocks; |
| #else |
| return NULL; |
| #endif |
| } |
| |
| aes_nohw_set_encrypt_key(key, key_bytes * 8, aes_key); |
| if (gcm_key != NULL) { |
| CRYPTO_gcm128_init_key(gcm_key, aes_key, aes_nohw_encrypt, 0); |
| } |
| if (out_block) { |
| *out_block = aes_nohw_encrypt; |
| } |
| return aes_nohw_ctr32_encrypt_blocks; |
| } |
| |
| #if defined(OPENSSL_32_BIT) |
| #define EVP_AES_GCM_CTX_PADDING (4+8) |
| #else |
| #define EVP_AES_GCM_CTX_PADDING 8 |
| #endif |
| |
| static EVP_AES_GCM_CTX *aes_gcm_from_cipher_ctx(EVP_CIPHER_CTX *ctx) { |
| #if defined(__GNUC__) || defined(__clang__) |
| OPENSSL_STATIC_ASSERT( |
| alignof(EVP_AES_GCM_CTX) <= 16, |
| "EVP_AES_GCM_CTX needs more alignment than this function provides"); |
| #endif |
| |
| // |malloc| guarantees up to 4-byte alignment on 32-bit and 8-byte alignment |
| // on 64-bit systems, so we need to adjust to reach 16-byte alignment. |
| assert(ctx->cipher->ctx_size == |
| sizeof(EVP_AES_GCM_CTX) + EVP_AES_GCM_CTX_PADDING); |
| |
| char *ptr = ctx->cipher_data; |
| #if defined(OPENSSL_32_BIT) |
| assert((uintptr_t)ptr % 4 == 0); |
| ptr += (uintptr_t)ptr & 4; |
| #endif |
| assert((uintptr_t)ptr % 8 == 0); |
| ptr += (uintptr_t)ptr & 8; |
| return (EVP_AES_GCM_CTX *)ptr; |
| } |
| |
| static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key, |
| const uint8_t *iv, int enc) { |
| EVP_AES_GCM_CTX *gctx = aes_gcm_from_cipher_ctx(ctx); |
| if (!iv && !key) { |
| return 1; |
| } |
| if (key) { |
| OPENSSL_memset(&gctx->gcm, 0, sizeof(gctx->gcm)); |
| gctx->ctr = aes_ctr_set_key(&gctx->ks.ks, &gctx->gcm.gcm_key, NULL, key, |
| ctx->key_len); |
| // If we have an iv can set it directly, otherwise use saved IV. |
| if (iv == NULL && gctx->iv_set) { |
| iv = gctx->iv; |
| } |
| if (iv) { |
| CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, iv, gctx->ivlen); |
| gctx->iv_set = 1; |
| } |
| gctx->key_set = 1; |
| } else { |
| // If key set use IV, otherwise copy |
| if (gctx->key_set) { |
| CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, iv, gctx->ivlen); |
| } else { |
| OPENSSL_memcpy(gctx->iv, iv, gctx->ivlen); |
| } |
| gctx->iv_set = 1; |
| gctx->iv_gen = 0; |
| } |
| return 1; |
| } |
| |
| static void aes_gcm_cleanup(EVP_CIPHER_CTX *c) { |
| EVP_AES_GCM_CTX *gctx = aes_gcm_from_cipher_ctx(c); |
| OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm)); |
| if (gctx->iv != c->iv) { |
| OPENSSL_free(gctx->iv); |
| } |
| } |
| |
| // increment counter (64-bit int) by 1 |
| static void ctr64_inc(uint8_t *counter) { |
| int n = 8; |
| uint8_t c; |
| |
| do { |
| --n; |
| c = counter[n]; |
| ++c; |
| counter[n] = c; |
| if (c) { |
| return; |
| } |
| } while (n); |
| } |
| |
| static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { |
| EVP_AES_GCM_CTX *gctx = aes_gcm_from_cipher_ctx(c); |
| switch (type) { |
| case EVP_CTRL_INIT: |
| gctx->key_set = 0; |
| gctx->iv_set = 0; |
| gctx->ivlen = c->cipher->iv_len; |
| gctx->iv = c->iv; |
| gctx->taglen = -1; |
| gctx->iv_gen = 0; |
| return 1; |
| |
| case EVP_CTRL_AEAD_SET_IVLEN: |
| if (arg <= 0) { |
| return 0; |
| } |
| |
| // Allocate memory for IV if needed |
| if (arg > EVP_MAX_IV_LENGTH && arg > gctx->ivlen) { |
| if (gctx->iv != c->iv) { |
| OPENSSL_free(gctx->iv); |
| } |
| gctx->iv = OPENSSL_malloc(arg); |
| if (!gctx->iv) { |
| return 0; |
| } |
| } |
| gctx->ivlen = arg; |
| return 1; |
| |
| case EVP_CTRL_AEAD_SET_TAG: |
| if (arg <= 0 || arg > 16 || c->encrypt) { |
| return 0; |
| } |
| OPENSSL_memcpy(c->buf, ptr, arg); |
| gctx->taglen = arg; |
| return 1; |
| |
| case EVP_CTRL_AEAD_GET_TAG: |
| if (arg <= 0 || arg > 16 || !c->encrypt || gctx->taglen < 0) { |
| return 0; |
| } |
| OPENSSL_memcpy(ptr, c->buf, arg); |
| return 1; |
| |
| case EVP_CTRL_AEAD_SET_IV_FIXED: |
| // Special case: -1 length restores whole IV |
| if (arg == -1) { |
| OPENSSL_memcpy(gctx->iv, ptr, gctx->ivlen); |
| gctx->iv_gen = 1; |
| return 1; |
| } |
| // Fixed field must be at least 4 bytes and invocation field |
| // at least 8. |
| if (arg < 4 || (gctx->ivlen - arg) < 8) { |
| return 0; |
| } |
| if (arg) { |
| OPENSSL_memcpy(gctx->iv, ptr, arg); |
| } |
| if (c->encrypt && !RAND_bytes(gctx->iv + arg, gctx->ivlen - arg)) { |
| return 0; |
| } |
