| /* Copyright (c) 2014, Google Inc. | 
 |  * | 
 |  * Permission to use, copy, modify, and/or distribute this software for any | 
 |  * purpose with or without fee is hereby granted, provided that the above | 
 |  * copyright notice and this permission notice appear in all copies. | 
 |  * | 
 |  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | 
 |  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | 
 |  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | 
 |  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | 
 |  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION | 
 |  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN | 
 |  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ | 
 |  | 
 | #include <limits.h> | 
 | #include <stdio.h> | 
 | #include <string.h> | 
 | #include <time.h> | 
 |  | 
 | #include <algorithm> | 
 | #include <limits> | 
 | #include <string> | 
 | #include <utility> | 
 | #include <vector> | 
 |  | 
 | #include <gtest/gtest.h> | 
 |  | 
 | #include <openssl/aead.h> | 
 | #include <openssl/base64.h> | 
 | #include <openssl/bytestring.h> | 
 | #include <openssl/bio.h> | 
 | #include <openssl/cipher.h> | 
 | #include <openssl/crypto.h> | 
 | #include <openssl/curve25519.h> | 
 | #include <openssl/err.h> | 
 | #include <openssl/hmac.h> | 
 | #include <openssl/hpke.h> | 
 | #include <openssl/pem.h> | 
 | #include <openssl/sha.h> | 
 | #include <openssl/ssl.h> | 
 | #include <openssl/rand.h> | 
 | #include <openssl/x509.h> | 
 | #include <openssl/x509v3.h> | 
 |  | 
 | #include "internal.h" | 
 | #include "../crypto/internal.h" | 
 | #include "../crypto/test/test_util.h" | 
 |  | 
 | #if defined(OPENSSL_WINDOWS) | 
 | // Windows defines struct timeval in winsock2.h. | 
 | OPENSSL_MSVC_PRAGMA(warning(push, 3)) | 
 | #include <winsock2.h> | 
 | OPENSSL_MSVC_PRAGMA(warning(pop)) | 
 | #else | 
 | #include <sys/time.h> | 
 | #endif | 
 |  | 
 | #if defined(OPENSSL_THREADS) | 
 | #include <thread> | 
 | #endif | 
 |  | 
 |  | 
 | BSSL_NAMESPACE_BEGIN | 
 |  | 
 | namespace { | 
 |  | 
 | #define TRACED_CALL(code)                     \ | 
 |   do {                                        \ | 
 |     SCOPED_TRACE("<- called from here");      \ | 
 |     code;                                     \ | 
 |     if (::testing::Test::HasFatalFailure()) { \ | 
 |       return;                                 \ | 
 |     }                                         \ | 
 |   } while (false) | 
 |  | 
 | struct VersionParam { | 
 |   uint16_t version; | 
 |   enum { is_tls, is_dtls } ssl_method; | 
 |   const char name[8]; | 
 | }; | 
 |  | 
 | static const size_t kTicketKeyLen = 48; | 
 |  | 
 | static const VersionParam kAllVersions[] = { | 
 |     {TLS1_VERSION, VersionParam::is_tls, "TLS1"}, | 
 |     {TLS1_1_VERSION, VersionParam::is_tls, "TLS1_1"}, | 
 |     {TLS1_2_VERSION, VersionParam::is_tls, "TLS1_2"}, | 
 |     {TLS1_3_VERSION, VersionParam::is_tls, "TLS1_3"}, | 
 |     {DTLS1_VERSION, VersionParam::is_dtls, "DTLS1"}, | 
 |     {DTLS1_2_VERSION, VersionParam::is_dtls, "DTLS1_2"}, | 
 | }; | 
 |  | 
 | struct ExpectedCipher { | 
 |   unsigned long id; | 
 |   int in_group_flag; | 
 | }; | 
 |  | 
 | struct CipherTest { | 
 |   // The rule string to apply. | 
 |   const char *rule; | 
 |   // The list of expected ciphers, in order. | 
 |   std::vector<ExpectedCipher> expected; | 
 |   // True if this cipher list should fail in strict mode. | 
 |   bool strict_fail; | 
 | }; | 
 |  | 
 | struct CurveTest { | 
 |   // The rule string to apply. | 
 |   const char *rule; | 
 |   // The list of expected curves, in order. | 
 |   std::vector<uint16_t> expected; | 
 | }; | 
 |  | 
 | template <typename T> | 
 | class UnownedSSLExData { | 
 |  public: | 
 |   UnownedSSLExData() { | 
 |     index_ = SSL_get_ex_new_index(0, nullptr, nullptr, nullptr, nullptr); | 
 |   } | 
 |  | 
 |   T *Get(const SSL *ssl) { | 
 |     return index_ < 0 ? nullptr | 
 |                       : static_cast<T *>(SSL_get_ex_data(ssl, index_)); | 
 |   } | 
 |  | 
 |   bool Set(SSL *ssl, T *t) { | 
 |     return index_ >= 0 && SSL_set_ex_data(ssl, index_, t); | 
 |   } | 
 |  | 
 |  private: | 
 |   int index_; | 
 | }; | 
 |  | 
 | static const CipherTest kCipherTests[] = { | 
 |     // Selecting individual ciphers should work. | 
 |     { | 
 |         "ECDHE-ECDSA-CHACHA20-POLY1305:" | 
 |         "ECDHE-RSA-CHACHA20-POLY1305:" | 
 |         "ECDHE-ECDSA-AES128-GCM-SHA256:" | 
 |         "ECDHE-RSA-AES128-GCM-SHA256", | 
 |         { | 
 |             {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0}, | 
 |             {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0}, | 
 |             {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, | 
 |             {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
 |         }, | 
 |         false, | 
 |     }, | 
 |     // + reorders selected ciphers to the end, keeping their relative order. | 
 |     { | 
 |         "ECDHE-ECDSA-CHACHA20-POLY1305:" | 
 |         "ECDHE-RSA-CHACHA20-POLY1305:" | 
 |         "ECDHE-ECDSA-AES128-GCM-SHA256:" | 
 |         "ECDHE-RSA-AES128-GCM-SHA256:" | 
 |         "+aRSA", | 
 |         { | 
 |             {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0}, | 
 |             {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, | 
 |             {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0}, | 
 |             {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
 |         }, | 
 |         false, | 
 |     }, | 
 |     // ! banishes ciphers from future selections. | 
 |     { | 
 |         "!aRSA:" | 
 |         "ECDHE-ECDSA-CHACHA20-POLY1305:" | 
 |         "ECDHE-RSA-CHACHA20-POLY1305:" | 
 |         "ECDHE-ECDSA-AES128-GCM-SHA256:" | 
 |         "ECDHE-RSA-AES128-GCM-SHA256", | 
 |         { | 
 |             {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0}, | 
 |             {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, | 
 |         }, | 
 |         false, | 
 |     }, | 
 |     // Multiple masks can be ANDed in a single rule. | 
 |     { | 
 |         "kRSA+AESGCM+AES128", | 
 |         { | 
 |             {TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
 |         }, | 
 |         false, | 
 |     }, | 
 |     // - removes selected ciphers, but preserves their order for future | 
 |     // selections. Select AES_128_GCM, but order the key exchanges RSA, | 
 |     // ECDHE_RSA. | 
 |     { | 
 |         "ALL:-kECDHE:" | 
 |         "-kRSA:-ALL:" | 
 |         "AESGCM+AES128+aRSA", | 
 |         { | 
 |             {TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
 |             {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
 |         }, | 
 |         false, | 
 |     }, | 
 |     // Unknown selectors are no-ops, except in strict mode. | 
 |     { | 
 |         "ECDHE-ECDSA-CHACHA20-POLY1305:" | 
 |         "ECDHE-RSA-CHACHA20-POLY1305:" | 
 |         "ECDHE-ECDSA-AES128-GCM-SHA256:" | 
 |         "ECDHE-RSA-AES128-GCM-SHA256:" | 
 |         "BOGUS1", | 
 |         { | 
 |             {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0}, | 
 |             {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0}, | 
 |             {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, | 
 |             {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
 |         }, | 
 |         true, | 
 |     }, | 
 |     // Unknown selectors are no-ops, except in strict mode. | 
 |     { | 
 |         "ECDHE-ECDSA-CHACHA20-POLY1305:" | 
 |         "ECDHE-RSA-CHACHA20-POLY1305:" | 
 |         "ECDHE-ECDSA-AES128-GCM-SHA256:" | 
 |         "ECDHE-RSA-AES128-GCM-SHA256:" | 
 |         "-BOGUS2:+BOGUS3:!BOGUS4", | 
 |         { | 
 |             {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0}, | 
 |             {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0}, | 
 |             {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, | 
 |             {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
 |         }, | 
 |         true, | 
 |     }, | 
 |     // Square brackets specify equi-preference groups. | 
 |     { | 
 |         "[ECDHE-ECDSA-CHACHA20-POLY1305|ECDHE-ECDSA-AES128-GCM-SHA256]:" | 
 |         "[ECDHE-RSA-CHACHA20-POLY1305]:" | 
 |         "ECDHE-RSA-AES128-GCM-SHA256", | 
 |         { | 
 |             {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 1}, | 
 |             {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, | 
 |             {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0}, | 
 |             {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
 |         }, | 
 |         false, | 
 |     }, | 
 |     // Standard names may be used instead of OpenSSL names. | 
 |     { | 
 |         "[TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256|" | 
 |         "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256]:" | 
 |         "[TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256]:" | 
 |         "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256", | 
 |         { | 
 |             {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 1}, | 
 |             {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, | 
 |             {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0}, | 
 |             {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
 |         }, | 
 |         false, | 
 |     }, | 
 |     // @STRENGTH performs a stable strength-sort of the selected ciphers and | 
 |     // only the selected ciphers. | 
 |     { | 
 |         // To simplify things, banish all but {ECDHE_RSA,RSA} x | 
 |         // {CHACHA20,AES_256_CBC,AES_128_CBC} x SHA1. | 
 |         "!AESGCM:!3DES:" | 
 |         // Order some ciphers backwards by strength. | 
 |         "ALL:-CHACHA20:-AES256:-AES128:-ALL:" | 
 |         // Select ECDHE ones and sort them by strength. Ties should resolve | 
 |         // based on the order above. | 
 |         "kECDHE:@STRENGTH:-ALL:" | 
 |         // Now bring back everything uses RSA. ECDHE_RSA should be first, sorted | 
 |         // by strength. Then RSA, backwards by strength. | 
 |         "aRSA", | 
 |         { | 
 |             {TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA, 0}, | 
 |             {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0}, | 
 |             {TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA, 0}, | 
 |             {TLS1_CK_RSA_WITH_AES_128_SHA, 0}, | 
 |             {TLS1_CK_RSA_WITH_AES_256_SHA, 0}, | 
 |         }, | 
 |         false, | 
 |     }, | 
 |     // Additional masks after @STRENGTH get silently discarded. | 
 |     // | 
 |     // TODO(davidben): Make this an error. If not silently discarded, they get | 
 |     // interpreted as + opcodes which are very different. | 
 |     { | 
 |         "ECDHE-RSA-AES128-GCM-SHA256:" | 
 |         "ECDHE-RSA-AES256-GCM-SHA384:" | 
 |         "@STRENGTH+AES256", | 
 |         { | 
 |             {TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384, 0}, | 
 |             {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
 |         }, | 
 |         false, | 
 |     }, | 
 |     { | 
 |         "ECDHE-RSA-AES128-GCM-SHA256:" | 
 |         "ECDHE-RSA-AES256-GCM-SHA384:" | 
 |         "@STRENGTH+AES256:" | 
 |         "ECDHE-RSA-CHACHA20-POLY1305", | 
 |         { | 
 |             {TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384, 0}, | 
 |             {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
 |             {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0}, | 
 |         }, | 
 |         false, | 
 |     }, | 
 |     // Exact ciphers may not be used in multi-part rules; they are treated | 
 |     // as unknown aliases. | 
 |     { | 
 |         "ECDHE-ECDSA-AES128-GCM-SHA256:" | 
 |         "ECDHE-RSA-AES128-GCM-SHA256:" | 
 |         "!ECDHE-RSA-AES128-GCM-SHA256+RSA:" | 
 |         "!ECDSA+ECDHE-ECDSA-AES128-GCM-SHA256", | 
 |         { | 
 |             {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, | 
 |             {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
 |         }, | 
 |         true, | 
 |     }, | 
 |     // SSLv3 matches everything that existed before TLS 1.2. | 
 |     { | 
 |         "AES128-SHA:ECDHE-RSA-AES128-GCM-SHA256:!SSLv3", | 
 |         { | 
 |             {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
 |         }, | 
 |         false, | 
 |     }, | 
 |     // TLSv1.2 matches everything added in TLS 1.2. | 
 |     { | 
 |         "AES128-SHA:ECDHE-RSA-AES128-GCM-SHA256:!TLSv1.2", | 
 |         { | 
 |             {TLS1_CK_RSA_WITH_AES_128_SHA, 0}, | 
 |         }, | 
 |         false, | 
 |     }, | 
 |     // The two directives have no intersection.  But each component is valid, so | 
 |     // even in strict mode it is accepted. | 
 |     { | 
 |         "AES128-SHA:ECDHE-RSA-AES128-GCM-SHA256:!TLSv1.2+SSLv3", | 
 |         { | 
 |             {TLS1_CK_RSA_WITH_AES_128_SHA, 0}, | 
 |             {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
 |         }, | 
 |         false, | 
 |     }, | 
 |     // Spaces, semi-colons and commas are separators. | 
 |     { | 
 |         "AES128-SHA: ECDHE-RSA-AES128-GCM-SHA256 AES256-SHA ,ECDHE-ECDSA-AES128-GCM-SHA256 ; AES128-GCM-SHA256", | 
 |         { | 
 |             {TLS1_CK_RSA_WITH_AES_128_SHA, 0}, | 
 |             {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
 |             {TLS1_CK_RSA_WITH_AES_256_SHA, 0}, | 
 |             {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, | 
 |             {TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
 |         }, | 
 |         // …but not in strict mode. | 