| gctx->iv_gen = 1; |
| return 1; |
| |
| case EVP_CTRL_GCM_IV_GEN: |
| if (gctx->iv_gen == 0 || gctx->key_set == 0) { |
| return 0; |
| } |
| CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, gctx->iv, gctx->ivlen); |
| if (arg <= 0 || arg > gctx->ivlen) { |
| arg = gctx->ivlen; |
| } |
| OPENSSL_memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg); |
| // Invocation field will be at least 8 bytes in size and |
| // so no need to check wrap around or increment more than |
| // last 8 bytes. |
| ctr64_inc(gctx->iv + gctx->ivlen - 8); |
| gctx->iv_set = 1; |
| return 1; |
| |
| case EVP_CTRL_GCM_SET_IV_INV: |
| if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt) { |
| return 0; |
| } |
| OPENSSL_memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg); |
| CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, gctx->iv, gctx->ivlen); |
| gctx->iv_set = 1; |
| return 1; |
| |
| case EVP_CTRL_COPY: { |
| EVP_CIPHER_CTX *out = ptr; |
| EVP_AES_GCM_CTX *gctx_out = aes_gcm_from_cipher_ctx(out); |
| // |EVP_CIPHER_CTX_copy| copies this generically, but we must redo it in |
| // case |out->cipher_data| and |in->cipher_data| are differently aligned. |
| OPENSSL_memcpy(gctx_out, gctx, sizeof(EVP_AES_GCM_CTX)); |
| if (gctx->iv == c->iv) { |
| gctx_out->iv = out->iv; |
| } else { |
| gctx_out->iv = OPENSSL_malloc(gctx->ivlen); |
| if (!gctx_out->iv) { |
| return 0; |
| } |
| OPENSSL_memcpy(gctx_out->iv, gctx->iv, gctx->ivlen); |
| } |
| return 1; |
| } |
| |
| default: |
| return -1; |
| } |
| } |
| |
| static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, |
| size_t len) { |
| EVP_AES_GCM_CTX *gctx = aes_gcm_from_cipher_ctx(ctx); |
| |
| // If not set up, return error |
| if (!gctx->key_set) { |
| return -1; |
| } |
| if (!gctx->iv_set) { |
| return -1; |
| } |
| |
| if (in) { |
| if (out == NULL) { |
| if (!CRYPTO_gcm128_aad(&gctx->gcm, in, len)) { |
| return -1; |
| } |
| } else if (ctx->encrypt) { |
| if (gctx->ctr) { |
| if (!CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, &gctx->ks.ks, in, out, len, |
| gctx->ctr)) { |
| return -1; |
| } |
| } else { |
| if (!CRYPTO_gcm128_encrypt(&gctx->gcm, &gctx->ks.ks, in, out, len)) { |
| return -1; |
| } |
| } |
| } else { |
| if (gctx->ctr) { |
| if (!CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, &gctx->ks.ks, in, out, len, |
| gctx->ctr)) { |
| return -1; |
| } |
| } else { |
| if (!CRYPTO_gcm128_decrypt(&gctx->gcm, &gctx->ks.ks, in, out, len)) { |
| return -1; |
| } |
| } |
| } |
| return len; |
| } else { |
| if (!ctx->encrypt) { |
| if (gctx->taglen < 0 || |
| !CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen)) { |
| return -1; |
| } |
| gctx->iv_set = 0; |
| return 0; |
| } |
| CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16); |
| gctx->taglen = 16; |
| // Don't reuse the IV |
| gctx->iv_set = 0; |
| return 0; |
| } |
| } |
| |
| DEFINE_LOCAL_DATA(EVP_CIPHER, aes_128_cbc_generic) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_128_cbc; |
| out->block_size = 16; |
| out->key_len = 16; |
| out->iv_len = 16; |
| out->ctx_size = sizeof(EVP_AES_KEY); |
| out->flags = EVP_CIPH_CBC_MODE; |
| out->init = aes_init_key; |
| out->cipher = aes_cbc_cipher; |
| } |
| |
| DEFINE_LOCAL_DATA(EVP_CIPHER, aes_128_ctr_generic) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_128_ctr; |
| out->block_size = 1; |
| out->key_len = 16; |
| out->iv_len = 16; |
| out->ctx_size = sizeof(EVP_AES_KEY); |
| out->flags = EVP_CIPH_CTR_MODE; |
| out->init = aes_init_key; |
| out->cipher = aes_ctr_cipher; |
| } |
| |
| DEFINE_LOCAL_DATA(EVP_CIPHER, aes_128_ecb_generic) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_128_ecb; |
| out->block_size = 16; |
| out->key_len = 16; |
| out->ctx_size = sizeof(EVP_AES_KEY); |
| out->flags = EVP_CIPH_ECB_MODE; |
| out->init = aes_init_key; |
| out->cipher = aes_ecb_cipher; |
| } |
| |
| DEFINE_LOCAL_DATA(EVP_CIPHER, aes_128_ofb_generic) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_128_ofb128; |
| out->block_size = 1; |
| out->key_len = 16; |
| out->iv_len = 16; |
| out->ctx_size = sizeof(EVP_AES_KEY); |
| out->flags = EVP_CIPH_OFB_MODE; |
| out->init = aes_init_key; |
| out->cipher = aes_ofb_cipher; |
| } |
| |