 |         true, | 
 |     }, | 
 |     // 3DES ciphers are disabled by default. | 
 |     { | 
 |         "RSA", | 
 |         { | 
 |             {TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
 |             {TLS1_CK_RSA_WITH_AES_256_GCM_SHA384, 0}, | 
 |             {TLS1_CK_RSA_WITH_AES_128_SHA, 0}, | 
 |             {TLS1_CK_RSA_WITH_AES_256_SHA, 0}, | 
 |         }, | 
 |         false, | 
 |     }, | 
 |     // But 3DES ciphers may be specified by name. | 
 |     { | 
 |         "TLS_RSA_WITH_3DES_EDE_CBC_SHA", | 
 |         { | 
 |             {SSL3_CK_RSA_DES_192_CBC3_SHA, 0}, | 
 |         }, | 
 |         false, | 
 |     }, | 
 |     { | 
 |         "DES-CBC3-SHA", | 
 |         { | 
 |             {SSL3_CK_RSA_DES_192_CBC3_SHA, 0}, | 
 |         }, | 
 |         false, | 
 |     }, | 
 |     // Or by a selector that specifically includes deprecated ciphers. | 
 |     { | 
 |         "3DES", | 
 |         { | 
 |             {SSL3_CK_RSA_DES_192_CBC3_SHA, 0}, | 
 |         }, | 
 |         false, | 
 |     }, | 
 |     // Such selectors may be combined with other selectors that would otherwise | 
 |     // not allow deprecated ciphers. | 
 |     { | 
 |         "RSA+3DES", | 
 |         { | 
 |             {SSL3_CK_RSA_DES_192_CBC3_SHA, 0}, | 
 |         }, | 
 |         false, | 
 |     }, | 
 |     // The cipher must still match all combined selectors, however. "ECDHE+3DES" | 
 |     // matches nothing because we do not implement | 
 |     // TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA. (The test includes | 
 |     // TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 so the final list is not empty.) | 
 |     { | 
 |         "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256:ECDHE+3DES", | 
 |         { | 
 |             {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, | 
 |         }, | 
 |         false, | 
 |     }, | 
 |     // Although alises like "RSA" do not match 3DES when adding ciphers, they do | 
 |     // match it when removing ciphers. | 
 |     { | 
 |         "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256:RSA:RSA+3DES:!RSA", | 
 |         { | 
 |             {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, | 
 |         }, | 
 |         false, | 
 |     }, | 
 |     // 3DES still participates in strength sorting. | 
 |     { | 
 |         "RSA:3DES:@STRENGTH", | 
 |         { | 
 |             {TLS1_CK_RSA_WITH_AES_256_GCM_SHA384, 0}, | 
 |             {TLS1_CK_RSA_WITH_AES_256_SHA, 0}, | 
 |             {TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
 |             {TLS1_CK_RSA_WITH_AES_128_SHA, 0}, | 
 |             {SSL3_CK_RSA_DES_192_CBC3_SHA, 0}, | 
 |         }, | 
 |         false, | 
 |     }, | 
 | }; | 
 |  | 
 | static const char *kBadRules[] = { | 
 |   // Invalid brackets. | 
 |   "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256", | 
 |   "RSA]", | 
 |   "[[RSA]]", | 
 |   // Operators inside brackets. | 
 |   "[+RSA]", | 
 |   // Unknown directive. | 
 |   "@BOGUS", | 
 |   // Empty cipher lists error at SSL_CTX_set_cipher_list. | 
 |   "", | 
 |   "BOGUS", | 
 |   // COMPLEMENTOFDEFAULT is empty. | 
 |   "COMPLEMENTOFDEFAULT", | 
 |   // Invalid command. | 
 |   "?BAR", | 
 |   // Special operators are not allowed if equi-preference groups are used. | 
 |   "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:+FOO", | 
 |   "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:!FOO", | 
 |   "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:-FOO", | 
 |   "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:@STRENGTH", | 
 |   // Opcode supplied, but missing selector. | 
 |   "+", | 
 |   // Spaces are forbidden in equal-preference groups. | 
 |   "[AES128-SHA | AES128-SHA256]", | 
 | }; | 
 |  | 
 | static const char *kMustNotIncludeDeprecated[] = { | 
 |   "ALL", | 
 |   "DEFAULT", | 
 |   "HIGH", | 
 |   "FIPS", | 
 |   "SHA", | 
 |   "SHA1", | 
 |   "RSA", | 
 |   "SSLv3", | 
 |   "TLSv1", | 
 |   "TLSv1.2", | 
 | }; | 
 |  | 
 | static const char* kShouldIncludeCBCSHA256[] = { | 
 |   "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256", | 
 |   "ALL:TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256", | 
 | }; | 
 |  | 
 | static const CurveTest kCurveTests[] = { | 
 |   { | 
 |     "P-256", | 
 |     { SSL_GROUP_SECP256R1 }, | 
 |   }, | 
 |   { | 
 |     "P-256:X25519Kyber768Draft00", | 
 |     { SSL_GROUP_SECP256R1, SSL_GROUP_X25519_KYBER768_DRAFT00 }, | 
 |   }, | 
 |  | 
 |   { | 
 |     "P-256:P-384:P-521:X25519", | 
 |     { | 
 |       SSL_GROUP_SECP256R1, | 
 |       SSL_GROUP_SECP384R1, | 
 |       SSL_GROUP_SECP521R1, | 
 |       SSL_GROUP_X25519, | 
 |     }, | 
 |   }, | 
 |   { | 
 |     "prime256v1:secp384r1:secp521r1:x25519", | 
 |     { | 
 |       SSL_GROUP_SECP256R1, | 
 |       SSL_GROUP_SECP384R1, | 
 |       SSL_GROUP_SECP521R1, | 
 |       SSL_GROUP_X25519, | 
 |     }, | 
 |   }, | 
 | }; | 
 |  | 
 | static const char *kBadCurvesLists[] = { | 
 |   "", | 
 |   ":", | 
 |   "::", | 
 |   "P-256::X25519", | 
 |   "RSA:P-256", | 
 |   "P-256:RSA", | 
 |   "X25519:P-256:", | 
 |   ":X25519:P-256", | 
 | }; | 
 |  | 
 | static std::string CipherListToString(SSL_CTX *ctx) { | 
 |   bool in_group = false; | 
 |   std::string ret; | 
 |   const STACK_OF(SSL_CIPHER) *ciphers = SSL_CTX_get_ciphers(ctx); | 
 |   for (size_t i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) { | 
 |     const SSL_CIPHER *cipher = sk_SSL_CIPHER_value(ciphers, i); | 
 |     if (!in_group && SSL_CTX_cipher_in_group(ctx, i)) { | 
 |       ret += "\t[\n"; | 
 |       in_group = true; | 
 |     } | 
 |     ret += "\t"; | 
 |     if (in_group) { | 
 |       ret += "  "; | 
 |     } | 
 |     ret += SSL_CIPHER_get_name(cipher); | 
 |     ret += "\n"; | 
 |     if (in_group && !SSL_CTX_cipher_in_group(ctx, i)) { | 
 |       ret += "\t]\n"; | 
 |       in_group = false; | 
 |     } | 
 |   } | 
 |   return ret; | 
 | } | 
 |  | 
 | static bool CipherListsEqual(SSL_CTX *ctx, | 
 |                              const std::vector<ExpectedCipher> &expected) { | 
 |   const STACK_OF(SSL_CIPHER) *ciphers = SSL_CTX_get_ciphers(ctx); | 
 |   if (sk_SSL_CIPHER_num(ciphers) != expected.size()) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   for (size_t i = 0; i < expected.size(); i++) { | 
 |     const SSL_CIPHER *cipher = sk_SSL_CIPHER_value(ciphers, i); | 
 |     if (expected[i].id != SSL_CIPHER_get_id(cipher) || | 
 |         expected[i].in_group_flag != !!SSL_CTX_cipher_in_group(ctx, i)) { | 
 |       return false; | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | TEST(GrowableArrayTest, Resize) { | 
 |   GrowableArray<size_t> array; | 
 |   ASSERT_TRUE(array.empty()); | 
 |   EXPECT_EQ(array.size(), 0u); | 
 |  | 
 |   ASSERT_TRUE(array.Push(42)); | 
 |   ASSERT_TRUE(!array.empty()); | 
 |   EXPECT_EQ(array.size(), 1u); | 
 |  | 
 |   // Force a resize operation to occur | 
 |   for (size_t i = 0; i < 16; i++) { | 
 |     ASSERT_TRUE(array.Push(i + 1)); | 
 |   } | 
 |  | 
 |   EXPECT_EQ(array.size(), 17u); | 
 |  | 
 |   // Verify that expected values are still contained in array | 
 |   for (size_t i = 0; i < array.size(); i++) { | 
 |     EXPECT_EQ(array[i], i == 0 ? 42 : i); | 
 |   } | 
 | } | 
 |  | 
 | TEST(GrowableArrayTest, MoveConstructor) { | 
 |   GrowableArray<size_t> array; | 
 |   for (size_t i = 0; i < 100; i++) { | 
 |     ASSERT_TRUE(array.Push(i)); | 
 |   } | 
 |  | 
 |   GrowableArray<size_t> array_moved(std::move(array)); | 
 |   for (size_t i = 0; i < 100; i++) { | 
 |     EXPECT_EQ(array_moved[i], i); | 
 |   } | 
 | } | 
 |  | 
 | TEST(GrowableArrayTest, GrowableArrayContainingGrowableArrays) { | 
 |   // Representative example of a struct that contains a GrowableArray. | 
 |   struct TagAndArray { | 
 |     size_t tag; | 
 |     GrowableArray<size_t> array; | 
 |   }; | 
 |  | 
 |   GrowableArray<TagAndArray> array; | 
 |   for (size_t i = 0; i < 100; i++) { | 
 |     TagAndArray elem; | 
 |     elem.tag = i; | 
 |     for (size_t j = 0; j < i; j++) { | 
 |       ASSERT_TRUE(elem.array.Push(j)); | 
 |     } | 
 |     ASSERT_TRUE(array.Push(std::move(elem))); | 
 |   } | 
 |   EXPECT_EQ(array.size(), static_cast<size_t>(100)); | 
 |  | 
 |   GrowableArray<TagAndArray> array_moved(std::move(array)); | 
 |   EXPECT_EQ(array_moved.size(), static_cast<size_t>(100)); | 
 |   size_t count = 0; | 
 |   for (const TagAndArray &elem : array_moved) { | 
 |     // Test the square bracket operator returns the same value as iteration. | 
 |     EXPECT_EQ(&elem, &array_moved[count]); | 
 |  | 
 |     EXPECT_EQ(elem.tag, count); | 
 |     EXPECT_EQ(elem.array.size(), count); | 
 |     for (size_t j = 0; j < count; j++) { | 
 |       EXPECT_EQ(elem.array[j], j); | 
 |     } | 
 |     count++; | 
 |   } | 
 | } | 
 |  | 
 | TEST(SSLTest, CipherRules) { | 
 |   for (const CipherTest &t : kCipherTests) { | 
 |     SCOPED_TRACE(t.rule); | 
 |     bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
 |     ASSERT_TRUE(ctx); | 
 |  | 
 |     // Test lax mode. | 
 |     ASSERT_TRUE(SSL_CTX_set_cipher_list(ctx.get(), t.rule)); | 
 |     EXPECT_TRUE(CipherListsEqual(ctx.get(), t.expected)) | 
 |         << "Cipher rule evaluated to:\n" | 
 |         << CipherListToString(ctx.get()); | 
 |  | 
 |     // Test strict mode. | 
 |     if (t.strict_fail) { | 
 |       EXPECT_FALSE(SSL_CTX_set_strict_cipher_list(ctx.get(), t.rule)); | 
 |     } else { | 
 |       ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(ctx.get(), t.rule)); | 
 |       EXPECT_TRUE(CipherListsEqual(ctx.get(), t.expected)) | 
 |           << "Cipher rule evaluated to:\n" | 
 |           << CipherListToString(ctx.get()); | 
 |     } | 
 |   } | 
 |  | 
 |   for (const char *rule : kBadRules) { | 
 |     SCOPED_TRACE(rule); | 
 |     bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
 |     ASSERT_TRUE(ctx); | 
 |  | 
 |     EXPECT_FALSE(SSL_CTX_set_cipher_list(ctx.get(), rule)); | 
 |     ERR_clear_error(); | 
 |   } | 
 |  | 
 |   for (const char *rule : kMustNotIncludeDeprecated) { | 
 |     SCOPED_TRACE(rule); | 
 |     bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
 |     ASSERT_TRUE(ctx); | 
 |  | 
 |     ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(ctx.get(), rule)); | 
 |     for (const SSL_CIPHER *cipher : SSL_CTX_get_ciphers(ctx.get())) { | 
 |       EXPECT_NE(NID_undef, SSL_CIPHER_get_cipher_nid(cipher)); | 
 |       EXPECT_FALSE(ssl_cipher_is_deprecated(cipher)); | 
 |     } | 
 |   } | 
 |  | 
 |   { | 
 |     for (const char *rule : kShouldIncludeCBCSHA256) { | 
 |       bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
 |       ASSERT_TRUE(ctx); | 
 |       ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(ctx.get(), rule)); | 
 |  | 
 |       bool found = false; | 
 |       for (const SSL_CIPHER *cipher : SSL_CTX_get_ciphers(ctx.get())) { | 
 |         if ((TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA256 & 0xffff) == | 
 |             SSL_CIPHER_get_protocol_id(cipher)) { | 
 |           found = true; | 
 |           break; | 
 |         } | 
 |       } | 
 |       EXPECT_TRUE(found); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | TEST(SSLTest, CurveRules) { | 
 |   for (const CurveTest &t : kCurveTests) { | 
 |     SCOPED_TRACE(t.rule); | 
 |     bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
 |     ASSERT_TRUE(ctx); | 
 |  | 
 |     ASSERT_TRUE(SSL_CTX_set1_groups_list(ctx.get(), t.rule)); | 
 |     ASSERT_EQ(t.expected.size(), ctx->supported_group_list.size()); | 
 |     for (size_t i = 0; i < t.expected.size(); i++) { | 
 |       EXPECT_EQ(t.expected[i], ctx->supported_group_list[i]); | 
 |     } | 
 |   } | 
 |  | 
 |   for (const char *rule : kBadCurvesLists) { | 
 |     SCOPED_TRACE(rule); | 
 |     bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
 |     ASSERT_TRUE(ctx); | 
 |  | 
 |     EXPECT_FALSE(SSL_CTX_set1_groups_list(ctx.get(), rule)); | 
 |     ERR_clear_error(); | 
 |   } | 
 | } | 
 |  | 
 | // kOpenSSLSession is a serialized SSL_SESSION. | 
 | static const char kOpenSSLSession[] = | 
 |     "MIIFqgIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ" | 
 |     "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH" | 
 |     "IWoJoQYCBFRDO46iBAICASyjggR6MIIEdjCCA16gAwIBAgIIK9dUvsPWSlUwDQYJ" | 
 |     "KoZIhvcNAQEFBQAwSTELMAkGA1UEBhMCVVMxEzARBgNVBAoTCkdvb2dsZSBJbmMx" | 
 |     "JTAjBgNVBAMTHEdvb2dsZSBJbnRlcm5ldCBBdXRob3JpdHkgRzIwHhcNMTQxMDA4" | 
 |     "MTIwNzU3WhcNMTUwMTA2MDAwMDAwWjBoMQswCQYDVQQGEwJVUzETMBEGA1UECAwK" | 
 |     "Q2FsaWZvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzETMBEGA1UECgwKR29v" | 
 |     "Z2xlIEluYzEXMBUGA1UEAwwOd3d3Lmdvb2dsZS5jb20wggEiMA0GCSqGSIb3DQEB" | 
 |     "AQUAA4IBDwAwggEKAoIBAQCcKeLrplAC+Lofy8t/wDwtB6eu72CVp0cJ4V3lknN6" | 
 |     "huH9ct6FFk70oRIh/VBNBBz900jYy+7111Jm1b8iqOTQ9aT5C7SEhNcQFJvqzH3e" | 
 |     "MPkb6ZSWGm1yGF7MCQTGQXF20Sk/O16FSjAynU/b3oJmOctcycWYkY0ytS/k3LBu" | 
 |     "Id45PJaoMqjB0WypqvNeJHC3q5JjCB4RP7Nfx5jjHSrCMhw8lUMW4EaDxjaR9KDh" | 
 |     "PLgjsk+LDIySRSRDaCQGhEOWLJZVLzLo4N6/UlctCHEllpBUSvEOyFga52qroGjg" | 
 |     "rf3WOQ925MFwzd6AK+Ich0gDRg8sQfdLH5OuP1cfLfU1AgMBAAGjggFBMIIBPTAd" | 
 |     "BgNVHSUEFjAUBggrBgEFBQcDAQYIKwYBBQUHAwIwGQYDVR0RBBIwEIIOd3d3Lmdv" | 
 |     "b2dsZS5jb20waAYIKwYBBQUHAQEEXDBaMCsGCCsGAQUFBzAChh9odHRwOi8vcGtp" | 
 |     "Lmdvb2dsZS5jb20vR0lBRzIuY3J0MCsGCCsGAQUFBzABhh9odHRwOi8vY2xpZW50" | 
 |     "czEuZ29vZ2xlLmNvbS9vY3NwMB0GA1UdDgQWBBQ7a+CcxsZByOpc+xpYFcIbnUMZ" | 
 |     "hTAMBgNVHRMBAf8EAjAAMB8GA1UdIwQYMBaAFErdBhYbvPZotXb1gba7Yhq6WoEv" | 
 |     "MBcGA1UdIAQQMA4wDAYKKwYBBAHWeQIFATAwBgNVHR8EKTAnMCWgI6Ahhh9odHRw" | 
 |     "Oi8vcGtpLmdvb2dsZS5jb20vR0lBRzIuY3JsMA0GCSqGSIb3DQEBBQUAA4IBAQCa" | 