| DEFINE_LOCAL_DATA(EVP_CIPHER, aes_128_gcm_generic) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_128_gcm; |
| out->block_size = 1; |
| out->key_len = 16; |
| out->iv_len = AES_GCM_NONCE_LENGTH; |
| out->ctx_size = sizeof(EVP_AES_GCM_CTX) + EVP_AES_GCM_CTX_PADDING; |
| out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_CUSTOM_COPY | |
| EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | |
| EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER; |
| out->init = aes_gcm_init_key; |
| out->cipher = aes_gcm_cipher; |
| out->cleanup = aes_gcm_cleanup; |
| out->ctrl = aes_gcm_ctrl; |
| } |
| |
| DEFINE_LOCAL_DATA(EVP_CIPHER, aes_192_cbc_generic) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_192_cbc; |
| out->block_size = 16; |
| out->key_len = 24; |
| out->iv_len = 16; |
| out->ctx_size = sizeof(EVP_AES_KEY); |
| out->flags = EVP_CIPH_CBC_MODE; |
| out->init = aes_init_key; |
| out->cipher = aes_cbc_cipher; |
| } |
| |
| DEFINE_LOCAL_DATA(EVP_CIPHER, aes_192_ctr_generic) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_192_ctr; |
| out->block_size = 1; |
| out->key_len = 24; |
| out->iv_len = 16; |
| out->ctx_size = sizeof(EVP_AES_KEY); |
| out->flags = EVP_CIPH_CTR_MODE; |
| out->init = aes_init_key; |
| out->cipher = aes_ctr_cipher; |
| } |
| |
| DEFINE_LOCAL_DATA(EVP_CIPHER, aes_192_ecb_generic) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_192_ecb; |
| out->block_size = 16; |
| out->key_len = 24; |
| out->ctx_size = sizeof(EVP_AES_KEY); |
| out->flags = EVP_CIPH_ECB_MODE; |
| out->init = aes_init_key; |
| out->cipher = aes_ecb_cipher; |
| } |
| |
| DEFINE_LOCAL_DATA(EVP_CIPHER, aes_192_ofb_generic) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_192_ofb128; |
| out->block_size = 1; |
| out->key_len = 24; |
| out->iv_len = 16; |
| out->ctx_size = sizeof(EVP_AES_KEY); |
| out->flags = EVP_CIPH_OFB_MODE; |
| out->init = aes_init_key; |
| out->cipher = aes_ofb_cipher; |
| } |
| |
| DEFINE_LOCAL_DATA(EVP_CIPHER, aes_192_gcm_generic) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_192_gcm; |
| out->block_size = 1; |
| out->key_len = 24; |
| out->iv_len = AES_GCM_NONCE_LENGTH; |
| out->ctx_size = sizeof(EVP_AES_GCM_CTX) + EVP_AES_GCM_CTX_PADDING; |
| out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_CUSTOM_COPY | |
| EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | |
| EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER; |
| out->init = aes_gcm_init_key; |
| out->cipher = aes_gcm_cipher; |
| out->cleanup = aes_gcm_cleanup; |
| out->ctrl = aes_gcm_ctrl; |
| } |
| |
| DEFINE_LOCAL_DATA(EVP_CIPHER, aes_256_cbc_generic) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_256_cbc; |
| out->block_size = 16; |
| out->key_len = 32; |
| out->iv_len = 16; |
| out->ctx_size = sizeof(EVP_AES_KEY); |
| out->flags = EVP_CIPH_CBC_MODE; |
| out->init = aes_init_key; |
| out->cipher = aes_cbc_cipher; |
| } |
| |
| DEFINE_LOCAL_DATA(EVP_CIPHER, aes_256_ctr_generic) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_256_ctr; |
| out->block_size = 1; |
| out->key_len = 32; |
| out->iv_len = 16; |
| out->ctx_size = sizeof(EVP_AES_KEY); |
| out->flags = EVP_CIPH_CTR_MODE; |
| out->init = aes_init_key; |
| out->cipher = aes_ctr_cipher; |
| } |
| |
| DEFINE_LOCAL_DATA(EVP_CIPHER, aes_256_ecb_generic) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_256_ecb; |
| out->block_size = 16; |
| out->key_len = 32; |
| out->ctx_size = sizeof(EVP_AES_KEY); |
| out->flags = EVP_CIPH_ECB_MODE; |
| out->init = aes_init_key; |
| out->cipher = aes_ecb_cipher; |
| } |
| |
| DEFINE_LOCAL_DATA(EVP_CIPHER, aes_256_ofb_generic) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_256_ofb128; |
| out->block_size = 1; |
| out->key_len = 32; |
| out->iv_len = 16; |
| out->ctx_size = sizeof(EVP_AES_KEY); |
| out->flags = EVP_CIPH_OFB_MODE; |
| out->init = aes_init_key; |
| out->cipher = aes_ofb_cipher; |
| } |
| |
| DEFINE_LOCAL_DATA(EVP_CIPHER, aes_256_gcm_generic) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_256_gcm; |
| out->block_size = 1; |
| out->key_len = 32; |
| out->iv_len = AES_GCM_NONCE_LENGTH; |
| out->ctx_size = sizeof(EVP_AES_GCM_CTX) + EVP_AES_GCM_CTX_PADDING; |
| out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_CUSTOM_COPY | |
| EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | |
| EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER; |
| out->init = aes_gcm_init_key; |
| out->cipher = aes_gcm_cipher; |
| out->cleanup = aes_gcm_cleanup; |
| out->ctrl = aes_gcm_ctrl; |
| } |
| |
| #if defined(HWAES_ECB) |
| |
| static int aes_hw_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, |
| const uint8_t *in, size_t len) { |
| size_t bl = ctx->cipher->block_size; |
| |
| if (len < bl) { |
| return 1; |
| } |
| |
| aes_hw_ecb_encrypt(in, out, len, ctx->cipher_data, ctx->encrypt); |
| |
| return 1; |
| } |
| |
| DEFINE_LOCAL_DATA(EVP_CIPHER, aes_hw_128_ecb) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_128_ecb; |
| out->block_size = 16; |
| out->key_len = 16; |
| out->ctx_size = sizeof(EVP_AES_KEY); |
| out->flags = EVP_CIPH_ECB_MODE; |
| out->init = aes_init_key; |
| out->cipher = aes_hw_ecb_cipher; |
| } |
| |
| DEFINE_LOCAL_DATA(EVP_CIPHER, aes_hw_192_ecb) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_192_ecb; |
| out->block_size = 16; |
| out->key_len = 24; |
| out->ctx_size = sizeof(EVP_AES_KEY); |
| out->flags = EVP_CIPH_ECB_MODE; |
| out->init = aes_init_key; |
| out->cipher = aes_hw_ecb_cipher; |
| } |
| |
| DEFINE_LOCAL_DATA(EVP_CIPHER, aes_hw_256_ecb) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_256_ecb; |
| out->block_size = 16; |
| out->key_len = 32; |
| out->ctx_size = sizeof(EVP_AES_KEY); |
| out->flags = EVP_CIPH_ECB_MODE; |
| out->init = aes_init_key; |
| out->cipher = aes_hw_ecb_cipher; |
| } |
| |
| #define EVP_ECB_CIPHER_FUNCTION(keybits) \ |
| const EVP_CIPHER *EVP_aes_##keybits##_ecb(void) { \ |
| if (hwaes_capable()) { \ |
| return aes_hw_##keybits##_ecb(); \ |
| } \ |
| return aes_##keybits##_ecb_generic(); \ |
| } |
| |
| #else |
| |
| #define EVP_ECB_CIPHER_FUNCTION(keybits) \ |
| const EVP_CIPHER *EVP_aes_##keybits##_ecb(void) { \ |
| return aes_##keybits##_ecb_generic(); \ |
| } |
| |
| #endif // HWAES_ECB |
| |
| #define EVP_CIPHER_FUNCTION(keybits, mode) \ |
| const EVP_CIPHER *EVP_aes_##keybits##_##mode(void) { \ |
| return aes_##keybits##_##mode##_generic(); \ |
| } |
| |
| EVP_CIPHER_FUNCTION(128, cbc) |
| EVP_CIPHER_FUNCTION(128, ctr) |
| EVP_CIPHER_FUNCTION(128, ofb) |
| EVP_CIPHER_FUNCTION(128, gcm) |
| |
| EVP_CIPHER_FUNCTION(192, cbc) |
| EVP_CIPHER_FUNCTION(192, ctr) |
| EVP_CIPHER_FUNCTION(192, ofb) |
| EVP_CIPHER_FUNCTION(192, gcm) |
| |
| EVP_CIPHER_FUNCTION(256, cbc) |
| EVP_CIPHER_FUNCTION(256, ctr) |
| EVP_CIPHER_FUNCTION(256, ofb) |
| EVP_CIPHER_FUNCTION(256, gcm) |
| |
| EVP_ECB_CIPHER_FUNCTION(128) |
| EVP_ECB_CIPHER_FUNCTION(192) |
| EVP_ECB_CIPHER_FUNCTION(256) |
| |
| |
| #define EVP_AEAD_AES_GCM_TAG_LEN 16 |
| |
| struct aead_aes_gcm_ctx { |
| union { |
| double align; |
| AES_KEY ks; |
| } ks; |
| GCM128_KEY gcm_key; |
| ctr128_f ctr; |
| }; |
| |
| static int aead_aes_gcm_init_impl(struct aead_aes_gcm_ctx *gcm_ctx, |
| size_t *out_tag_len, const uint8_t *key, |
| size_t key_len, size_t tag_len) { |
| const size_t key_bits = key_len * 8; |
| |
| if (key_bits != 128 && key_bits != 192 && key_bits != 256) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); |
| return 0; // EVP_AEAD_CTX_init should catch this. |
| } |
| |
| if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) { |
| tag_len = EVP_AEAD_AES_GCM_TAG_LEN; |
| } |
| |
| if (tag_len > EVP_AEAD_AES_GCM_TAG_LEN) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE); |
| return 0; |
| } |
| |
| gcm_ctx->ctr = |
| aes_ctr_set_key(&gcm_ctx->ks.ks, &gcm_ctx->gcm_key, NULL, key, key_len); |
| *out_tag_len = tag_len; |
| return 1; |
| } |
| |
| OPENSSL_STATIC_ASSERT(sizeof(((EVP_AEAD_CTX *)NULL)->state) >= |
| sizeof(struct aead_aes_gcm_ctx), |
| "AEAD state is too small"); |
| #if defined(__GNUC__) || defined(__clang__) |
| OPENSSL_STATIC_ASSERT(alignof(union evp_aead_ctx_st_state) >= |
| alignof(struct aead_aes_gcm_ctx), |
| "AEAD state has insufficient alignment"); |
| #endif |
| |
| static int aead_aes_gcm_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
| size_t key_len, size_t requested_tag_len) { |
| struct aead_aes_gcm_ctx *gcm_ctx = (struct aead_aes_gcm_ctx *) &ctx->state; |
| |
| size_t actual_tag_len; |