 |     "OXCBdoqUy5bxyq+Wrh1zsyyCFim1PH5VU2+yvDSWrgDY8ibRGJmfff3r4Lud5kal" | 
 |     "dKs9k8YlKD3ITG7P0YT/Rk8hLgfEuLcq5cc0xqmE42xJ+Eo2uzq9rYorc5emMCxf" | 
 |     "5L0TJOXZqHQpOEcuptZQ4OjdYMfSxk5UzueUhA3ogZKRcRkdB3WeWRp+nYRhx4St" | 
 |     "o2rt2A0MKmY9165GHUqMK9YaaXHDXqBu7Sefr1uSoAP9gyIJKeihMivsGqJ1TD6Z" | 
 |     "cc6LMe+dN2P8cZEQHtD1y296ul4Mivqk3jatUVL8/hCwgch9A8O4PGZq9WqBfEWm" | 
 |     "IyHh1dPtbg1lOXdYCWtjpAIEAKUDAgEUqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36S" | 
 |     "YTcLEkXqKwOBfF9vE4KX0NxeLwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9B" | 
 |     "sNHM362zZnY27GpTw+Kwd751CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yE" | 
 |     "OTDKPNj3+inbMaVigtK4PLyPq+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdA" | 
 |     "i4gv7Y5oliyntgMBAQA="; | 
 |  | 
 | // kCustomSession is a custom serialized SSL_SESSION generated by | 
 | // filling in missing fields from |kOpenSSLSession|. This includes | 
 | // providing |peer_sha256|, so |peer| is not serialized. | 
 | static const char kCustomSession[] = | 
 |     "MIIBZAIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ" | 
 |     "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH" | 
 |     "IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUqAcEBXdvcmxkqQUCAwGJwKqBpwSB" | 
 |     "pBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0NxeLwjcDTpsuh3qXEaZ992r1N38" | 
 |     "VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751CLoXFPoaMOe57dbBpXoro6Pd" | 
 |     "3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyPq+Topyzvx9USFgRvyuoxn0Hg" | 
 |     "b+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYGBgYGBgYGBgYGBgYGBgYGBgYG" | 
 |     "BgYGBgYGBgYGrgMEAQevAwQBBLADBAEF"; | 
 |  | 
 | // kBoringSSLSession is a serialized SSL_SESSION generated from bssl client. | 
 | static const char kBoringSSLSession[] = | 
 |     "MIIRwQIBAQICAwMEAsAvBCDdoGxGK26mR+8lM0uq6+k9xYuxPnwAjpcF9n0Yli9R" | 
 |     "kQQwbyshfWhdi5XQ1++7n2L1qqrcVlmHBPpr6yknT/u4pUrpQB5FZ7vqvNn8MdHf" | 
 |     "9rWgoQYCBFXgs7uiBAICHCCjggR6MIIEdjCCA16gAwIBAgIIf+yfD7Y6UicwDQYJ" | 
 |     "KoZIhvcNAQELBQAwSTELMAkGA1UEBhMCVVMxEzARBgNVBAoTCkdvb2dsZSBJbmMx" | 
 |     "JTAjBgNVBAMTHEdvb2dsZSBJbnRlcm5ldCBBdXRob3JpdHkgRzIwHhcNMTUwODEy" | 
 |     "MTQ1MzE1WhcNMTUxMTEwMDAwMDAwWjBoMQswCQYDVQQGEwJVUzETMBEGA1UECAwK" | 
 |     "Q2FsaWZvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzETMBEGA1UECgwKR29v" | 
 |     "Z2xlIEluYzEXMBUGA1UEAwwOd3d3Lmdvb2dsZS5jb20wggEiMA0GCSqGSIb3DQEB" | 
 |     "AQUAA4IBDwAwggEKAoIBAQC0MeG5YGQ0t+IeJeoneP/PrhEaieibeKYkbKVLNZpo" | 
 |     "PLuBinvhkXZo3DC133NpCBpy6ZktBwamqyixAyuk/NU6OjgXqwwxfQ7di1AInLIU" | 
 |     "792c7hFyNXSUCG7At8Ifi3YwBX9Ba6u/1d6rWTGZJrdCq3QU11RkKYyTq2KT5mce" | 
 |     "Tv9iGKqSkSTlp8puy/9SZ/3DbU3U+BuqCFqeSlz7zjwFmk35acdCilpJlVDDN5C/" | 
 |     "RCh8/UKc8PaL+cxlt531qoTENvYrflBno14YEZlCBZsPiFeUSILpKEj3Ccwhy0eL" | 
 |     "EucWQ72YZU8mUzXBoXGn0zA0crFl5ci/2sTBBGZsylNBAgMBAAGjggFBMIIBPTAd" | 
 |     "BgNVHSUEFjAUBggrBgEFBQcDAQYIKwYBBQUHAwIwGQYDVR0RBBIwEIIOd3d3Lmdv" | 
 |     "b2dsZS5jb20waAYIKwYBBQUHAQEEXDBaMCsGCCsGAQUFBzAChh9odHRwOi8vcGtp" | 
 |     "Lmdvb2dsZS5jb20vR0lBRzIuY3J0MCsGCCsGAQUFBzABhh9odHRwOi8vY2xpZW50" | 
 |     "czEuZ29vZ2xlLmNvbS9vY3NwMB0GA1UdDgQWBBS/bzHxcE73Q4j3slC4BLbMtLjG" | 
 |     "GjAMBgNVHRMBAf8EAjAAMB8GA1UdIwQYMBaAFErdBhYbvPZotXb1gba7Yhq6WoEv" | 
 |     "MBcGA1UdIAQQMA4wDAYKKwYBBAHWeQIFATAwBgNVHR8EKTAnMCWgI6Ahhh9odHRw" | 
 |     "Oi8vcGtpLmdvb2dsZS5jb20vR0lBRzIuY3JsMA0GCSqGSIb3DQEBCwUAA4IBAQAb" | 
 |     "qdWPZEHk0X7iKPCTHL6S3w6q1eR67goxZGFSM1lk1hjwyu7XcLJuvALVV9uY3ovE" | 
 |     "kQZSHwT+pyOPWQhsSjO+1GyjvCvK/CAwiUmBX+bQRGaqHsRcio7xSbdVcajQ3bXd" | 
 |     "X+s0WdbOpn6MStKAiBVloPlSxEI8pxY6x/BBCnTIk/+DMB17uZlOjG3vbAnkDkP+" | 
 |     "n0OTucD9sHV7EVj9XUxi51nOfNBCN/s7lpUjDS/NJ4k3iwOtbCPswiot8vLO779a" | 
 |     "f07vR03r349Iz/KTzk95rlFtX0IU+KYNxFNsanIXZ+C9FYGRXkwhHcvFb4qMUB1y" | 
 |     "TTlM80jBMOwyjZXmjRAhpAIEAKUDAgEUqQUCAwGJwKqBpwSBpOgebbmn9NRUtMWH" | 
 |     "+eJpqA5JLMFSMCChOsvKey3toBaCNGU7HfAEiiXNuuAdCBoK262BjQc2YYfqFzqH" | 
 |     "zuppopXCvhohx7j/tnCNZIMgLYt/O9SXK2RYI5z8FhCCHvB4CbD5G0LGl5EFP27s" | 
 |     "Jb6S3aTTYPkQe8yZSlxevg6NDwmTogLO9F7UUkaYmVcMQhzssEE2ZRYNwSOU6KjE" | 
 |     "0Yj+8fAiBtbQriIEIN2L8ZlpaVrdN5KFNdvcmOxJu81P8q53X55xQyGTnGWwsgMC" | 
 |     "ARezggvvMIIEdjCCA16gAwIBAgIIf+yfD7Y6UicwDQYJKoZIhvcNAQELBQAwSTEL" | 
 |     "MAkGA1UEBhMCVVMxEzARBgNVBAoTCkdvb2dsZSBJbmMxJTAjBgNVBAMTHEdvb2ds" | 
 |     "ZSBJbnRlcm5ldCBBdXRob3JpdHkgRzIwHhcNMTUwODEyMTQ1MzE1WhcNMTUxMTEw" | 
 |     "MDAwMDAwWjBoMQswCQYDVQQGEwJVUzETMBEGA1UECAwKQ2FsaWZvcm5pYTEWMBQG" | 
 |     "A1UEBwwNTW91bnRhaW4gVmlldzETMBEGA1UECgwKR29vZ2xlIEluYzEXMBUGA1UE" | 
 |     "AwwOd3d3Lmdvb2dsZS5jb20wggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIB" | 
 |     "AQC0MeG5YGQ0t+IeJeoneP/PrhEaieibeKYkbKVLNZpoPLuBinvhkXZo3DC133Np" | 
 |     "CBpy6ZktBwamqyixAyuk/NU6OjgXqwwxfQ7di1AInLIU792c7hFyNXSUCG7At8If" | 
 |     "i3YwBX9Ba6u/1d6rWTGZJrdCq3QU11RkKYyTq2KT5mceTv9iGKqSkSTlp8puy/9S" | 
 |     "Z/3DbU3U+BuqCFqeSlz7zjwFmk35acdCilpJlVDDN5C/RCh8/UKc8PaL+cxlt531" | 
 |     "qoTENvYrflBno14YEZlCBZsPiFeUSILpKEj3Ccwhy0eLEucWQ72YZU8mUzXBoXGn" | 
 |     "0zA0crFl5ci/2sTBBGZsylNBAgMBAAGjggFBMIIBPTAdBgNVHSUEFjAUBggrBgEF" | 
 |     "BQcDAQYIKwYBBQUHAwIwGQYDVR0RBBIwEIIOd3d3Lmdvb2dsZS5jb20waAYIKwYB" | 
 |     "BQUHAQEEXDBaMCsGCCsGAQUFBzAChh9odHRwOi8vcGtpLmdvb2dsZS5jb20vR0lB" | 
 |     "RzIuY3J0MCsGCCsGAQUFBzABhh9odHRwOi8vY2xpZW50czEuZ29vZ2xlLmNvbS9v" | 
 |     "Y3NwMB0GA1UdDgQWBBS/bzHxcE73Q4j3slC4BLbMtLjGGjAMBgNVHRMBAf8EAjAA" | 
 |     "MB8GA1UdIwQYMBaAFErdBhYbvPZotXb1gba7Yhq6WoEvMBcGA1UdIAQQMA4wDAYK" | 
 |     "KwYBBAHWeQIFATAwBgNVHR8EKTAnMCWgI6Ahhh9odHRwOi8vcGtpLmdvb2dsZS5j" | 
 |     "b20vR0lBRzIuY3JsMA0GCSqGSIb3DQEBCwUAA4IBAQAbqdWPZEHk0X7iKPCTHL6S" | 
 |     "3w6q1eR67goxZGFSM1lk1hjwyu7XcLJuvALVV9uY3ovEkQZSHwT+pyOPWQhsSjO+" | 
 |     "1GyjvCvK/CAwiUmBX+bQRGaqHsRcio7xSbdVcajQ3bXdX+s0WdbOpn6MStKAiBVl" | 
 |     "oPlSxEI8pxY6x/BBCnTIk/+DMB17uZlOjG3vbAnkDkP+n0OTucD9sHV7EVj9XUxi" | 
 |     "51nOfNBCN/s7lpUjDS/NJ4k3iwOtbCPswiot8vLO779af07vR03r349Iz/KTzk95" | 
 |     "rlFtX0IU+KYNxFNsanIXZ+C9FYGRXkwhHcvFb4qMUB1yTTlM80jBMOwyjZXmjRAh" | 
 |     "MIID8DCCAtigAwIBAgIDAjqDMA0GCSqGSIb3DQEBCwUAMEIxCzAJBgNVBAYTAlVT" | 
 |     "MRYwFAYDVQQKEw1HZW9UcnVzdCBJbmMuMRswGQYDVQQDExJHZW9UcnVzdCBHbG9i" | 
 |     "YWwgQ0EwHhcNMTMwNDA1MTUxNTU2WhcNMTYxMjMxMjM1OTU5WjBJMQswCQYDVQQG" | 
 |     "EwJVUzETMBEGA1UEChMKR29vZ2xlIEluYzElMCMGA1UEAxMcR29vZ2xlIEludGVy" | 
 |     "bmV0IEF1dGhvcml0eSBHMjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEB" | 
 |     "AJwqBHdc2FCROgajguDYUEi8iT/xGXAaiEZ+4I/F8YnOIe5a/mENtzJEiaB0C1NP" | 
 |     "VaTOgmKV7utZX8bhBYASxF6UP7xbSDj0U/ck5vuR6RXEz/RTDfRK/J9U3n2+oGtv" | 
 |     "h8DQUB8oMANA2ghzUWx//zo8pzcGjr1LEQTrfSTe5vn8MXH7lNVg8y5Kr0LSy+rE" | 
 |     "ahqyzFPdFUuLH8gZYR/Nnag+YyuENWllhMgZxUYi+FOVvuOAShDGKuy6lyARxzmZ" | 
 |     "EASg8GF6lSWMTlJ14rbtCMoU/M4iarNOz0YDl5cDfsCx3nuvRTPPuj5xt970JSXC" | 
 |     "DTWJnZ37DhF5iR43xa+OcmkCAwEAAaOB5zCB5DAfBgNVHSMEGDAWgBTAephojYn7" | 
 |     "qwVkDBF9qn1luMrMTjAdBgNVHQ4EFgQUSt0GFhu89mi1dvWBtrtiGrpagS8wDgYD" | 
 |     "VR0PAQH/BAQDAgEGMC4GCCsGAQUFBwEBBCIwIDAeBggrBgEFBQcwAYYSaHR0cDov" | 
 |     "L2cuc3ltY2QuY29tMBIGA1UdEwEB/wQIMAYBAf8CAQAwNQYDVR0fBC4wLDAqoCig" | 
 |     "JoYkaHR0cDovL2cuc3ltY2IuY29tL2NybHMvZ3RnbG9iYWwuY3JsMBcGA1UdIAQQ" | 
 |     "MA4wDAYKKwYBBAHWeQIFATANBgkqhkiG9w0BAQsFAAOCAQEAqvqpIM1qZ4PtXtR+" | 
 |     "3h3Ef+AlBgDFJPupyC1tft6dgmUsgWM0Zj7pUsIItMsv91+ZOmqcUHqFBYx90SpI" | 
 |     "hNMJbHzCzTWf84LuUt5oX+QAihcglvcpjZpNy6jehsgNb1aHA30DP9z6eX0hGfnI" | 
 |     "Oi9RdozHQZJxjyXON/hKTAAj78Q1EK7gI4BzfE00LshukNYQHpmEcxpw8u1VDu4X" | 
 |     "Bupn7jLrLN1nBz/2i8Jw3lsA5rsb0zYaImxssDVCbJAJPZPpZAkiDoUGn8JzIdPm" | 
 |     "X4DkjYUiOnMDsWCOrmji9D6X52ASCWg23jrW4kOVWzeBkoEfu43XrVJkFleW2V40" | 
 |     "fsg12DCCA30wggLmoAMCAQICAxK75jANBgkqhkiG9w0BAQUFADBOMQswCQYDVQQG" | 
 |     "EwJVUzEQMA4GA1UEChMHRXF1aWZheDEtMCsGA1UECxMkRXF1aWZheCBTZWN1cmUg" | 
 |     "Q2VydGlmaWNhdGUgQXV0aG9yaXR5MB4XDTAyMDUyMTA0MDAwMFoXDTE4MDgyMTA0" | 
 |     "MDAwMFowQjELMAkGA1UEBhMCVVMxFjAUBgNVBAoTDUdlb1RydXN0IEluYy4xGzAZ" | 
 |     "BgNVBAMTEkdlb1RydXN0IEdsb2JhbCBDQTCCASIwDQYJKoZIhvcNAQEBBQADggEP" | 
 |     "ADCCAQoCggEBANrMGGMw/fQXIxpWflvfPGw45HG3eJHUvKHYTPioQ7YD6U0hBwiI" | 
 |     "2lgvZjkpvQV4i5046AW3an5xpObEYKaw74DkiSgPniXW7YPzraaRx5jJQhg1FJ2t" | 
 |     "mEaSLk/K8YdDwRaVVy1Q74ktgHpXrfLuX2vSAI25FPgUFTXZwEaje3LIkb/JVSvN" | 
 |     "0Jc+nCZkzN/Ogxlxyk7m1NV7qRnNVd7I7NJeOFPlXE+MLf5QIzb8ZubLjqQ5GQC3" | 
 |     "lQI5kQsO/jgu0R0FmvZNPm8PBx2vLB6PYDni+jZTEznUXiYr2z2oFL0y6xgDKFIE" | 
 |     "ceWrMz3hOLsHNoRinHnqFjD0X8Ar6HFr5PkCAwEAAaOB8DCB7TAfBgNVHSMEGDAW" | 
 |     "gBRI5mj5K9KylddH2CMgEE8zmJCf1DAdBgNVHQ4EFgQUwHqYaI2J+6sFZAwRfap9" | 
 |     "ZbjKzE4wDwYDVR0TAQH/BAUwAwEB/zAOBgNVHQ8BAf8EBAMCAQYwOgYDVR0fBDMw" | 
 |     "MTAvoC2gK4YpaHR0cDovL2NybC5nZW90cnVzdC5jb20vY3Jscy9zZWN1cmVjYS5j" | 
 |     "cmwwTgYDVR0gBEcwRTBDBgRVHSAAMDswOQYIKwYBBQUHAgEWLWh0dHBzOi8vd3d3" | 
 |     "Lmdlb3RydXN0LmNvbS9yZXNvdXJjZXMvcmVwb3NpdG9yeTANBgkqhkiG9w0BAQUF" | 
 |     "AAOBgQB24RJuTksWEoYwBrKBCM/wCMfHcX5m7sLt1Dsf//DwyE7WQziwuTB9GNBV" | 
 |     "g6JqyzYRnOhIZqNtf7gT1Ef+i1pcc/yu2RsyGTirlzQUqpbS66McFAhJtrvlke+D" | 
 |     "NusdVm/K2rxzY5Dkf3s+Iss9B+1fOHSc4wNQTqGvmO5h8oQ/Eg=="; | 
 |  | 
 | // kBadSessionExtraField is a custom serialized SSL_SESSION generated by replacing | 
 | // the final (optional) element of |kCustomSession| with tag number 99. | 
 | static const char kBadSessionExtraField[] = | 
 |     "MIIBdgIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ" | 
 |     "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH" | 
 |     "IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUphAEDnd3dy5nb29nbGUuY29tqAcE" | 
 |     "BXdvcmxkqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0Nxe" | 
 |     "LwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751" | 
 |     "CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyP" | 
 |     "q+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYG" | 
 |     "BgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGrgMEAQevAwQBBOMDBAEF"; | 
 |  | 
 | // kBadSessionVersion is a custom serialized SSL_SESSION generated by replacing | 
 | // the version of |kCustomSession| with 2. | 
 | static const char kBadSessionVersion[] = | 
 |     "MIIBdgIBAgICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ" | 
 |     "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH" | 
 |     "IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUphAEDnd3dy5nb29nbGUuY29tqAcE" | 
 |     "BXdvcmxkqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0Nxe" | 
 |     "LwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751" | 
 |     "CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyP" | 
 |     "q+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYG" | 
 |     "BgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGrgMEAQevAwQBBLADBAEF"; | 
 |  | 
 | // kBadSessionTrailingData is a custom serialized SSL_SESSION with trailing data | 
 | // appended. | 
 | static const char kBadSessionTrailingData[] = | 
 |     "MIIBdgIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ" | 
 |     "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH" | 
 |     "IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUphAEDnd3dy5nb29nbGUuY29tqAcE" | 
 |     "BXdvcmxkqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0Nxe" | 
 |     "LwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751" | 
 |     "CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyP" | 
 |     "q+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYG" | 
 |     "BgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGrgMEAQevAwQBBLADBAEFAAAA"; | 
 |  | 
 | static bool DecodeBase64(std::vector<uint8_t> *out, const char *in) { | 
 |   size_t len; | 
 |   if (!EVP_DecodedLength(&len, strlen(in))) { | 
 |     fprintf(stderr, "EVP_DecodedLength failed\n"); | 
 |     return false; | 
 |   } | 
 |  | 
 |   out->resize(len); | 
 |   if (!EVP_DecodeBase64(out->data(), &len, len, (const uint8_t *)in, | 
 |                         strlen(in))) { | 
 |     fprintf(stderr, "EVP_DecodeBase64 failed\n"); | 
 |     return false; | 
 |   } | 
 |   out->resize(len); | 
 |   return true; | 
 | } | 
 |  | 
 | TEST(SSLTest, SessionEncoding) { | 
 |   for (const char *input_b64 : { | 
 |            kOpenSSLSession, | 
 |            kCustomSession, | 
 |            kBoringSSLSession, | 
 |        }) { | 
 |     SCOPED_TRACE(std::string(input_b64)); | 
 |     // Decode the input. | 
 |     std::vector<uint8_t> input; | 
 |     ASSERT_TRUE(DecodeBase64(&input, input_b64)); | 
 |  | 
 |     // Verify the SSL_SESSION decodes. | 
 |     bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method())); | 
 |     ASSERT_TRUE(ssl_ctx); | 
 |     bssl::UniquePtr<SSL_SESSION> session( | 
 |         SSL_SESSION_from_bytes(input.data(), input.size(), ssl_ctx.get())); | 
 |     ASSERT_TRUE(session) << "SSL_SESSION_from_bytes failed"; | 
 |  | 
 |     // Verify the SSL_SESSION encoding round-trips. | 
 |     size_t encoded_len; | 
 |     bssl::UniquePtr<uint8_t> encoded; | 
 |     uint8_t *encoded_raw; | 
 |     ASSERT_TRUE(SSL_SESSION_to_bytes(session.get(), &encoded_raw, &encoded_len)) | 
 |         << "SSL_SESSION_to_bytes failed"; | 
 |     encoded.reset(encoded_raw); | 
 |     EXPECT_EQ(Bytes(encoded.get(), encoded_len), Bytes(input)) | 
 |         << "SSL_SESSION_to_bytes did not round-trip"; | 
 |  | 
 |     // Verify the SSL_SESSION also decodes with the legacy API. | 
 |     const uint8_t *cptr = input.data(); | 
 |     session.reset(d2i_SSL_SESSION(NULL, &cptr, input.size())); | 
 |     ASSERT_TRUE(session) << "d2i_SSL_SESSION failed"; | 
 |     EXPECT_EQ(cptr, input.data() + input.size()); | 
 |  | 
 |     // Verify the SSL_SESSION encoding round-trips via the legacy API. | 
 |     int len = i2d_SSL_SESSION(session.get(), NULL); | 
 |     ASSERT_GT(len, 0) << "i2d_SSL_SESSION failed"; | 
 |     ASSERT_EQ(static_cast<size_t>(len), input.size()) | 
 |         << "i2d_SSL_SESSION(NULL) returned invalid length"; | 
 |  | 
 |     encoded.reset((uint8_t *)OPENSSL_malloc(input.size())); | 
 |     ASSERT_TRUE(encoded); | 
 |  | 
 |     uint8_t *ptr = encoded.get(); | 
 |     len = i2d_SSL_SESSION(session.get(), &ptr); | 
 |     ASSERT_GT(len, 0) << "i2d_SSL_SESSION failed"; | 
 |     ASSERT_EQ(static_cast<size_t>(len), input.size()) | 
 |         << "i2d_SSL_SESSION(NULL) returned invalid length"; | 
 |     ASSERT_EQ(ptr, encoded.get() + input.size()) | 
 |         << "i2d_SSL_SESSION did not advance ptr correctly"; | 
 |     EXPECT_EQ(Bytes(encoded.get(), encoded_len), Bytes(input)) | 
 |         << "SSL_SESSION_to_bytes did not round-trip"; | 
 |   } | 
 |  | 
 |   for (const char *input_b64 : { | 
 |            kBadSessionExtraField, | 
 |            kBadSessionVersion, | 
 |            kBadSessionTrailingData, | 
 |        }) { | 
 |     SCOPED_TRACE(std::string(input_b64)); | 
 |     std::vector<uint8_t> input; | 
 |     ASSERT_TRUE(DecodeBase64(&input, input_b64)); | 
 |  | 
 |     // Verify that the SSL_SESSION fails to decode. | 
 |     bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method())); | 
 |     ASSERT_TRUE(ssl_ctx); | 
 |     bssl::UniquePtr<SSL_SESSION> session( | 
 |         SSL_SESSION_from_bytes(input.data(), input.size(), ssl_ctx.get())); | 
 |     EXPECT_FALSE(session) << "SSL_SESSION_from_bytes unexpectedly succeeded"; | 
 |     ERR_clear_error(); | 
 |   } | 
 | } | 
 |  | 
 | static void ExpectDefaultVersion(uint16_t min_version, uint16_t max_version, | 
 |                                  const SSL_METHOD *(*method)(void)) { | 
 |   bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(method())); | 
 |   ASSERT_TRUE(ctx); | 
 |   EXPECT_EQ(min_version, SSL_CTX_get_min_proto_version(ctx.get())); | 
 |   EXPECT_EQ(max_version, SSL_CTX_get_max_proto_version(ctx.get())); | 
 | } | 
 |  | 
 | TEST(SSLTest, DefaultVersion) { | 
 |   ExpectDefaultVersion(TLS1_VERSION, TLS1_3_VERSION, &TLS_method); | 
 |   ExpectDefaultVersion(TLS1_VERSION, TLS1_VERSION, &TLSv1_method); | 
 |   ExpectDefaultVersion(TLS1_1_VERSION, TLS1_1_VERSION, &TLSv1_1_method); | 
 |   ExpectDefaultVersion(TLS1_2_VERSION, TLS1_2_VERSION, &TLSv1_2_method); | 
 |   ExpectDefaultVersion(DTLS1_VERSION, DTLS1_2_VERSION, &DTLS_method); | 
 |   ExpectDefaultVersion(DTLS1_VERSION, DTLS1_VERSION, &DTLSv1_method); | 
 |   ExpectDefaultVersion(DTLS1_2_VERSION, DTLS1_2_VERSION, &DTLSv1_2_method); | 
 | } | 
 |  | 
 | TEST(SSLTest, CipherProperties) { | 
 |   static const struct { | 
 |     int id; | 
 |     const char *standard_name; | 
 |     int cipher_nid; | 
 |     int digest_nid; | 
 |     int kx_nid; | 
 |     int auth_nid; | 
 |     int prf_nid; | 
 |   } kTests[] = { | 
 |       { | 
 |           SSL3_CK_RSA_DES_192_CBC3_SHA, | 
 |           "TLS_RSA_WITH_3DES_EDE_CBC_SHA", | 
 |           NID_des_ede3_cbc, | 
 |           NID_sha1, | 
 |           NID_kx_rsa, | 
 |           NID_auth_rsa, | 
 |           NID_md5_sha1, | 
 |       }, | 
 |       { | 
 |           TLS1_CK_RSA_WITH_AES_128_SHA, | 
 |           "TLS_RSA_WITH_AES_128_CBC_SHA", | 
 |           NID_aes_128_cbc, | 
 |           NID_sha1, | 
 |           NID_kx_rsa, | 
 |           NID_auth_rsa, | 
 |           NID_md5_sha1, | 
 |       }, | 
 |       { | 
 |           TLS1_CK_PSK_WITH_AES_256_CBC_SHA, | 
 |           "TLS_PSK_WITH_AES_256_CBC_SHA", | 
 |           NID_aes_256_cbc, | 
 |           NID_sha1, | 
 |           NID_kx_psk, | 
 |           NID_auth_psk, | 
 |           NID_md5_sha1, | 
 |       }, | 
 |       { | 
 |           TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA, | 
 |           "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA", | 
 |           NID_aes_128_cbc, | 
 |           NID_sha1, | 
 |           NID_kx_ecdhe, | 
 |           NID_auth_rsa, | 
 |           NID_md5_sha1, | 
 |       }, | 
 |       { | 
 |           TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA, | 
 |           "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA", | 
 |           NID_aes_256_cbc, | 
 |           NID_sha1, | 
 |           NID_kx_ecdhe, | 
 |           NID_auth_rsa, | 
 |           NID_md5_sha1, | 
 |       }, | 
 |       { | 
 |           TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, | 
 |           "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256", | 
 |           NID_aes_128_gcm, | 
 |           NID_undef, | 
 |           NID_kx_ecdhe, | 
 |           NID_auth_rsa, | 
 |           NID_sha256, | 
 |       }, | 
 |       { | 
 |           TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, | 
 |           "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256", | 
 |           NID_aes_128_gcm, | 
 |           NID_undef, | 
 |           NID_kx_ecdhe, | 
 |           NID_auth_ecdsa, | 
 |           NID_sha256, | 
 |       }, | 
 |       { | 
 |           TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, | 
 |           "TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384", | 
 |           NID_aes_256_gcm, | 
 |           NID_undef, | 
 |           NID_kx_ecdhe, | 
 |           NID_auth_ecdsa, | 
 |           NID_sha384, | 
 |       }, | 
 |       { | 
 |           TLS1_CK_ECDHE_PSK_WITH_AES_128_CBC_SHA, | 
 |           "TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA", | 
 |           NID_aes_128_cbc, | 
 |           NID_sha1, | 
 |           NID_kx_ecdhe, | 
 |           NID_auth_psk, | 
 |           NID_md5_sha1, | 
 |       }, | 
 |       { | 
 |           TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, | 
 |           "TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256", | 
 |           NID_chacha20_poly1305, | 
 |           NID_undef, | 
 |           NID_kx_ecdhe, | 
 |           NID_auth_rsa, | 
 |           NID_sha256, | 
 |       }, | 
 |       { | 
 |           TLS1_3_CK_AES_256_GCM_SHA384, | 
 |           "TLS_AES_256_GCM_SHA384", | 
 |           NID_aes_256_gcm, | 
 |           NID_undef, | 
 |           NID_kx_any, | 
 |           NID_auth_any, | 
 |           NID_sha384, | 
 |       }, | 
 |       { | 
 |           TLS1_3_CK_AES_128_GCM_SHA256, | 
 |           "TLS_AES_128_GCM_SHA256", | 
 |           NID_aes_128_gcm, | 
 |           NID_undef, | 
 |           NID_kx_any, | 
 |           NID_auth_any, | 
 |           NID_sha256, | 
 |       }, | 
 |       { | 
 |           TLS1_3_CK_CHACHA20_POLY1305_SHA256, | 
 |           "TLS_CHACHA20_POLY1305_SHA256", | 
 |           NID_chacha20_poly1305, | 
 |           NID_undef, | 
 |           NID_kx_any, | 
 |           NID_auth_any, | 
 |           NID_sha256, | 
 |       }, | 
 |   }; | 
 |  | 
 |   for (const auto &t : kTests) { | 
 |     SCOPED_TRACE(t.standard_name); | 
 |  | 
 |     const SSL_CIPHER *cipher = SSL_get_cipher_by_value(t.id & 0xffff); | 
 |     ASSERT_TRUE(cipher); | 
 |     EXPECT_STREQ(t.standard_name, SSL_CIPHER_standard_name(cipher)); | 
 |  | 
 |     EXPECT_EQ(t.cipher_nid, SSL_CIPHER_get_cipher_nid(cipher)); | 
 |     EXPECT_EQ(t.digest_nid, SSL_CIPHER_get_digest_nid(cipher)); | 
 |     EXPECT_EQ(t.kx_nid, SSL_CIPHER_get_kx_nid(cipher)); | 
 |     EXPECT_EQ(t.auth_nid, SSL_CIPHER_get_auth_nid(cipher)); | 
 |     EXPECT_EQ(t.prf_nid, EVP_MD_nid(SSL_CIPHER_get_handshake_digest(cipher))); | 
 |     EXPECT_EQ(t.prf_nid, SSL_CIPHER_get_prf_nid(cipher)); | 
 |   } | 
 | } | 
 |  | 
 | // CreateSessionWithTicket returns a sample |SSL_SESSION| with the specified | 
 | // version and ticket length or nullptr on failure. | 
 | static bssl::UniquePtr<SSL_SESSION> CreateSessionWithTicket(uint16_t version, | 
 |                                                             size_t ticket_len) { | 
 |   std::vector<uint8_t> der; | 
 |   if (!DecodeBase64(&der, kOpenSSLSession)) { | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method())); | 
 |   if (!ssl_ctx) { | 
 |     return nullptr; | 
 |   } | 
 |   // Use a garbage ticket. | 
 |   std::vector<uint8_t> ticket(ticket_len, 'a'); | 
 |   bssl::UniquePtr<SSL_SESSION> session( | 
 |       SSL_SESSION_from_bytes(der.data(), der.size(), ssl_ctx.get())); | 
 |   if (!session || | 
 |       !SSL_SESSION_set_protocol_version(session.get(), version) || | 
 |       !SSL_SESSION_set_ticket(session.get(), ticket.data(), ticket.size())) { | 
 |     return nullptr; | 
 |   } | 
 |   // Fix up the timeout. | 
 | #if defined(BORINGSSL_UNSAFE_DETERMINISTIC_MODE) | 
 |   SSL_SESSION_set_time(session.get(), 1234); | 
 | #else | 
 |   SSL_SESSION_set_time(session.get(), time(nullptr)); | 
 | #endif | 
 |   return session; | 
 | } | 
 |  | 
 | static bool GetClientHello(SSL *ssl, std::vector<uint8_t> *out) { | 
 |   bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem())); | 
 |   if (!bio) { | 
 |     return false; | 
 |   } | 
 |   // Do not configure a reading BIO, but record what's written to a memory BIO. | 
 |   BIO_up_ref(bio.get()); | 
 |   SSL_set_bio(ssl, nullptr /* rbio */, bio.get()); | 
 |   int ret = SSL_connect(ssl); | 
 |   if (ret > 0) { | 
 |     // SSL_connect should fail without a BIO to write to. | 
 |     return false; | 
 |   } | 
 |   ERR_clear_error(); | 
 |  | 
 |   const uint8_t *client_hello; | 
 |   size_t client_hello_len; | 
 |   if (!BIO_mem_contents(bio.get(), &client_hello, &client_hello_len)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // We did not get far enough to write a ClientHello. | 
 |   if (client_hello_len == 0) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   *out = std::vector<uint8_t>(client_hello, client_hello + client_hello_len); | 
 |   return true; | 
 | } | 
 |  | 
 | // GetClientHelloLen creates a client SSL connection with the specified version | 
 | // and ticket length. It returns the length of the ClientHello, not including | 
 | // the record header, on success and zero on error. | 
 | static size_t GetClientHelloLen(uint16_t max_version, uint16_t session_version, | 
 |                                 size_t ticket_len) { | 
 |   bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
 |   bssl::UniquePtr<SSL_SESSION> session = | 
 |       CreateSessionWithTicket(session_version, ticket_len); | 
 |   if (!ctx || !session) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // Set a one-element cipher list so the baseline ClientHello is unpadded. | 
 |   bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); | 
 |   if (!ssl || !SSL_set_session(ssl.get(), session.get()) || | 
 |       !SSL_set_strict_cipher_list(ssl.get(), "ECDHE-RSA-AES128-GCM-SHA256") || | 
 |       !SSL_set_max_proto_version(ssl.get(), max_version)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   std::vector<uint8_t> client_hello; | 
 |   if (!GetClientHello(ssl.get(), &client_hello) || | 
 |       client_hello.size() <= SSL3_RT_HEADER_LENGTH) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return client_hello.size() - SSL3_RT_HEADER_LENGTH; | 
 | } | 
 |  | 
 | TEST(SSLTest, Padding) { | 
 |   struct PaddingVersions { | 
 |     uint16_t max_version, session_version; | 
 |   }; | 
 |   static const PaddingVersions kPaddingVersions[] = { | 
 |       // Test the padding extension at TLS 1.2. | 
 |       {TLS1_2_VERSION, TLS1_2_VERSION}, | 
 |       // Test the padding extension at TLS 1.3 with a TLS 1.2 session, so there | 
 |       // will be no PSK binder after the padding extension. | 
 |       {TLS1_3_VERSION, TLS1_2_VERSION}, | 
 |       // Test the padding extension at TLS 1.3 with a TLS 1.3 session, so there | 
 |       // will be a PSK binder after the padding extension. | 
 |       {TLS1_3_VERSION, TLS1_3_VERSION}, | 
 |  | 
 |   }; | 
 |  | 
 |   struct PaddingTest { | 
 |     size_t input_len, padded_len; | 
 |   }; | 
 |   static const PaddingTest kPaddingTests[] = { | 
 |       // ClientHellos of length below 0x100 do not require padding. | 
 |       {0xfe, 0xfe}, | 
 |       {0xff, 0xff}, | 
 |       // ClientHellos of length 0x100 through 0x1fb are padded up to 0x200. | 
 |       {0x100, 0x200}, | 
 |       {0x123, 0x200}, | 
 |       {0x1fb, 0x200}, | 
 |       // ClientHellos of length 0x1fc through 0x1ff get padded beyond 0x200. The | 
 |       // padding extension takes a minimum of four bytes plus one required | 
 |       // content | 
 |       // byte. (To work around yet more server bugs, we avoid empty final | 
 |       // extensions.) | 
 |       {0x1fc, 0x201}, | 
 |       {0x1fd, 0x202}, | 
 |       {0x1fe, 0x203}, | 
 |       {0x1ff, 0x204}, | 
 |       // Finally, larger ClientHellos need no padding. | 
 |       {0x200, 0x200}, | 
 |       {0x201, 0x201}, | 
 |   }; | 
 |  | 
 |   for (const PaddingVersions &versions : kPaddingVersions) { | 
 |     SCOPED_TRACE(versions.max_version); | 
 |     SCOPED_TRACE(versions.session_version); | 
 |  | 
 |     // Sample a baseline length. | 
 |     size_t base_len = | 
 |         GetClientHelloLen(versions.max_version, versions.session_version, 1); | 
 |     ASSERT_NE(base_len, 0u) << "Baseline length could not be sampled"; | 
 |  | 
 |     for (const PaddingTest &test : kPaddingTests) { | 
 |       SCOPED_TRACE(test.input_len); | 
 |       ASSERT_LE(base_len, test.input_len) << "Baseline ClientHello too long"; | 
 |  | 
 |       size_t padded_len = | 
 |           GetClientHelloLen(versions.max_version, versions.session_version, | 
 |                             1 + test.input_len - base_len); | 
 |       EXPECT_EQ(padded_len, test.padded_len) | 