| if (!aead_aes_gcm_init_impl(gcm_ctx, &actual_tag_len, key, key_len, |
| requested_tag_len)) { |
| return 0; |
| } |
| |
| ctx->tag_len = actual_tag_len; |
| return 1; |
| } |
| |
| static void aead_aes_gcm_cleanup(EVP_AEAD_CTX *ctx) {} |
| |
| static int aead_aes_gcm_seal_scatter_impl( |
| const struct aead_aes_gcm_ctx *gcm_ctx, |
| uint8_t *out, uint8_t *out_tag, size_t *out_tag_len, size_t max_out_tag_len, |
| const uint8_t *nonce, size_t nonce_len, |
| const uint8_t *in, size_t in_len, |
| const uint8_t *extra_in, size_t extra_in_len, |
| const uint8_t *ad, size_t ad_len, |
| size_t tag_len) { |
| if (extra_in_len + tag_len < tag_len) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); |
| return 0; |
| } |
| if (max_out_tag_len < extra_in_len + tag_len) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| if (nonce_len == 0) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); |
| return 0; |
| } |
| |
| const AES_KEY *key = &gcm_ctx->ks.ks; |
| |
| GCM128_CONTEXT gcm; |
| OPENSSL_memset(&gcm, 0, sizeof(gcm)); |
| OPENSSL_memcpy(&gcm.gcm_key, &gcm_ctx->gcm_key, sizeof(gcm.gcm_key)); |
| CRYPTO_gcm128_setiv(&gcm, key, nonce, nonce_len); |
| |
| if (ad_len > 0 && !CRYPTO_gcm128_aad(&gcm, ad, ad_len)) { |
| return 0; |
| } |
| |
| if (gcm_ctx->ctr) { |
| if (!CRYPTO_gcm128_encrypt_ctr32(&gcm, key, in, out, in_len, |
| gcm_ctx->ctr)) { |
| return 0; |
| } |
| } else { |
| if (!CRYPTO_gcm128_encrypt(&gcm, key, in, out, in_len)) { |
| return 0; |
| } |
| } |
| |
| if (extra_in_len) { |
| if (gcm_ctx->ctr) { |
| if (!CRYPTO_gcm128_encrypt_ctr32(&gcm, key, extra_in, out_tag, |
| extra_in_len, gcm_ctx->ctr)) { |
| return 0; |
| } |
| } else { |
| if (!CRYPTO_gcm128_encrypt(&gcm, key, extra_in, out_tag, extra_in_len)) { |
| return 0; |
| } |
| } |
| } |
| |
| CRYPTO_gcm128_tag(&gcm, out_tag + extra_in_len, tag_len); |
| *out_tag_len = tag_len + extra_in_len; |
| |
| return 1; |
| } |
| |
| static int aead_aes_gcm_seal_scatter(const EVP_AEAD_CTX *ctx, uint8_t *out, |
| uint8_t *out_tag, size_t *out_tag_len, |
| size_t max_out_tag_len, |
| const uint8_t *nonce, size_t nonce_len, |
| const uint8_t *in, size_t in_len, |
| const uint8_t *extra_in, |
| size_t extra_in_len, |
| const uint8_t *ad, size_t ad_len) { |
| const struct aead_aes_gcm_ctx *gcm_ctx = |
| (const struct aead_aes_gcm_ctx *)&ctx->state; |
| return aead_aes_gcm_seal_scatter_impl( |
| gcm_ctx, out, out_tag, out_tag_len, max_out_tag_len, nonce, nonce_len, in, |
| in_len, extra_in, extra_in_len, ad, ad_len, ctx->tag_len); |
| } |
| |
| static int aead_aes_gcm_open_gather_impl(const struct aead_aes_gcm_ctx *gcm_ctx, |
| uint8_t *out, |
| const uint8_t *nonce, size_t nonce_len, |
| const uint8_t *in, size_t in_len, |
| const uint8_t *in_tag, |
| size_t in_tag_len, |
| const uint8_t *ad, size_t ad_len, |
| size_t tag_len) { |
| uint8_t tag[EVP_AEAD_AES_GCM_TAG_LEN]; |
| |
| if (nonce_len == 0) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); |
| return 0; |
| } |
| |
| if (in_tag_len != tag_len) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
| return 0; |
| } |
| |
| const AES_KEY *key = &gcm_ctx->ks.ks; |
| |
| GCM128_CONTEXT gcm; |
| OPENSSL_memset(&gcm, 0, sizeof(gcm)); |
| OPENSSL_memcpy(&gcm.gcm_key, &gcm_ctx->gcm_key, sizeof(gcm.gcm_key)); |
| CRYPTO_gcm128_setiv(&gcm, key, nonce, nonce_len); |
| |
| if (!CRYPTO_gcm128_aad(&gcm, ad, ad_len)) { |
| return 0; |
| } |
| |
| if (gcm_ctx->ctr) { |
| if (!CRYPTO_gcm128_decrypt_ctr32(&gcm, key, in, out, in_len, |
| gcm_ctx->ctr)) { |
| return 0; |
| } |
| } else { |
| if (!CRYPTO_gcm128_decrypt(&gcm, key, in, out, in_len)) { |
| return 0; |
| } |
| } |
| |
| CRYPTO_gcm128_tag(&gcm, tag, tag_len); |
| if (CRYPTO_memcmp(tag, in_tag, tag_len) != 0) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static int aead_aes_gcm_open_gather(const EVP_AEAD_CTX *ctx, uint8_t *out, |
| const uint8_t *nonce, size_t nonce_len, |
| const uint8_t *in, size_t in_len, |
| const uint8_t *in_tag, size_t in_tag_len, |
| const uint8_t *ad, size_t ad_len) { |
| struct aead_aes_gcm_ctx *gcm_ctx = (struct aead_aes_gcm_ctx *)&ctx->state; |
| return aead_aes_gcm_open_gather_impl(gcm_ctx, out, nonce, nonce_len, in, |
| in_len, in_tag, in_tag_len, ad, ad_len, |