 |           << "ClientHello was not padded to expected length"; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static bssl::UniquePtr<X509> CertFromPEM(const char *pem) { | 
 |   bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(pem, strlen(pem))); | 
 |   if (!bio) { | 
 |     return nullptr; | 
 |   } | 
 |   return bssl::UniquePtr<X509>( | 
 |       PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr)); | 
 | } | 
 |  | 
 | static bssl::UniquePtr<EVP_PKEY> KeyFromPEM(const char *pem) { | 
 |   bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(pem, strlen(pem))); | 
 |   if (!bio) { | 
 |     return nullptr; | 
 |   } | 
 |   return bssl::UniquePtr<EVP_PKEY>( | 
 |       PEM_read_bio_PrivateKey(bio.get(), nullptr, nullptr, nullptr)); | 
 | } | 
 |  | 
 | static bssl::UniquePtr<X509> GetTestCertificate() { | 
 |   static const char kCertPEM[] = | 
 |       "-----BEGIN CERTIFICATE-----\n" | 
 |       "MIICWDCCAcGgAwIBAgIJAPuwTC6rEJsMMA0GCSqGSIb3DQEBBQUAMEUxCzAJBgNV\n" | 
 |       "BAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5ldCBX\n" | 
 |       "aWRnaXRzIFB0eSBMdGQwHhcNMTQwNDIzMjA1MDQwWhcNMTcwNDIyMjA1MDQwWjBF\n" | 
 |       "MQswCQYDVQQGEwJBVTETMBEGA1UECAwKU29tZS1TdGF0ZTEhMB8GA1UECgwYSW50\n" | 
 |       "ZXJuZXQgV2lkZ2l0cyBQdHkgTHRkMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKB\n" | 
 |       "gQDYK8imMuRi/03z0K1Zi0WnvfFHvwlYeyK9Na6XJYaUoIDAtB92kWdGMdAQhLci\n" | 
 |       "HnAjkXLI6W15OoV3gA/ElRZ1xUpxTMhjP6PyY5wqT5r6y8FxbiiFKKAnHmUcrgfV\n" | 
 |       "W28tQ+0rkLGMryRtrukXOgXBv7gcrmU7G1jC2a7WqmeI8QIDAQABo1AwTjAdBgNV\n" | 
 |       "HQ4EFgQUi3XVrMsIvg4fZbf6Vr5sp3Xaha8wHwYDVR0jBBgwFoAUi3XVrMsIvg4f\n" | 
 |       "Zbf6Vr5sp3Xaha8wDAYDVR0TBAUwAwEB/zANBgkqhkiG9w0BAQUFAAOBgQA76Hht\n" | 
 |       "ldY9avcTGSwbwoiuIqv0jTL1fHFnzy3RHMLDh+Lpvolc5DSrSJHCP5WuK0eeJXhr\n" | 
 |       "T5oQpHL9z/cCDLAKCKRa4uV0fhEdOWBqyR9p8y5jJtye72t6CuFUV5iqcpF4BH4f\n" | 
 |       "j2VNHwsSrJwkD4QUGlUtH7vwnQmyCFxZMmWAJg==\n" | 
 |       "-----END CERTIFICATE-----\n"; | 
 |   return CertFromPEM(kCertPEM); | 
 | } | 
 |  | 
 | static bssl::UniquePtr<EVP_PKEY> GetTestKey() { | 
 |   static const char kKeyPEM[] = | 
 |       "-----BEGIN RSA PRIVATE KEY-----\n" | 
 |       "MIICXgIBAAKBgQDYK8imMuRi/03z0K1Zi0WnvfFHvwlYeyK9Na6XJYaUoIDAtB92\n" | 
 |       "kWdGMdAQhLciHnAjkXLI6W15OoV3gA/ElRZ1xUpxTMhjP6PyY5wqT5r6y8FxbiiF\n" | 
 |       "KKAnHmUcrgfVW28tQ+0rkLGMryRtrukXOgXBv7gcrmU7G1jC2a7WqmeI8QIDAQAB\n" | 
 |       "AoGBAIBy09Fd4DOq/Ijp8HeKuCMKTHqTW1xGHshLQ6jwVV2vWZIn9aIgmDsvkjCe\n" | 
 |       "i6ssZvnbjVcwzSoByhjN8ZCf/i15HECWDFFh6gt0P5z0MnChwzZmvatV/FXCT0j+\n" | 
 |       "WmGNB/gkehKjGXLLcjTb6dRYVJSCZhVuOLLcbWIV10gggJQBAkEA8S8sGe4ezyyZ\n" | 
 |       "m4e9r95g6s43kPqtj5rewTsUxt+2n4eVodD+ZUlCULWVNAFLkYRTBCASlSrm9Xhj\n" | 
 |       "QpmWAHJUkQJBAOVzQdFUaewLtdOJoPCtpYoY1zd22eae8TQEmpGOR11L6kbxLQsk\n" | 
 |       "aMly/DOnOaa82tqAGTdqDEZgSNmCeKKknmECQAvpnY8GUOVAubGR6c+W90iBuQLj\n" | 
 |       "LtFp/9ihd2w/PoDwrHZaoUYVcT4VSfJQog/k7kjE4MYXYWL8eEKg3WTWQNECQQDk\n" | 
 |       "104Wi91Umd1PzF0ijd2jXOERJU1wEKe6XLkYYNHWQAe5l4J4MWj9OdxFXAxIuuR/\n" | 
 |       "tfDwbqkta4xcux67//khAkEAvvRXLHTaa6VFzTaiiO8SaFsHV3lQyXOtMrBpB5jd\n" | 
 |       "moZWgjHvB2W9Ckn7sDqsPB+U2tyX0joDdQEyuiMECDY8oQ==\n" | 
 |       "-----END RSA PRIVATE KEY-----\n"; | 
 |   return KeyFromPEM(kKeyPEM); | 
 | } | 
 |  | 
 | static bssl::UniquePtr<SSL_CTX> CreateContextWithTestCertificate( | 
 |     const SSL_METHOD *method) { | 
 |   bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
 |   bssl::UniquePtr<X509> cert = GetTestCertificate(); | 
 |   bssl::UniquePtr<EVP_PKEY> key = GetTestKey(); | 
 |   if (!ctx || !cert || !key || | 
 |       !SSL_CTX_use_certificate(ctx.get(), cert.get()) || | 
 |       !SSL_CTX_use_PrivateKey(ctx.get(), key.get())) { | 
 |     return nullptr; | 
 |   } | 
 |   return ctx; | 
 | } | 
 |  | 
 | static bssl::UniquePtr<X509> GetECDSATestCertificate() { | 
 |   static const char kCertPEM[] = | 
 |       "-----BEGIN CERTIFICATE-----\n" | 
 |       "MIIBzzCCAXagAwIBAgIJANlMBNpJfb/rMAkGByqGSM49BAEwRTELMAkGA1UEBhMC\n" | 
 |       "QVUxEzARBgNVBAgMClNvbWUtU3RhdGUxITAfBgNVBAoMGEludGVybmV0IFdpZGdp\n" | 
 |       "dHMgUHR5IEx0ZDAeFw0xNDA0MjMyMzIxNTdaFw0xNDA1MjMyMzIxNTdaMEUxCzAJ\n" | 
 |       "BgNVBAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5l\n" | 
 |       "dCBXaWRnaXRzIFB0eSBMdGQwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAATmK2ni\n" | 
 |       "v2Wfl74vHg2UikzVl2u3qR4NRvvdqakendy6WgHn1peoChj5w8SjHlbifINI2xYa\n" | 
 |       "HPUdfvGULUvPciLBo1AwTjAdBgNVHQ4EFgQUq4TSrKuV8IJOFngHVVdf5CaNgtEw\n" | 
 |       "HwYDVR0jBBgwFoAUq4TSrKuV8IJOFngHVVdf5CaNgtEwDAYDVR0TBAUwAwEB/zAJ\n" | 
 |       "BgcqhkjOPQQBA0gAMEUCIQDyoDVeUTo2w4J5m+4nUIWOcAZ0lVfSKXQA9L4Vh13E\n" | 
 |       "BwIgfB55FGohg/B6dGh5XxSZmmi08cueFV7mHzJSYV51yRQ=\n" | 
 |       "-----END CERTIFICATE-----\n"; | 
 |   return CertFromPEM(kCertPEM); | 
 | } | 
 |  | 
 | static bssl::UniquePtr<EVP_PKEY> GetECDSATestKey() { | 
 |   static const char kKeyPEM[] = | 
 |       "-----BEGIN PRIVATE KEY-----\n" | 
 |       "MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgBw8IcnrUoEqc3VnJ\n" | 
 |       "TYlodwi1b8ldMHcO6NHJzgqLtGqhRANCAATmK2niv2Wfl74vHg2UikzVl2u3qR4N\n" | 
 |       "Rvvdqakendy6WgHn1peoChj5w8SjHlbifINI2xYaHPUdfvGULUvPciLB\n" | 
 |       "-----END PRIVATE KEY-----\n"; | 
 |   return KeyFromPEM(kKeyPEM); | 
 | } | 
 |  | 
 | static bssl::UniquePtr<CRYPTO_BUFFER> BufferFromPEM(const char *pem) { | 
 |   bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(pem, strlen(pem))); | 
 |   char *name, *header; | 
 |   uint8_t *data; | 
 |   long data_len; | 
 |   if (!PEM_read_bio(bio.get(), &name, &header, &data, | 
 |                     &data_len)) { | 
 |     return nullptr; | 
 |   } | 
 |   OPENSSL_free(name); | 
 |   OPENSSL_free(header); | 
 |  | 
 |   auto ret = bssl::UniquePtr<CRYPTO_BUFFER>( | 
 |       CRYPTO_BUFFER_new(data, data_len, nullptr)); | 
 |   OPENSSL_free(data); | 
 |   return ret; | 
 | } | 
 |  | 
 | static bssl::UniquePtr<CRYPTO_BUFFER> GetChainTestCertificateBuffer() { | 
 |   static const char kCertPEM[] = | 
 |       "-----BEGIN CERTIFICATE-----\n" | 
 |       "MIIC0jCCAbqgAwIBAgICEAAwDQYJKoZIhvcNAQELBQAwDzENMAsGA1UEAwwEQiBD\n" | 
 |       "QTAeFw0xNjAyMjgyMDI3MDNaFw0yNjAyMjUyMDI3MDNaMBgxFjAUBgNVBAMMDUNs\n" | 
 |       "aWVudCBDZXJ0IEEwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDRvaz8\n" | 
 |       "CC/cshpCafJo4jLkHEoBqDLhdgFelJoAiQUyIqyWl2O7YHPnpJH+TgR7oelzNzt/\n" | 
 |       "kLRcH89M/TszB6zqyLTC4aqmvzKL0peD/jL2LWBucR0WXIvjA3zoRuF/x86+rYH3\n" | 
 |       "tHb+xs2PSs8EGL/Ev+ss+qTzTGEn26fuGNHkNw6tOwPpc+o8+wUtzf/kAthamo+c\n" | 
 |       "IDs2rQ+lP7+aLZTLeU/q4gcLutlzcK5imex5xy2jPkweq48kijK0kIzl1cPlA5d1\n" | 
 |       "z7C8jU50Pj9X9sQDJTN32j7UYRisJeeYQF8GaaN8SbrDI6zHgKzrRLyxDt/KQa9V\n" | 
 |       "iLeXANgZi+Xx9KgfAgMBAAGjLzAtMAwGA1UdEwEB/wQCMAAwHQYDVR0lBBYwFAYI\n" | 
 |       "KwYBBQUHAwEGCCsGAQUFBwMCMA0GCSqGSIb3DQEBCwUAA4IBAQBFEVbmYl+2RtNw\n" | 
 |       "rDftRDF1v2QUbcN2ouSnQDHxeDQdSgasLzT3ui8iYu0Rw2WWcZ0DV5e0ztGPhWq7\n" | 
 |       "AO0B120aFRMOY+4+bzu9Q2FFkQqc7/fKTvTDzIJI5wrMnFvUfzzvxh3OHWMYSs/w\n" | 
 |       "giq33hTKeHEq6Jyk3btCny0Ycecyc3yGXH10sizUfiHlhviCkDuESk8mFDwDDzqW\n" | 
 |       "ZF0IipzFbEDHoIxLlm3GQxpiLoEV4k8KYJp3R5KBLFyxM6UGPz8h72mIPCJp2RuK\n" | 
 |       "MYgF91UDvVzvnYm6TfseM2+ewKirC00GOrZ7rEcFvtxnKSqYf4ckqfNdSU1Y+RRC\n" | 
 |       "1ngWZ7Ih\n" | 
 |       "-----END CERTIFICATE-----\n"; | 
 |   return BufferFromPEM(kCertPEM); | 
 | } | 
 |  | 
 | static bssl::UniquePtr<X509> X509FromBuffer( | 
 |     bssl::UniquePtr<CRYPTO_BUFFER> buffer) { | 
 |   if (!buffer) { | 
 |     return nullptr; | 
 |   } | 
 |   const uint8_t *derp = CRYPTO_BUFFER_data(buffer.get()); | 
 |   return bssl::UniquePtr<X509>( | 
 |       d2i_X509(NULL, &derp, CRYPTO_BUFFER_len(buffer.get()))); | 
 | } | 
 |  | 
 | static bssl::UniquePtr<X509> GetChainTestCertificate() { | 
 |   return X509FromBuffer(GetChainTestCertificateBuffer()); | 
 | } | 
 |  | 
 | static bssl::UniquePtr<CRYPTO_BUFFER> GetChainTestIntermediateBuffer() { | 
 |   static const char kCertPEM[] = | 
 |       "-----BEGIN CERTIFICATE-----\n" | 
 |       "MIICwjCCAaqgAwIBAgICEAEwDQYJKoZIhvcNAQELBQAwFDESMBAGA1UEAwwJQyBS\n" | 
 |       "b290IENBMB4XDTE2MDIyODIwMjcwM1oXDTI2MDIyNTIwMjcwM1owDzENMAsGA1UE\n" | 
 |       "AwwEQiBDQTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBALsSCYmDip2D\n" | 
 |       "GkjFxw7ykz26JSjELkl6ArlYjFJ3aT/SCh8qbS4gln7RH8CPBd78oFdfhIKQrwtZ\n" | 
 |       "3/q21ykD9BAS3qHe2YdcJfm8/kWAy5DvXk6NXU4qX334KofBAEpgdA/igEFq1P1l\n" | 
 |       "HAuIfZCpMRfT+i5WohVsGi8f/NgpRvVaMONLNfgw57mz1lbtFeBEISmX0kbsuJxF\n" | 
 |       "Qj/Bwhi5/0HAEXG8e7zN4cEx0yPRvmOATRdVb/8dW2pwOHRJq9R5M0NUkIsTSnL7\n" | 
 |       "6N/z8hRAHMsV3IudC5Yd7GXW1AGu9a+iKU+Q4xcZCoj0DC99tL4VKujrV1kAeqsM\n" | 
 |       "cz5/dKzi6+cCAwEAAaMjMCEwDwYDVR0TAQH/BAUwAwEB/zAOBgNVHQ8BAf8EBAMC\n" | 
 |       "AQYwDQYJKoZIhvcNAQELBQADggEBAIIeZiEeNhWWQ8Y4D+AGDwqUUeG8NjCbKrXQ\n" | 
 |       "BlHg5wZ8xftFaiP1Dp/UAezmx2LNazdmuwrYB8lm3FVTyaPDTKEGIPS4wJKHgqH1\n" | 
 |       "QPDhqNm85ey7TEtI9oYjsNim/Rb+iGkIAMXaxt58SzxbjvP0kMr1JfJIZbic9vye\n" | 
 |       "NwIspMFIpP3FB8ywyu0T0hWtCQgL4J47nigCHpOu58deP88fS/Nyz/fyGVWOZ76b\n" | 
 |       "WhWwgM3P3X95fQ3d7oFPR/bVh0YV+Cf861INwplokXgXQ3/TCQ+HNXeAMWn3JLWv\n" | 
 |       "XFwk8owk9dq/kQGdndGgy3KTEW4ctPX5GNhf3LJ9Q7dLji4ReQ4=\n" | 
 |       "-----END CERTIFICATE-----\n"; | 
 |   return BufferFromPEM(kCertPEM); | 
 | } | 
 |  | 
 | static bssl::UniquePtr<X509> GetChainTestIntermediate() { | 
 |   return X509FromBuffer(GetChainTestIntermediateBuffer()); | 
 | } | 
 |  | 
 | static bssl::UniquePtr<EVP_PKEY> GetChainTestKey() { | 
 |   static const char kKeyPEM[] = | 
 |       "-----BEGIN PRIVATE KEY-----\n" | 
 |       "MIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDRvaz8CC/cshpC\n" | 
 |       "afJo4jLkHEoBqDLhdgFelJoAiQUyIqyWl2O7YHPnpJH+TgR7oelzNzt/kLRcH89M\n" | 
 |       "/TszB6zqyLTC4aqmvzKL0peD/jL2LWBucR0WXIvjA3zoRuF/x86+rYH3tHb+xs2P\n" | 
 |       "Ss8EGL/Ev+ss+qTzTGEn26fuGNHkNw6tOwPpc+o8+wUtzf/kAthamo+cIDs2rQ+l\n" | 
 |       "P7+aLZTLeU/q4gcLutlzcK5imex5xy2jPkweq48kijK0kIzl1cPlA5d1z7C8jU50\n" | 
 |       "Pj9X9sQDJTN32j7UYRisJeeYQF8GaaN8SbrDI6zHgKzrRLyxDt/KQa9ViLeXANgZ\n" | 
 |       "i+Xx9KgfAgMBAAECggEBAK0VjSJzkyPaamcyTVSWjo7GdaBGcK60lk657RjR+lK0\n" | 
 |       "YJ7pkej4oM2hdsVZFsP8Cs4E33nXLa/0pDsRov/qrp0WQm2skwqGMC1I/bZ0WRPk\n" | 
 |       "wHaDrBBfESWnJDX/AGpVtlyOjPmgmK6J2usMPihQUDkKdAYrVWJePrMIxt1q6BMe\n" | 
 |       "iczs3qriMmtY3bUc4UyUwJ5fhDLjshHvfuIpYQyI6EXZM6dZksn9LylXJnigY6QJ\n" | 
 |       "HxOYO0BDwOsZ8yQ8J8afLk88i0GizEkgE1z3REtQUwgWfxr1WV/ud+T6/ZhSAgH9\n" | 
 |       "042mQvSFZnIUSEsmCvjhWuAunfxHKCTcAoYISWfzWpkCgYEA7gpf3HHU5Tn+CgUn\n" | 
 |       "1X5uGpG3DmcMgfeGgs2r2f/IIg/5Ac1dfYILiybL1tN9zbyLCJfcbFpWBc9hJL6f\n" | 
 |       "CPc5hUiwWFJqBJewxQkC1Ae/HakHbip+IZ+Jr0842O4BAArvixk4Lb7/N2Ct9sTE\n" | 
 |       "NJO6RtK9lbEZ5uK61DglHy8CS2UCgYEA4ZC1o36kPAMQBggajgnucb2yuUEelk0f\n" | 
 |       "AEr+GI32MGE+93xMr7rAhBoqLg4AITyIfEnOSQ5HwagnIHonBbv1LV/Gf9ursx8Z\n" | 
 |       "YOGbvT8zzzC+SU1bkDzdjAYnFQVGIjMtKOBJ3K07++ypwX1fr4QsQ8uKL8WSOWwt\n" | 
 |       "Z3Bym6XiZzMCgYADnhy+2OwHX85AkLt+PyGlPbmuelpyTzS4IDAQbBa6jcuW/2wA\n" | 
 |       "UE2km75VUXmD+u2R/9zVuLm99NzhFhSMqlUxdV1YukfqMfP5yp1EY6m/5aW7QuIP\n" | 
 |       "2MDa7TVL9rIFMiVZ09RKvbBbQxjhuzPQKL6X/PPspnhiTefQ+dl2k9xREQKBgHDS\n" | 
 |       "fMfGNEeAEKezrfSVqxphE9/tXms3L+ZpnCaT+yu/uEr5dTIAawKoQ6i9f/sf1/Sy\n" | 
 |       "xedsqR+IB+oKrzIDDWMgoJybN4pkZ8E5lzhVQIjFjKgFdWLzzqyW9z1gYfABQPlN\n" | 
 |       "FiS20WX0vgP1vcKAjdNrHzc9zyHBpgQzDmAj3NZZAoGBAI8vKCKdH7w3aL5CNkZQ\n" | 
 |       "2buIeWNA2HZazVwAGG5F2TU/LmXfRKnG6dX5bkU+AkBZh56jNZy//hfFSewJB4Kk\n" | 
 |       "buB7ERSdaNbO21zXt9FEA3+z0RfMd/Zv2vlIWOSB5nzl/7UKti3sribK6s9ZVLfi\n" | 
 |       "SxpiPQ8d/hmSGwn4ksrWUsJD\n" | 
 |       "-----END PRIVATE KEY-----\n"; | 
 |   return KeyFromPEM(kKeyPEM); | 
 | } | 
 |  | 
 | static bool CompleteHandshakes(SSL *client, SSL *server) { | 
 |   // Drive both their handshakes to completion. | 
 |   for (;;) { | 
 |     int client_ret = SSL_do_handshake(client); | 
 |     int client_err = SSL_get_error(client, client_ret); | 
 |     if (client_err != SSL_ERROR_NONE && | 
 |         client_err != SSL_ERROR_WANT_READ && | 
 |         client_err != SSL_ERROR_WANT_WRITE && | 
 |         client_err != SSL_ERROR_PENDING_TICKET) { | 
 |       fprintf(stderr, "Client error: %s\n", SSL_error_description(client_err)); | 
 |       return false; | 
 |     } | 
 |  | 
 |     int server_ret = SSL_do_handshake(server); | 
 |     int server_err = SSL_get_error(server, server_ret); | 
 |     if (server_err != SSL_ERROR_NONE && | 
 |         server_err != SSL_ERROR_WANT_READ && | 
 |         server_err != SSL_ERROR_WANT_WRITE && | 
 |         server_err != SSL_ERROR_PENDING_TICKET) { | 
 |       fprintf(stderr, "Server error: %s\n", SSL_error_description(server_err)); | 
 |       return false; | 
 |     } | 
 |  | 
 |     if (client_ret == 1 && server_ret == 1) { | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | static bool FlushNewSessionTickets(SSL *client, SSL *server) { | 
 |   // NewSessionTickets are deferred on the server to |SSL_write|, and clients do | 
 |   // not pick them up until |SSL_read|. | 
 |   for (;;) { | 
 |     int server_ret = SSL_write(server, nullptr, 0); | 
 |     int server_err = SSL_get_error(server, server_ret); | 
 |     // The server may either succeed (|server_ret| is zero) or block on write | 
 |     // (|server_ret| is -1 and |server_err| is |SSL_ERROR_WANT_WRITE|). | 
 |     if (server_ret > 0 || | 
 |         (server_ret < 0 && server_err != SSL_ERROR_WANT_WRITE)) { | 
 |       fprintf(stderr, "Unexpected server result: %d %d\n", server_ret, | 
 |               server_err); | 
 |       return false; | 
 |     } | 
 |  | 
 |     int client_ret = SSL_read(client, nullptr, 0); | 
 |     int client_err = SSL_get_error(client, client_ret); | 
 |     // The client must always block on read. | 
 |     if (client_ret != -1 || client_err != SSL_ERROR_WANT_READ) { | 
 |       fprintf(stderr, "Unexpected client result: %d %d\n", client_ret, | 
 |               client_err); | 
 |       return false; | 
 |     } | 
 |  | 
 |     // The server flushed everything it had to write. | 
 |     if (server_ret == 0) { | 
 |       return true; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // CreateClientAndServer creates a client and server |SSL| objects whose |BIO|s | 
 | // are paired with each other. It does not run the handshake. The caller is | 
 | // expected to configure the objects and drive the handshake as needed. | 
 | static bool CreateClientAndServer(bssl::UniquePtr<SSL> *out_client, | 
 |                                   bssl::UniquePtr<SSL> *out_server, | 
 |                                   SSL_CTX *client_ctx, SSL_CTX *server_ctx) { | 
 |   bssl::UniquePtr<SSL> client(SSL_new(client_ctx)), server(SSL_new(server_ctx)); | 
 |   if (!client || !server) { | 
 |     return false; | 
 |   } | 
 |   SSL_set_connect_state(client.get()); | 
 |   SSL_set_accept_state(server.get()); | 
 |  | 
 |   BIO *bio1, *bio2; | 
 |   if (!BIO_new_bio_pair(&bio1, 0, &bio2, 0)) { | 
 |     return false; | 
 |   } | 
 |   // SSL_set_bio takes ownership. | 
 |   SSL_set_bio(client.get(), bio1, bio1); | 
 |   SSL_set_bio(server.get(), bio2, bio2); | 
 |  | 
 |   *out_client = std::move(client); | 
 |   *out_server = std::move(server); | 
 |   return true; | 
 | } | 
 |  | 
 | struct ClientConfig { | 
 |   SSL_SESSION *session = nullptr; | 
 |   std::string servername; | 
 |   std::string verify_hostname; | 
 |   unsigned hostflags = 0; | 
 |   bool early_data = false; | 
 | }; | 
 |  | 
 | static bool ConnectClientAndServer(bssl::UniquePtr<SSL> *out_client, | 
 |                                    bssl::UniquePtr<SSL> *out_server, | 
 |                                    SSL_CTX *client_ctx, SSL_CTX *server_ctx, | 
 |                                    const ClientConfig &config = ClientConfig(), | 
 |                                    bool shed_handshake_config = true) { | 
 |   bssl::UniquePtr<SSL> client, server; | 
 |   if (!CreateClientAndServer(&client, &server, client_ctx, server_ctx)) { | 
 |     return false; | 
 |   } | 
 |   if (config.early_data) { | 
 |     SSL_set_early_data_enabled(client.get(), 1); | 
 |   } | 
 |   if (config.session) { | 
 |     SSL_set_session(client.get(), config.session); | 
 |   } | 
 |   if (!config.servername.empty() && | 
 |       !SSL_set_tlsext_host_name(client.get(), config.servername.c_str())) { | 
 |     return false; | 
 |   } | 
 |   if (!config.verify_hostname.empty()) { | 
 |     if (!SSL_set1_host(client.get(), config.verify_hostname.c_str())) { | 
 |       return false; | 
 |     } | 
 |     SSL_set_hostflags(client.get(), config.hostflags); | 
 |   } | 
 |  | 
 |   SSL_set_shed_handshake_config(client.get(), shed_handshake_config); | 
 |   SSL_set_shed_handshake_config(server.get(), shed_handshake_config); | 
 |  | 
 |   if (!CompleteHandshakes(client.get(), server.get())) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   *out_client = std::move(client); | 
 |   *out_server = std::move(server); | 
 |   return true; | 
 | } | 
 |  | 
 | static bssl::UniquePtr<SSL_SESSION> g_last_session; | 
 |  | 
 | static int SaveLastSession(SSL *ssl, SSL_SESSION *session) { | 
 |   // Save the most recent session. | 
 |   g_last_session.reset(session); | 
 |   return 1; | 
 | } | 
 |  | 
 | static bssl::UniquePtr<SSL_SESSION> CreateClientSession( | 
 |     SSL_CTX *client_ctx, SSL_CTX *server_ctx, | 
 |     const ClientConfig &config = ClientConfig()) { | 
 |   g_last_session = nullptr; | 
 |   SSL_CTX_sess_set_new_cb(client_ctx, SaveLastSession); | 
 |  | 
 |   // Connect client and server to get a session. | 
 |   bssl::UniquePtr<SSL> client, server; | 
 |   if (!ConnectClientAndServer(&client, &server, client_ctx, server_ctx, | 
 |                               config) || | 
 |       !FlushNewSessionTickets(client.get(), server.get())) { | 
 |     fprintf(stderr, "Failed to connect client and server.\n"); | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   SSL_CTX_sess_set_new_cb(client_ctx, nullptr); | 
 |  | 
 |   if (!g_last_session) { | 
 |     fprintf(stderr, "Client did not receive a session.\n"); | 
 |     return nullptr; | 
 |   } | 
 |   return std::move(g_last_session); | 
 | } | 
 |  | 
 | // Test that |SSL_get_client_CA_list| echoes back the configured parameter even | 
 | // before configuring as a server. | 
 | TEST(SSLTest, ClientCAList) { | 
 |   bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
 |   ASSERT_TRUE(ctx); | 
 |   bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); | 
 |   ASSERT_TRUE(ssl); | 
 |  | 
 |   bssl::UniquePtr<X509_NAME> name(X509_NAME_new()); | 
 |   ASSERT_TRUE(name); | 
 |  | 
 |   bssl::UniquePtr<X509_NAME> name_dup(X509_NAME_dup(name.get())); | 
 |   ASSERT_TRUE(name_dup); | 
 |  | 
 |   bssl::UniquePtr<STACK_OF(X509_NAME)> stack(sk_X509_NAME_new_null()); | 
 |   ASSERT_TRUE(stack); | 
 |   ASSERT_TRUE(PushToStack(stack.get(), std::move(name_dup))); | 
 |  | 
 |   // |SSL_set_client_CA_list| takes ownership. | 
 |   SSL_set_client_CA_list(ssl.get(), stack.release()); | 
 |  | 
 |   STACK_OF(X509_NAME) *result = SSL_get_client_CA_list(ssl.get()); | 
 |   ASSERT_TRUE(result); | 
 |   ASSERT_EQ(1u, sk_X509_NAME_num(result)); | 
 |   EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(result, 0), name.get())); | 
 | } | 
 |  | 
 | TEST(SSLTest, AddClientCA) { | 
 |   bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
 |   ASSERT_TRUE(ctx); | 
 |   bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); | 
 |   ASSERT_TRUE(ssl); | 
 |  | 
 |   bssl::UniquePtr<X509> cert1 = GetTestCertificate(); | 
 |   bssl::UniquePtr<X509> cert2 = GetChainTestCertificate(); | 
 |   ASSERT_TRUE(cert1 && cert2); | 
 |   X509_NAME *name1 = X509_get_subject_name(cert1.get()); | 
 |   X509_NAME *name2 = X509_get_subject_name(cert2.get()); | 
 |  | 
 |   EXPECT_EQ(0u, sk_X509_NAME_num(SSL_get_client_CA_list(ssl.get()))); | 
 |  | 
 |   ASSERT_TRUE(SSL_add_client_CA(ssl.get(), cert1.get())); | 
 |   ASSERT_TRUE(SSL_add_client_CA(ssl.get(), cert2.get())); | 
 |  | 
 |   STACK_OF(X509_NAME) *list = SSL_get_client_CA_list(ssl.get()); | 
 |   ASSERT_EQ(2u, sk_X509_NAME_num(list)); | 
 |   EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 0), name1)); | 
 |   EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 1), name2)); | 
 |  | 
 |   ASSERT_TRUE(SSL_add_client_CA(ssl.get(), cert1.get())); | 
 |  | 
 |   list = SSL_get_client_CA_list(ssl.get()); | 
 |   ASSERT_EQ(3u, sk_X509_NAME_num(list)); | 
 |   EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 0), name1)); | 
 |   EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 1), name2)); | 
 |   EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 2), name1)); | 
 | } | 
 |  | 
 | struct ECHConfigParams { | 
 |   uint16_t version = TLSEXT_TYPE_encrypted_client_hello; | 
 |   uint16_t config_id = 1; | 
 |   std::string public_name = "example.com"; | 
 |   const EVP_HPKE_KEY *key = nullptr; | 
 |   // kem_id, if zero, takes its value from |key|. | 
 |   uint16_t kem_id = 0; | 
 |   // public_key, if empty takes its value from |key|. | 
 |   std::vector<uint8_t> public_key; | 
 |   size_t max_name_len = 16; | 
 |   // cipher_suites is a list of code points which should contain pairs of KDF | 
 |   // and AEAD IDs. | 
 |   std::vector<uint16_t> cipher_suites = {EVP_HPKE_HKDF_SHA256, | 
 |                                          EVP_HPKE_AES_128_GCM}; | 
 |   std::vector<uint8_t> extensions; | 
 | }; | 
 |  | 
 | // MakeECHConfig serializes an ECHConfig from |params| and writes it to | 
 | // |*out|. | 
 | bool MakeECHConfig(std::vector<uint8_t> *out, | 
 |                          const ECHConfigParams ¶ms) { | 
 |   uint16_t kem_id = params.kem_id == 0 | 
 |                         ? EVP_HPKE_KEM_id(EVP_HPKE_KEY_kem(params.key)) | 
 |                         : params.kem_id; | 
 |   std::vector<uint8_t> public_key = params.public_key; | 
 |   if (public_key.empty()) { | 
 |     public_key.resize(EVP_HPKE_MAX_PUBLIC_KEY_LENGTH); | 
 |     size_t len; | 
 |     if (!EVP_HPKE_KEY_public_key(params.key, public_key.data(), &len, | 
 |                                  public_key.size())) { | 
 |       return false; | 
 |     } | 
 |     public_key.resize(len); | 
 |   } | 
 |  | 
 |   bssl::ScopedCBB cbb; | 
 |   CBB contents, child; | 
 |   if (!CBB_init(cbb.get(), 64) || | 
 |       !CBB_add_u16(cbb.get(), params.version) || | 
 |       !CBB_add_u16_length_prefixed(cbb.get(), &contents) || | 
 |       !CBB_add_u8(&contents, params.config_id) || | 
 |       !CBB_add_u16(&contents, kem_id) || | 
 |       !CBB_add_u16_length_prefixed(&contents, &child) || | 
 |       !CBB_add_bytes(&child, public_key.data(), public_key.size()) || | 
 |       !CBB_add_u16_length_prefixed(&contents, &child)) { | 
 |     return false; | 
 |   } | 
 |   for (uint16_t cipher_suite : params.cipher_suites) { | 
 |     if (!CBB_add_u16(&child, cipher_suite)) { | 
 |       return false; | 
 |     } | 
 |   } | 
 |   if (!CBB_add_u8(&contents, params.max_name_len) || | 
 |       !CBB_add_u8_length_prefixed(&contents, &child) || | 
 |       !CBB_add_bytes( | 
 |           &child, reinterpret_cast<const uint8_t *>(params.public_name.data()), | 
 |           params.public_name.size()) || | 
 |       !CBB_add_u16_length_prefixed(&contents, &child) || | 
 |       !CBB_add_bytes(&child, params.extensions.data(), | 
 |                      params.extensions.size()) || | 
 |       !CBB_flush(cbb.get())) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   out->assign(CBB_data(cbb.get()), CBB_data(cbb.get()) + CBB_len(cbb.get())); | 
 |   return true; | 
 | } | 
 |  | 
 | static bssl::UniquePtr<SSL_ECH_KEYS> MakeTestECHKeys(uint8_t config_id = 1) { | 
 |   bssl::ScopedEVP_HPKE_KEY key; | 
 |   uint8_t *ech_config; | 
 |   size_t ech_config_len; | 
 |   if (!EVP_HPKE_KEY_generate(key.get(), EVP_hpke_x25519_hkdf_sha256()) || | 
 |       !SSL_marshal_ech_config(&ech_config, &ech_config_len, config_id, | 
 |                               key.get(), "public.example", 16)) { | 
 |     return nullptr; | 
 |   } | 
 |   bssl::UniquePtr<uint8_t> free_ech_config(ech_config); | 
 |  | 
 |   // Install a non-retry config. | 
 |   bssl::UniquePtr<SSL_ECH_KEYS> keys(SSL_ECH_KEYS_new()); | 
 |   if (!keys || !SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, ech_config, | 
 |                                  ech_config_len, key.get())) { | 
 |     return nullptr; | 
 |   } | 
 |   return keys; | 
 | } | 
 |  | 
 | static bool InstallECHConfigList(SSL *client, const SSL_ECH_KEYS *keys) { | 
 |   uint8_t *ech_config_list; | 
 |   size_t ech_config_list_len; | 
 |   if (!SSL_ECH_KEYS_marshal_retry_configs(keys, &ech_config_list, | 
 |                                           &ech_config_list_len)) { | 
 |     return false; | 
 |   } | 
 |   bssl::UniquePtr<uint8_t> free_ech_config_list(ech_config_list); | 
 |   return SSL_set1_ech_config_list(client, ech_config_list, ech_config_list_len); | 
 | } | 
 |  | 
 | // Test that |SSL_marshal_ech_config| and |SSL_ECH_KEYS_marshal_retry_configs| | 
 | // output values as expected. | 
 | TEST(SSLTest, MarshalECHConfig) { | 
 |   static const uint8_t kPrivateKey[X25519_PRIVATE_KEY_LEN] = { | 
 |       0xbc, 0xb5, 0x51, 0x29, 0x31, 0x10, 0x30, 0xc9, 0xed, 0x26, 0xde, | 
 |       0xd4, 0xb3, 0xdf, 0x3a, 0xce, 0x06, 0x8a, 0xee, 0x17, 0xab, 0xce, | 
 |       0xd7, 0xdb, 0xf3, 0x11, 0xe5, 0xa8, 0xf3, 0xb1, 0x8e, 0x24}; | 
 |   bssl::ScopedEVP_HPKE_KEY key; | 
 |   ASSERT_TRUE(EVP_HPKE_KEY_init(key.get(), EVP_hpke_x25519_hkdf_sha256(), | 
 |                                 kPrivateKey, sizeof(kPrivateKey))); | 
 |  | 
 |   static const uint8_t kECHConfig[] = { | 
 |       // version | 
 |       0xfe, 0x0d, | 
 |       // length | 
 |       0x00, 0x41, | 
 |       // contents.config_id | 
 |       0x01, | 
 |       // contents.kem_id | 
 |       0x00, 0x20, | 
 |       // contents.public_key | 
 |       0x00, 0x20, 0xa6, 0x9a, 0x41, 0x48, 0x5d, 0x32, 0x96, 0xa4, 0xe0, 0xc3, | 
 |       0x6a, 0xee, 0xf6, 0x63, 0x0f, 0x59, 0x32, 0x6f, 0xdc, 0xff, 0x81, 0x29, | 
 |       0x59, 0xa5, 0x85, 0xd3, 0x9b, 0x3b, 0xde, 0x98, 0x55, 0x5c, | 
 |       // contents.cipher_suites | 
 |       0x00, 0x08, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x03, | 
 |       // contents.maximum_name_length | 
 |       0x10, | 
 |       // contents.public_name | 
 |       0x0e, 0x70, 0x75, 0x62, 0x6c, 0x69, 0x63, 0x2e, 0x65, 0x78, 0x61, 0x6d, | 
 |       0x70, 0x6c, 0x65, | 
 |       // contents.extensions | 
 |       0x00, 0x00}; | 
 |   uint8_t *ech_config; | 
 |   size_t ech_config_len; | 
 |   ASSERT_TRUE(SSL_marshal_ech_config(&ech_config, &ech_config_len, | 
 |                                      /*config_id=*/1, key.get(), | 
 |                                      "public.example", 16)); | 
 |   bssl::UniquePtr<uint8_t> free_ech_config(ech_config); | 
 |   EXPECT_EQ(Bytes(kECHConfig), Bytes(ech_config, ech_config_len)); | 
 |  | 
 |   // Generate a second ECHConfig. | 
 |   bssl::ScopedEVP_HPKE_KEY key2; | 
 |   ASSERT_TRUE(EVP_HPKE_KEY_generate(key2.get(), EVP_hpke_x25519_hkdf_sha256())); | 
 |   uint8_t *ech_config2; | 
 |   size_t ech_config2_len; | 
 |   ASSERT_TRUE(SSL_marshal_ech_config(&ech_config2, &ech_config2_len, | 