| ctx->tag_len); |
| } |
| |
| DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm) { |
| memset(out, 0, sizeof(EVP_AEAD)); |
| |
| out->key_len = 16; |
| out->nonce_len = AES_GCM_NONCE_LENGTH; |
| out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; |
| out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; |
| out->seal_scatter_supports_extra_in = 1; |
| |
| out->init = aead_aes_gcm_init; |
| out->cleanup = aead_aes_gcm_cleanup; |
| out->seal_scatter = aead_aes_gcm_seal_scatter; |
| out->open_gather = aead_aes_gcm_open_gather; |
| } |
| |
| DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_192_gcm) { |
| memset(out, 0, sizeof(EVP_AEAD)); |
| |
| out->key_len = 24; |
| out->nonce_len = AES_GCM_NONCE_LENGTH; |
| out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; |
| out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; |
| out->seal_scatter_supports_extra_in = 1; |
| |
| out->init = aead_aes_gcm_init; |
| out->cleanup = aead_aes_gcm_cleanup; |
| out->seal_scatter = aead_aes_gcm_seal_scatter; |
| out->open_gather = aead_aes_gcm_open_gather; |
| } |
| |
| DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm) { |
| memset(out, 0, sizeof(EVP_AEAD)); |
| |
| out->key_len = 32; |
| out->nonce_len = AES_GCM_NONCE_LENGTH; |
| out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; |
| out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; |
| out->seal_scatter_supports_extra_in = 1; |
| |
| out->init = aead_aes_gcm_init; |
| out->cleanup = aead_aes_gcm_cleanup; |
| out->seal_scatter = aead_aes_gcm_seal_scatter; |
| out->open_gather = aead_aes_gcm_open_gather; |
| } |
| |
| static int aead_aes_gcm_init_randnonce(EVP_AEAD_CTX *ctx, const uint8_t *key, |
| size_t key_len, |
| size_t requested_tag_len) { |
| if (requested_tag_len != EVP_AEAD_DEFAULT_TAG_LENGTH) { |
| if (requested_tag_len < AES_GCM_NONCE_LENGTH) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| requested_tag_len -= AES_GCM_NONCE_LENGTH; |
| } |
| |
| if (!aead_aes_gcm_init(ctx, key, key_len, requested_tag_len)) { |
| return 0; |
| } |
| |
| ctx->tag_len += AES_GCM_NONCE_LENGTH; |
| return 1; |
| } |
| |
| static int aead_aes_gcm_seal_scatter_randnonce( |
| const EVP_AEAD_CTX *ctx, |
| uint8_t *out, uint8_t *out_tag, size_t *out_tag_len, size_t max_out_tag_len, |
| const uint8_t *external_nonce, size_t external_nonce_len, |
| const uint8_t *in, size_t in_len, |
| const uint8_t *extra_in, size_t extra_in_len, |
| const uint8_t *ad, size_t ad_len) { |
| if (external_nonce_len != 0) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); |
| return 0; |
| } |
| |
| uint8_t nonce[AES_GCM_NONCE_LENGTH]; |
| if (max_out_tag_len < sizeof(nonce)) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| |
| RAND_bytes(nonce, sizeof(nonce)); |
| const struct aead_aes_gcm_ctx *gcm_ctx = |
| (const struct aead_aes_gcm_ctx *)&ctx->state; |
| if (!aead_aes_gcm_seal_scatter_impl(gcm_ctx, out, out_tag, out_tag_len, |
| max_out_tag_len - AES_GCM_NONCE_LENGTH, |
| nonce, sizeof(nonce), in, in_len, |
| extra_in, extra_in_len, ad, ad_len, |
| ctx->tag_len - AES_GCM_NONCE_LENGTH)) { |
| return 0; |
| } |
| |
| assert(*out_tag_len + sizeof(nonce) <= max_out_tag_len); |
| memcpy(out_tag + *out_tag_len, nonce, sizeof(nonce)); |
| *out_tag_len += sizeof(nonce); |
| |
| return 1; |
| } |
| |
| static int aead_aes_gcm_open_gather_randnonce( |
| const EVP_AEAD_CTX *ctx, uint8_t *out, |
| const uint8_t *external_nonce, size_t external_nonce_len, |
| const uint8_t *in, size_t in_len, |
| const uint8_t *in_tag, size_t in_tag_len, |
| const uint8_t *ad, size_t ad_len) { |
| if (external_nonce_len != 0) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); |
| return 0; |
| } |
| |
| if (in_tag_len < AES_GCM_NONCE_LENGTH) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
| return 0; |
| } |
| const uint8_t *nonce = in_tag + in_tag_len - AES_GCM_NONCE_LENGTH; |
| |
| const struct aead_aes_gcm_ctx *gcm_ctx = |
| (const struct aead_aes_gcm_ctx *)&ctx->state; |
| return aead_aes_gcm_open_gather_impl( |
| gcm_ctx, out, nonce, AES_GCM_NONCE_LENGTH, in, in_len, in_tag, |
| in_tag_len - AES_GCM_NONCE_LENGTH, ad, ad_len, |
| ctx->tag_len - AES_GCM_NONCE_LENGTH); |
| } |
| |
| DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm_randnonce) { |
| memset(out, 0, sizeof(EVP_AEAD)); |
| |
| out->key_len = 16; |
| out->nonce_len = 0; |
| out->overhead = EVP_AEAD_AES_GCM_TAG_LEN + AES_GCM_NONCE_LENGTH; |
| out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN + AES_GCM_NONCE_LENGTH; |
| out->seal_scatter_supports_extra_in = 1; |
| |
| out->init = aead_aes_gcm_init_randnonce; |
| out->cleanup = aead_aes_gcm_cleanup; |
| out->seal_scatter = aead_aes_gcm_seal_scatter_randnonce; |
| out->open_gather = aead_aes_gcm_open_gather_randnonce; |
| } |
| |
| DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm_randnonce) { |
| memset(out, 0, sizeof(EVP_AEAD)); |
| |
| out->key_len = 32; |
| out->nonce_len = 0; |
| out->overhead = EVP_AEAD_AES_GCM_TAG_LEN + AES_GCM_NONCE_LENGTH; |
| out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN + AES_GCM_NONCE_LENGTH; |
| out->seal_scatter_supports_extra_in = 1; |
| |
| out->init = aead_aes_gcm_init_randnonce; |
| out->cleanup = aead_aes_gcm_cleanup; |
| out->seal_scatter = aead_aes_gcm_seal_scatter_randnonce; |
| out->open_gather = aead_aes_gcm_open_gather_randnonce; |
| } |
| |
| struct aead_aes_gcm_tls12_ctx { |
| struct aead_aes_gcm_ctx gcm_ctx; |
| uint64_t min_next_nonce; |
| }; |
| |
| OPENSSL_STATIC_ASSERT(sizeof(((EVP_AEAD_CTX *)NULL)->state) >= |
| sizeof(struct aead_aes_gcm_tls12_ctx), |
| "AEAD state is too small"); |
| #if defined(__GNUC__) || defined(__clang__) |
| OPENSSL_STATIC_ASSERT(alignof(union evp_aead_ctx_st_state) >= |
| alignof(struct aead_aes_gcm_tls12_ctx), |
| "AEAD state has insufficient alignment"); |
| #endif |
| |
| static int aead_aes_gcm_tls12_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
| size_t key_len, size_t requested_tag_len) { |
| struct aead_aes_gcm_tls12_ctx *gcm_ctx = |
| (struct aead_aes_gcm_tls12_ctx *) &ctx->state; |
| |
| gcm_ctx->min_next_nonce = 0; |
| |
| size_t actual_tag_len; |
| if (!aead_aes_gcm_init_impl(&gcm_ctx->gcm_ctx, &actual_tag_len, key, key_len, |
| requested_tag_len)) { |
| return 0; |
| } |
| |
| ctx->tag_len = actual_tag_len; |
| return 1; |
| } |
| |
| static int aead_aes_gcm_tls12_seal_scatter( |
| const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag, |
| size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce, |
| size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in, |
| size_t extra_in_len, const uint8_t *ad, size_t ad_len) { |
| struct aead_aes_gcm_tls12_ctx *gcm_ctx = |
| (struct aead_aes_gcm_tls12_ctx *) &ctx->state; |
| |
| if (nonce_len != AES_GCM_NONCE_LENGTH) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); |
| return 0; |
| } |
| |
| // The given nonces must be strictly monotonically increasing. |
| uint64_t given_counter; |
| OPENSSL_memcpy(&given_counter, nonce + nonce_len - sizeof(given_counter), |
| sizeof(given_counter)); |
| given_counter = CRYPTO_bswap8(given_counter); |
| if (given_counter == UINT64_MAX || |
| given_counter < gcm_ctx->min_next_nonce) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE); |
| return 0; |
| } |
| |
| gcm_ctx->min_next_nonce = given_counter + 1; |
| |
| return aead_aes_gcm_seal_scatter(ctx, out, out_tag, out_tag_len, |
| max_out_tag_len, nonce, nonce_len, in, |
| in_len, extra_in, extra_in_len, ad, ad_len); |
| } |
| |
| DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm_tls12) { |
| memset(out, 0, sizeof(EVP_AEAD)); |
| |
| out->key_len = 16; |
| out->nonce_len = AES_GCM_NONCE_LENGTH; |
| out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; |
| out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; |
| out->seal_scatter_supports_extra_in = 1; |
| |
| out->init = aead_aes_gcm_tls12_init; |
| out->cleanup = aead_aes_gcm_cleanup; |
| out->seal_scatter = aead_aes_gcm_tls12_seal_scatter; |
| out->open_gather = aead_aes_gcm_open_gather; |
| } |
| |
| DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm_tls12) { |
| memset(out, 0, sizeof(EVP_AEAD)); |
| |
| out->key_len = 32; |
| out->nonce_len = AES_GCM_NONCE_LENGTH; |
| out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; |
| out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; |
| out->seal_scatter_supports_extra_in = 1; |
| |
| out->init = aead_aes_gcm_tls12_init; |
| out->cleanup = aead_aes_gcm_cleanup; |