 |                                      /*config_id=*/2, key2.get(), | 
 |                                      "public.example", 16)); | 
 |   bssl::UniquePtr<uint8_t> free_ech_config2(ech_config2); | 
 |  | 
 |   // Install both ECHConfigs in an |SSL_ECH_KEYS|. | 
 |   bssl::UniquePtr<SSL_ECH_KEYS> keys(SSL_ECH_KEYS_new()); | 
 |   ASSERT_TRUE(keys); | 
 |   ASSERT_TRUE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, ech_config, | 
 |                                ech_config_len, key.get())); | 
 |   ASSERT_TRUE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, ech_config2, | 
 |                                ech_config2_len, key2.get())); | 
 |  | 
 |   // The ECHConfigList should be correctly serialized. | 
 |   uint8_t *ech_config_list; | 
 |   size_t ech_config_list_len; | 
 |   ASSERT_TRUE(SSL_ECH_KEYS_marshal_retry_configs(keys.get(), &ech_config_list, | 
 |                                                  &ech_config_list_len)); | 
 |   bssl::UniquePtr<uint8_t> free_ech_config_list(ech_config_list); | 
 |  | 
 |   // ECHConfigList is just the concatenation with a length prefix. | 
 |   size_t len = ech_config_len + ech_config2_len; | 
 |   std::vector<uint8_t> expected = {uint8_t(len >> 8), uint8_t(len)}; | 
 |   expected.insert(expected.end(), ech_config, ech_config + ech_config_len); | 
 |   expected.insert(expected.end(), ech_config2, ech_config2 + ech_config2_len); | 
 |   EXPECT_EQ(Bytes(expected), Bytes(ech_config_list, ech_config_list_len)); | 
 | } | 
 |  | 
 | TEST(SSLTest, ECHHasDuplicateConfigID) { | 
 |   const struct { | 
 |     std::vector<uint8_t> ids; | 
 |     bool has_duplicate; | 
 |   } kTests[] = { | 
 |       {{}, false}, | 
 |       {{1}, false}, | 
 |       {{1, 2, 3, 255}, false}, | 
 |       {{1, 2, 3, 1}, true}, | 
 |   }; | 
 |   for (const auto &test : kTests) { | 
 |     bssl::UniquePtr<SSL_ECH_KEYS> keys(SSL_ECH_KEYS_new()); | 
 |     ASSERT_TRUE(keys); | 
 |     for (const uint8_t id : test.ids) { | 
 |       bssl::ScopedEVP_HPKE_KEY key; | 
 |       ASSERT_TRUE( | 
 |           EVP_HPKE_KEY_generate(key.get(), EVP_hpke_x25519_hkdf_sha256())); | 
 |       uint8_t *ech_config; | 
 |       size_t ech_config_len; | 
 |       ASSERT_TRUE(SSL_marshal_ech_config(&ech_config, &ech_config_len, id, | 
 |                                          key.get(), "public.example", 16)); | 
 |       bssl::UniquePtr<uint8_t> free_ech_config(ech_config); | 
 |       ASSERT_TRUE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, | 
 |                                    ech_config, ech_config_len, key.get())); | 
 |     } | 
 |  | 
 |     EXPECT_EQ(test.has_duplicate ? 1 : 0, | 
 |               SSL_ECH_KEYS_has_duplicate_config_id(keys.get())); | 
 |   } | 
 | } | 
 |  | 
 | // Test that |SSL_ECH_KEYS_add| checks consistency between the public and | 
 | // private key. | 
 | TEST(SSLTest, ECHKeyConsistency) { | 
 |   bssl::UniquePtr<SSL_ECH_KEYS> keys(SSL_ECH_KEYS_new()); | 
 |   ASSERT_TRUE(keys); | 
 |   bssl::ScopedEVP_HPKE_KEY key; | 
 |   ASSERT_TRUE(EVP_HPKE_KEY_generate(key.get(), EVP_hpke_x25519_hkdf_sha256())); | 
 |   uint8_t public_key[EVP_HPKE_MAX_PUBLIC_KEY_LENGTH]; | 
 |   size_t public_key_len; | 
 |   ASSERT_TRUE(EVP_HPKE_KEY_public_key(key.get(), public_key, &public_key_len, | 
 |                                       sizeof(public_key))); | 
 |  | 
 |   // Adding an ECHConfig with the matching public key succeeds. | 
 |   ECHConfigParams params; | 
 |   params.key = key.get(); | 
 |   std::vector<uint8_t> ech_config; | 
 |   ASSERT_TRUE(MakeECHConfig(&ech_config, params)); | 
 |   EXPECT_TRUE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, | 
 |                                ech_config.data(), ech_config.size(), | 
 |                                key.get())); | 
 |  | 
 |   // Adding an ECHConfig with the wrong public key is an error. | 
 |   bssl::ScopedEVP_HPKE_KEY wrong_key; | 
 |   ASSERT_TRUE( | 
 |       EVP_HPKE_KEY_generate(wrong_key.get(), EVP_hpke_x25519_hkdf_sha256())); | 
 |   EXPECT_FALSE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, | 
 |                                 ech_config.data(), ech_config.size(), | 
 |                                 wrong_key.get())); | 
 |  | 
 |   // Adding an ECHConfig with a truncated public key is an error. | 
 |   ECHConfigParams truncated; | 
 |   truncated.key = key.get(); | 
 |   truncated.public_key.assign(public_key, public_key + public_key_len - 1); | 
 |   ASSERT_TRUE(MakeECHConfig(&ech_config, truncated)); | 
 |   EXPECT_FALSE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, | 
 |                                 ech_config.data(), ech_config.size(), key.get())); | 
 |  | 
 |   // Adding an ECHConfig with the right public key, but wrong KEM ID, is an | 
 |   // error. | 
 |   ECHConfigParams wrong_kem; | 
 |   wrong_kem.key = key.get(); | 
 |   wrong_kem.kem_id = 0x0010;  // DHKEM(P-256, HKDF-SHA256) | 
 |   ASSERT_TRUE(MakeECHConfig(&ech_config, wrong_kem)); | 
 |   EXPECT_FALSE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, | 
 |                                 ech_config.data(), ech_config.size(), | 
 |                                 key.get())); | 
 | } | 
 |  | 
 | // Test that |SSL_CTX_set1_ech_keys| fails when the config list | 
 | // has no retry configs. | 
 | TEST(SSLTest, ECHServerConfigsWithoutRetryConfigs) { | 
 |   bssl::ScopedEVP_HPKE_KEY key; | 
 |   ASSERT_TRUE(EVP_HPKE_KEY_generate(key.get(), EVP_hpke_x25519_hkdf_sha256())); | 
 |   uint8_t *ech_config; | 
 |   size_t ech_config_len; | 
 |   ASSERT_TRUE(SSL_marshal_ech_config(&ech_config, &ech_config_len, | 
 |                                      /*config_id=*/1, key.get(), | 
 |                                      "public.example", 16)); | 
 |   bssl::UniquePtr<uint8_t> free_ech_config(ech_config); | 
 |  | 
 |   // Install a non-retry config. | 
 |   bssl::UniquePtr<SSL_ECH_KEYS> keys(SSL_ECH_KEYS_new()); | 
 |   ASSERT_TRUE(keys); | 
 |   ASSERT_TRUE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/0, ech_config, | 
 |                                ech_config_len, key.get())); | 
 |  | 
 |   // |keys| has no retry configs. | 
 |   bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
 |   ASSERT_TRUE(ctx); | 
 |   EXPECT_FALSE(SSL_CTX_set1_ech_keys(ctx.get(), keys.get())); | 
 |  | 
 |   // Add the same ECHConfig to the list, but this time mark it as a retry | 
 |   // config. | 
 |   ASSERT_TRUE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, ech_config, | 
 |                                ech_config_len, key.get())); | 
 |   EXPECT_TRUE(SSL_CTX_set1_ech_keys(ctx.get(), keys.get())); | 
 | } | 
 |  | 
 | // Test that the server APIs reject ECHConfigs with unsupported features. | 
 | TEST(SSLTest, UnsupportedECHConfig) { | 
 |   bssl::UniquePtr<SSL_ECH_KEYS> keys(SSL_ECH_KEYS_new()); | 
 |   ASSERT_TRUE(keys); | 
 |   bssl::ScopedEVP_HPKE_KEY key; | 
 |   ASSERT_TRUE(EVP_HPKE_KEY_generate(key.get(), EVP_hpke_x25519_hkdf_sha256())); | 
 |  | 
 |   // Unsupported versions are rejected. | 
 |   ECHConfigParams unsupported_version; | 
 |   unsupported_version.version = 0xffff; | 
 |   unsupported_version.key = key.get(); | 
 |   std::vector<uint8_t> ech_config; | 
 |   ASSERT_TRUE(MakeECHConfig(&ech_config, unsupported_version)); | 
 |   EXPECT_FALSE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, | 
 |                                 ech_config.data(), ech_config.size(), | 
 |                                 key.get())); | 
 |  | 
 |   // Unsupported cipher suites are rejected. (We only support HKDF-SHA256.) | 
 |   ECHConfigParams unsupported_kdf; | 
 |   unsupported_kdf.key = key.get(); | 
 |   unsupported_kdf.cipher_suites = {0x002 /* HKDF-SHA384 */, | 
 |                                    EVP_HPKE_AES_128_GCM}; | 
 |   ASSERT_TRUE(MakeECHConfig(&ech_config, unsupported_kdf)); | 
 |   EXPECT_FALSE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, | 
 |                                 ech_config.data(), ech_config.size(), | 
 |                                 key.get())); | 
 |   ECHConfigParams unsupported_aead; | 
 |   unsupported_aead.key = key.get(); | 
 |   unsupported_aead.cipher_suites = {EVP_HPKE_HKDF_SHA256, 0xffff}; | 
 |   ASSERT_TRUE(MakeECHConfig(&ech_config, unsupported_aead)); | 
 |   EXPECT_FALSE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, | 
 |                                 ech_config.data(), ech_config.size(), | 
 |                                 key.get())); | 
 |  | 
 |  | 
 |   // Unsupported extensions are rejected. | 
 |   ECHConfigParams extensions; | 
 |   extensions.key = key.get(); | 
 |   extensions.extensions = {0x00, 0x01, 0x00, 0x00}; | 
 |   ASSERT_TRUE(MakeECHConfig(&ech_config, extensions)); | 
 |   EXPECT_FALSE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, | 
 |                                 ech_config.data(), ech_config.size(), | 
 |                                 key.get())); | 
 |  | 
 |   // Invalid public names are rejected. | 
 |   ECHConfigParams invalid_public_name; | 
 |   invalid_public_name.key = key.get(); | 
 |   invalid_public_name.public_name = "dns_names_have_no_underscores.example"; | 
 |   ASSERT_TRUE(MakeECHConfig(&ech_config, invalid_public_name)); | 
 |   EXPECT_FALSE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, | 
 |                                 ech_config.data(), ech_config.size(), | 
 |                                 key.get())); | 
 | } | 
 |  | 
 | // Test that |SSL_get_client_random| reports the correct value on both client | 
 | // and server in ECH. The client sends two different random values. When ECH is | 
 | // accepted, we should report the inner one. | 
 | TEST(SSLTest, ECHClientRandomsMatch) { | 
 |   bssl::UniquePtr<SSL_CTX> server_ctx = | 
 |       CreateContextWithTestCertificate(TLS_method()); | 
 |   ASSERT_TRUE(server_ctx); | 
 |   bssl::UniquePtr<SSL_ECH_KEYS> keys = MakeTestECHKeys(); | 
 |   ASSERT_TRUE(keys); | 
 |   ASSERT_TRUE(SSL_CTX_set1_ech_keys(server_ctx.get(), keys.get())); | 
 |  | 
 |   bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
 |   ASSERT_TRUE(client_ctx); | 
 |   bssl::UniquePtr<SSL> client, server; | 
 |   ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), | 
 |                                     server_ctx.get())); | 
 |   ASSERT_TRUE(InstallECHConfigList(client.get(), keys.get())); | 
 |   ASSERT_TRUE(CompleteHandshakes(client.get(), server.get())); | 
 |  | 
 |   EXPECT_TRUE(SSL_ech_accepted(client.get())); | 
 |   EXPECT_TRUE(SSL_ech_accepted(server.get())); | 
 |  | 
 |   // An ECH server will fairly naturally record the inner ClientHello random, | 
 |   // but an ECH client may forget to update the random once ClientHelloInner is | 
 |   // selected. | 
 |   uint8_t client_random1[SSL3_RANDOM_SIZE]; | 
 |   uint8_t client_random2[SSL3_RANDOM_SIZE]; | 
 |   ASSERT_EQ(sizeof(client_random1), | 
 |             SSL_get_client_random(client.get(), client_random1, | 
 |                                   sizeof(client_random1))); | 
 |   ASSERT_EQ(sizeof(client_random2), | 
 |             SSL_get_client_random(server.get(), client_random2, | 
 |                                   sizeof(client_random2))); | 
 |   EXPECT_EQ(Bytes(client_random1), Bytes(client_random2)); | 
 | } | 
 |  | 
 | // GetECHLength sets |*out_client_hello_len| and |*out_ech_len| to the lengths | 
 | // of the ClientHello and ECH extension, respectively, when a client created | 
 | // from |ctx| constructs a ClientHello with name |name| and an ECHConfig with | 
 | // maximum name length |max_name_len|. | 
 | static bool GetECHLength(SSL_CTX *ctx, size_t *out_client_hello_len, | 
 |                          size_t *out_ech_len, size_t max_name_len, | 
 |                          const char *name) { | 
 |   bssl::ScopedEVP_HPKE_KEY key; | 
 |   uint8_t *ech_config; | 
 |   size_t ech_config_len; | 
 |   if (!EVP_HPKE_KEY_generate(key.get(), EVP_hpke_x25519_hkdf_sha256()) || | 
 |       !SSL_marshal_ech_config(&ech_config, &ech_config_len, | 
 |                               /*config_id=*/1, key.get(), "public.example", | 
 |                               max_name_len)) { | 
 |     return false; | 
 |   } | 
 |   bssl::UniquePtr<uint8_t> free_ech_config(ech_config); | 
 |  | 
 |   bssl::UniquePtr<SSL_ECH_KEYS> keys(SSL_ECH_KEYS_new()); | 
 |   if (!keys || !SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, ech_config, | 
 |                                  ech_config_len, key.get())) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   bssl::UniquePtr<SSL> ssl(SSL_new(ctx)); | 
 |   if (!ssl || !InstallECHConfigList(ssl.get(), keys.get()) || | 
 |       (name != nullptr && !SSL_set_tlsext_host_name(ssl.get(), name))) { | 
 |     return false; | 
 |   } | 
 |   SSL_set_connect_state(ssl.get()); | 
 |  | 
 |   std::vector<uint8_t> client_hello; | 
 |   SSL_CLIENT_HELLO parsed; | 
 |   const uint8_t *unused; | 
 |   if (!GetClientHello(ssl.get(), &client_hello) || | 
 |       !ssl_client_hello_init( | 
 |           ssl.get(), &parsed, | 
 |           // Skip record and handshake headers. This assumes the ClientHello | 
 |           // fits in one record. | 
 |           MakeConstSpan(client_hello) | 
 |               .subspan(SSL3_RT_HEADER_LENGTH + SSL3_HM_HEADER_LENGTH)) || | 
 |       !SSL_early_callback_ctx_extension_get( | 
 |           &parsed, TLSEXT_TYPE_encrypted_client_hello, &unused, out_ech_len)) { | 
 |     return false; | 
 |   } | 
 |   *out_client_hello_len = client_hello.size(); | 
 |   return true; | 
 | } | 
 |  | 
 | TEST(SSLTest, ECHPadding) { | 
 |   bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
 |   ASSERT_TRUE(ctx); | 
 |  | 