| out->seal_scatter = aead_aes_gcm_tls12_seal_scatter; |
| out->open_gather = aead_aes_gcm_open_gather; |
| } |
| |
| struct aead_aes_gcm_tls13_ctx { |
| struct aead_aes_gcm_ctx gcm_ctx; |
| uint64_t min_next_nonce; |
| uint64_t mask; |
| uint8_t first; |
| }; |
| |
| OPENSSL_STATIC_ASSERT(sizeof(((EVP_AEAD_CTX *)NULL)->state) >= |
| sizeof(struct aead_aes_gcm_tls13_ctx), |
| "AEAD state is too small"); |
| #if defined(__GNUC__) || defined(__clang__) |
| OPENSSL_STATIC_ASSERT(alignof(union evp_aead_ctx_st_state) >= |
| alignof(struct aead_aes_gcm_tls13_ctx), |
| "AEAD state has insufficient alignment"); |
| #endif |
| |
| static int aead_aes_gcm_tls13_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
| size_t key_len, size_t requested_tag_len) { |
| struct aead_aes_gcm_tls13_ctx *gcm_ctx = |
| (struct aead_aes_gcm_tls13_ctx *) &ctx->state; |
| |
| gcm_ctx->min_next_nonce = 0; |
| gcm_ctx->first = 1; |
| |
| size_t actual_tag_len; |
| if (!aead_aes_gcm_init_impl(&gcm_ctx->gcm_ctx, &actual_tag_len, key, key_len, |
| requested_tag_len)) { |
| return 0; |
| } |
| |
| ctx->tag_len = actual_tag_len; |
| return 1; |
| } |
| |
| static int aead_aes_gcm_tls13_seal_scatter( |
| const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag, |
| size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce, |
| size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in, |
| size_t extra_in_len, const uint8_t *ad, size_t ad_len) { |
| struct aead_aes_gcm_tls13_ctx *gcm_ctx = |
| (struct aead_aes_gcm_tls13_ctx *) &ctx->state; |
| |
| if (nonce_len != AES_GCM_NONCE_LENGTH) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); |
| return 0; |
| } |
| |
| // The given nonces must be strictly monotonically increasing. See |
| // https://tools.ietf.org/html/rfc8446#section-5.3 for details of the TLS 1.3 |
| // nonce construction. |
| uint64_t given_counter; |
| OPENSSL_memcpy(&given_counter, nonce + nonce_len - sizeof(given_counter), |
| sizeof(given_counter)); |
| given_counter = CRYPTO_bswap8(given_counter); |
| |
| if (gcm_ctx->first) { |
| // In the first call the sequence number will be zero and therefore the |
| // given nonce will be 0 ^ mask = mask. |
| gcm_ctx->mask = given_counter; |
| gcm_ctx->first = 0; |
| } |
| given_counter ^= gcm_ctx->mask; |
| |
| if (given_counter == UINT64_MAX || |
| given_counter < gcm_ctx->min_next_nonce) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE); |
| return 0; |
| } |
| |
| gcm_ctx->min_next_nonce = given_counter + 1; |
| |
| return aead_aes_gcm_seal_scatter(ctx, out, out_tag, out_tag_len, |
| max_out_tag_len, nonce, nonce_len, in, |
| in_len, extra_in, extra_in_len, ad, ad_len); |
| } |
| |
| DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm_tls13) { |
| memset(out, 0, sizeof(EVP_AEAD)); |
| |
| out->key_len = 16; |
| out->nonce_len = AES_GCM_NONCE_LENGTH; |
| out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; |
| out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; |
| out->seal_scatter_supports_extra_in = 1; |
| |
| out->init = aead_aes_gcm_tls13_init; |
| out->cleanup = aead_aes_gcm_cleanup; |
| out->seal_scatter = aead_aes_gcm_tls13_seal_scatter; |
| out->open_gather = aead_aes_gcm_open_gather; |
| } |
| |
| DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm_tls13) { |
| memset(out, 0, sizeof(EVP_AEAD)); |
| |
| out->key_len = 32; |
| out->nonce_len = AES_GCM_NONCE_LENGTH; |
| out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; |
| out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; |
| out->seal_scatter_supports_extra_in = 1; |
| |
| out->init = aead_aes_gcm_tls13_init; |
| out->cleanup = aead_aes_gcm_cleanup; |
| out->seal_scatter = aead_aes_gcm_tls13_seal_scatter; |
| out->open_gather = aead_aes_gcm_open_gather; |
| } |
| |
| int EVP_has_aes_hardware(void) { |
| #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) |
| return hwaes_capable() && crypto_gcm_clmul_enabled(); |
| #elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64) |
| return hwaes_capable() && CRYPTO_is_ARMv8_PMULL_capable(); |
| #elif defined(OPENSSL_PPC64LE) |
| return CRYPTO_is_PPC64LE_vcrypto_capable(); |
| #else |
| return 0; |
| #endif |
| } |
| |
| OPENSSL_MSVC_PRAGMA(warning(pop)) |