 |   // Sample lengths with max_name_len = 128 as baseline. | 
 |   size_t client_hello_len_baseline, ech_len_baseline; | 
 |   ASSERT_TRUE(GetECHLength(ctx.get(), &client_hello_len_baseline, | 
 |                            &ech_len_baseline, 128, "example.com")); | 
 |  | 
 |   // Check that all name lengths under the server's maximum look the same. | 
 |   for (size_t name_len : {1, 2, 32, 64, 127, 128}) { | 
 |     SCOPED_TRACE(name_len); | 
 |     size_t client_hello_len, ech_len; | 
 |     ASSERT_TRUE(GetECHLength(ctx.get(), &client_hello_len, &ech_len, 128, | 
 |                              std::string(name_len, 'a').c_str())); | 
 |     EXPECT_EQ(client_hello_len, client_hello_len_baseline); | 
 |     EXPECT_EQ(ech_len, ech_len_baseline); | 
 |   } | 
 |  | 
 |   // When sending no SNI, we must still pad as if we are sending one. | 
 |   size_t client_hello_len, ech_len; | 
 |   ASSERT_TRUE( | 
 |       GetECHLength(ctx.get(), &client_hello_len, &ech_len, 128, nullptr)); | 
 |   EXPECT_EQ(client_hello_len, client_hello_len_baseline); | 
 |   EXPECT_EQ(ech_len, ech_len_baseline); | 
 |  | 
 |   // Name lengths above the maximum do not get named-based padding, but the | 
 |   // overall input is padded to a multiple of 32. | 
 |   size_t client_hello_len_baseline2, ech_len_baseline2; | 
 |   ASSERT_TRUE(GetECHLength(ctx.get(), &client_hello_len_baseline2, | 
 |                            &ech_len_baseline2, 128, | 
 |                            std::string(128 + 32, 'a').c_str())); | 
 |   EXPECT_EQ(ech_len_baseline2, ech_len_baseline + 32); | 
 |   // The ClientHello lengths may match if we are still under the threshold for | 
 |   // padding extension. | 
 |   EXPECT_GE(client_hello_len_baseline2, client_hello_len_baseline); | 
 |  | 
 |   for (size_t name_len = 128 + 1; name_len < 128 + 32; name_len++) { | 
 |     SCOPED_TRACE(name_len); | 
 |     ASSERT_TRUE(GetECHLength(ctx.get(), &client_hello_len, &ech_len, 128, | 
 |                              std::string(name_len, 'a').c_str())); | 
 |     EXPECT_TRUE(ech_len == ech_len_baseline || ech_len == ech_len_baseline2) | 
 |         << ech_len; | 
 |     EXPECT_TRUE(client_hello_len == client_hello_len_baseline || | 
 |                 client_hello_len == client_hello_len_baseline2) | 
 |         << client_hello_len; | 
 |   } | 
 | } | 
 |  | 
 | TEST(SSLTest, ECHPublicName) { | 
 |   auto str_to_span = [](const char *str) -> Span<const uint8_t> { | 
 |     return MakeConstSpan(reinterpret_cast<const uint8_t *>(str), strlen(str)); | 
 |   }; | 
 |  | 
 |   EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span(""))); | 
 |   EXPECT_TRUE(ssl_is_valid_ech_public_name(str_to_span("example.com"))); | 
 |   EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span(".example.com"))); | 
 |   EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span("example.com."))); | 
 |   EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span("example..com"))); | 
 |   EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span("www.-example.com"))); | 
 |   EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span("www.example-.com"))); | 
 |   EXPECT_FALSE( | 
 |       ssl_is_valid_ech_public_name(str_to_span("no_underscores.example"))); | 
 |   EXPECT_FALSE(ssl_is_valid_ech_public_name( | 
 |       str_to_span("invalid_chars.\x01.example"))); | 
 |   EXPECT_FALSE(ssl_is_valid_ech_public_name( | 
 |       str_to_span("invalid_chars.\xff.example"))); | 
 |   static const uint8_t kWithNUL[] = {'t', 'e', 's', 't', 0}; | 
 |   EXPECT_FALSE(ssl_is_valid_ech_public_name(kWithNUL)); | 
 |  | 
 |   // Test an LDH label with every character and the maximum length. | 
 |   EXPECT_TRUE(ssl_is_valid_ech_public_name(str_to_span( | 
 |       "abcdefhijklmnopqrstuvwxyz-ABCDEFGHIJKLMNOPQRSTUVWXYZ-0123456789"))); | 
 |   EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span( | 
 |       "abcdefhijklmnopqrstuvwxyz-ABCDEFGHIJKLMNOPQRSTUVWXYZ-01234567899"))); | 
 |  | 
 |   // Inputs with trailing numeric components are rejected. | 
 |   EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span("127.0.0.1"))); | 
 |   EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span("example.1"))); | 
 |   EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span("example.01"))); | 
 |   EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span("example.0x01"))); | 
 |   EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span("example.0X01"))); | 
 |   // Leading zeros and values that overflow |uint32_t| are still rejected. | 
 |   EXPECT_FALSE(ssl_is_valid_ech_public_name( | 
 |       str_to_span("example.123456789000000000000000"))); | 
 |   EXPECT_FALSE(ssl_is_valid_ech_public_name( | 
 |       str_to_span("example.012345678900000000000000"))); | 
 |   EXPECT_FALSE(ssl_is_valid_ech_public_name( | 
 |       str_to_span("example.0x123456789abcdefABCDEF0"))); | 
 |   EXPECT_FALSE(ssl_is_valid_ech_public_name( | 
 |       str_to_span("example.0x0123456789abcdefABCDEF"))); | 
 |   // Adding a non-digit or non-hex character makes it a valid DNS name again. | 
 |   // Single-component numbers are rejected. | 
 |   EXPECT_TRUE(ssl_is_valid_ech_public_name( | 
 |       str_to_span("example.1234567890a"))); | 
 |   EXPECT_TRUE(ssl_is_valid_ech_public_name( | 
 |       str_to_span("example.01234567890a"))); | 
 |   EXPECT_TRUE(ssl_is_valid_ech_public_name( | 
 |       str_to_span("example.0x123456789abcdefg"))); | 
 |   EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span("1"))); | 
 |   EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span("01"))); | 
 |   EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span("0x01"))); | 
 |   EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span("0X01"))); | 
 |   // Numbers with trailing dots are rejected. (They are already rejected by the | 
 |   // LDH label rules, but the WHATWG URL parser additionally rejects them.) | 
 |   EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span("1."))); | 
 |   EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span("01."))); | 
 |   EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span("0x01."))); | 
 |   EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span("0X01."))); | 
 | } | 
 |  | 
 | // When using the built-in verifier, test that |SSL_get0_ech_name_override| is | 
 | // applied automatically. | 
 | TEST(SSLTest, ECHBuiltinVerifier) { | 
 |   // These test certificates generated with the following Go program. | 
 |   /* clang-format off | 
 | func main() { | 
 |   notBefore := time.Date(2000, time.January, 1, 0, 0, 0, 0, time.UTC) | 
 |   notAfter := time.Date(2099, time.January, 1, 0, 0, 0, 0, time.UTC) | 
 |   rootKey, _ := ecdsa.GenerateKey(elliptic.P256(), rand.Reader) | 
 |   rootTemplate := &x509.Certificate{ | 
 |     SerialNumber:          big.NewInt(1), | 
 |     Subject:               pkix.Name{CommonName: "Test CA"}, | 
 |     NotBefore:             notBefore, | 
 |     NotAfter:              notAfter, | 
 |     BasicConstraintsValid: true, | 
 |     IsCA:                  true, | 
 |   } | 
 |   rootDER, _ := x509.CreateCertificate(rand.Reader, rootTemplate, rootTemplate, &rootKey.PublicKey, rootKey) | 
 |   root, _ := x509.ParseCertificate(rootDER) | 
 |   pem.Encode(os.Stdout, &pem.Block{Type: "CERTIFICATE", Bytes: rootDER}) | 
 |   leafKey, _ := ecdsa.GenerateKey(elliptic.P256(), rand.Reader) | 
 |   leafKeyDER, _ := x509.MarshalPKCS8PrivateKey(leafKey) | 
 |   pem.Encode(os.Stdout, &pem.Block{Type: "PRIVATE KEY", Bytes: leafKeyDER}) | 
 |   for i, name := range []string{"public.example", "secret.example"} { | 
 |     leafTemplate := &x509.Certificate{ | 
 |       SerialNumber:          big.NewInt(int64(i) + 2), | 
 |       Subject:               pkix.Name{CommonName: name}, | 
 |       NotBefore:             notBefore, | 
 |       NotAfter:              notAfter, | 
 |       BasicConstraintsValid: true, | 
 |       DNSNames:              []string{name}, | 
 |     } | 
 |     leafDER, _ := x509.CreateCertificate(rand.Reader, leafTemplate, root, &leafKey.PublicKey, rootKey) | 
 |     pem.Encode(os.Stdout, &pem.Block{Type: "CERTIFICATE", Bytes: leafDER}) | 
 |   } | 
 | } | 
 | clang-format on */ | 
 |   bssl::UniquePtr<X509> root = CertFromPEM(R"( | 
 | -----BEGIN CERTIFICATE----- | 
 | MIIBRzCB7aADAgECAgEBMAoGCCqGSM49BAMCMBIxEDAOBgNVBAMTB1Rlc3QgQ0Ew | 
 | IBcNMDAwMTAxMDAwMDAwWhgPMjA5OTAxMDEwMDAwMDBaMBIxEDAOBgNVBAMTB1Rl | 
 | c3QgQ0EwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAAT5JUjrI1DAxSpEl88UkmJw | 
 | tAJqxo/YrSFo9V3MkcNkfTixi5p6MUtO8DazhEgekBcd2+tBAWtl7dy0qpvTqx92 | 
 | ozIwMDAPBgNVHRMBAf8EBTADAQH/MB0GA1UdDgQWBBTw6ftkexAI6o4r5FntJIfL | 
 | GU5F4zAKBggqhkjOPQQDAgNJADBGAiEAiiNowddQeHZaZFIygwe6RW5/WG4sUXWC | 
 | dkyl9CQzRaYCIQCFS1EvwZbZtMny27fYm1eeYciY0TkJTEi34H1KwyzzIA== | 
 | -----END CERTIFICATE----- | 
 | )"); | 
 |   ASSERT_TRUE(root); | 
 |   bssl::UniquePtr<EVP_PKEY> leaf_key = KeyFromPEM(R"( | 
 | -----BEGIN PRIVATE KEY----- | 
 | MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgj5WKHwHnziiyPauf | 
 | 7QukxTwtTyGZkk8qNdms4puJfxqhRANCAARNrkhxabALDlJrHtvkuDwvCWUF/oVC | 
 | hr6PDITHi1lDlJzvVT4aXBH87sH2n2UV5zpx13NHkq1bIC8eRT8eOIe0 | 
 | -----END PRIVATE KEY----- | 
 | )"); | 
 |   ASSERT_TRUE(leaf_key); | 
 |   bssl::UniquePtr<X509> leaf_public = CertFromPEM(R"( | 
 | -----BEGIN CERTIFICATE----- | 
 | MIIBaDCCAQ6gAwIBAgIBAjAKBggqhkjOPQQDAjASMRAwDgYDVQQDEwdUZXN0IENB | 
 | MCAXDTAwMDEwMTAwMDAwMFoYDzIwOTkwMTAxMDAwMDAwWjAZMRcwFQYDVQQDEw5w | 
 | dWJsaWMuZXhhbXBsZTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABE2uSHFpsAsO | 
 | Umse2+S4PC8JZQX+hUKGvo8MhMeLWUOUnO9VPhpcEfzuwfafZRXnOnHXc0eSrVsg | 
 | Lx5FPx44h7SjTDBKMAwGA1UdEwEB/wQCMAAwHwYDVR0jBBgwFoAU8On7ZHsQCOqO | 
 | K+RZ7SSHyxlOReMwGQYDVR0RBBIwEIIOcHVibGljLmV4YW1wbGUwCgYIKoZIzj0E | 
 | AwIDSAAwRQIhANqZRhDR/+QL05hsWXMYEwaiHifd9iakKoFEhKFchcF3AiBRAeXw | 
 | wRGGT6+iPmTYM6N5/IDyAb5B9Ke38O6lLEsUwA== | 
 | -----END CERTIFICATE----- | 
 | )"); | 
 |   ASSERT_TRUE(leaf_public); | 
 |   bssl::UniquePtr<X509> leaf_secret = CertFromPEM(R"( | 
 | -----BEGIN CERTIFICATE----- | 
 | MIIBaTCCAQ6gAwIBAgIBAzAKBggqhkjOPQQDAjASMRAwDgYDVQQDEwdUZXN0IENB | 
 | MCAXDTAwMDEwMTAwMDAwMFoYDzIwOTkwMTAxMDAwMDAwWjAZMRcwFQYDVQQDEw5z | 
 | ZWNyZXQuZXhhbXBsZTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABE2uSHFpsAsO | 
 | Umse2+S4PC8JZQX+hUKGvo8MhMeLWUOUnO9VPhpcEfzuwfafZRXnOnHXc0eSrVsg | 
 | Lx5FPx44h7SjTDBKMAwGA1UdEwEB/wQCMAAwHwYDVR0jBBgwFoAU8On7ZHsQCOqO | 
 | K+RZ7SSHyxlOReMwGQYDVR0RBBIwEIIOc2VjcmV0LmV4YW1wbGUwCgYIKoZIzj0E | 
 | AwIDSQAwRgIhAPQdIz1xCFkc9WuSkxOxJDpywZiEp9SnKcxJ9nwrlRp3AiEA+O3+ | 
 | XRqE7XFhHL+7TNC2a9OOAjQsEF137YPWo+rhgko= | 
 | -----END CERTIFICATE----- | 
 | )"); | 
 |   ASSERT_TRUE(leaf_secret); | 
 |  | 
 |   // Use different config IDs so that fuzzer mode, which breaks trial | 
 |   // decryption, will observe the key mismatch. | 
 |   bssl::UniquePtr<SSL_ECH_KEYS> keys = MakeTestECHKeys(/*config_id=*/1); | 
 |   ASSERT_TRUE(keys); | 
 |   bssl::UniquePtr<SSL_ECH_KEYS> wrong_keys = MakeTestECHKeys(/*config_id=*/2); | 
 |   ASSERT_TRUE(wrong_keys); | 
 |   bssl::UniquePtr<SSL_CTX> server_ctx = | 
 |       CreateContextWithTestCertificate(TLS_method()); | 
 |   ASSERT_TRUE(server_ctx); | 
 |   bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
 |   ASSERT_TRUE(client_ctx); | 
 |  | 
 |   // Configure the client to verify certificates and expect the secret name. | 
 |   // This is the name the client is trying to connect to. If ECH is rejected, | 
 |   // BoringSSL will internally override this setting with the public name. | 
 |   bssl::UniquePtr<X509_STORE> store(X509_STORE_new()); | 
 |   ASSERT_TRUE(store); | 
 |   ASSERT_TRUE(X509_STORE_add_cert(store.get(), root.get())); | 
 |   SSL_CTX_set_cert_store(client_ctx.get(), store.release()); | 
 |   SSL_CTX_set_verify(client_ctx.get(), SSL_VERIFY_PEER, nullptr); | 
 |   X509_VERIFY_PARAM_set_flags(SSL_CTX_get0_param(client_ctx.get()), | 
 |                               X509_V_FLAG_NO_CHECK_TIME); | 
 |   static const char kSecretName[] = "secret.example"; | 
 |   ASSERT_TRUE(X509_VERIFY_PARAM_set1_host(SSL_CTX_get0_param(client_ctx.get()), | 
 |                                           kSecretName, strlen(kSecretName))); | 
 |  | 
 |   // For simplicity, we only run through a pair of representative scenarios here | 
 |   // and rely on runner.go to verify that |SSL_get0_ech_name_override| behaves | 
 |   // correctly. | 
 |   for (bool accept_ech : {false, true}) { | 
 |     SCOPED_TRACE(accept_ech); | 
 |     for (bool use_leaf_secret : {false, true}) { | 
 |       SCOPED_TRACE(use_leaf_secret); | 
 |  | 
 |       // The server will reject ECH when configured with the wrong keys. | 
 |       ASSERT_TRUE(SSL_CTX_set1_ech_keys( | 
 |           server_ctx.get(), accept_ech ? keys.get() : wrong_keys.get())); | 
 |  | 
 |       bssl::UniquePtr<SSL> client, server; | 
 |       ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), | 
 |                                         server_ctx.get())); | 
 |       ASSERT_TRUE(InstallECHConfigList(client.get(), keys.get())); | 
 |  | 
 |       // Configure the server with the selected certificate. | 
 |       ASSERT_TRUE(SSL_use_certificate(server.get(), use_leaf_secret | 
 |                                                         ? leaf_secret.get() | 
 |                                                         : leaf_public.get())); | 
 |       ASSERT_TRUE(SSL_use_PrivateKey(server.get(), leaf_key.get())); | 
 |  | 
 |       // The handshake may fail due to name mismatch or ECH reject. We check | 
 |       // |SSL_get_verify_result| to confirm the handshake got far enough. | 
 |       CompleteHandshakes(client.get(), server.get()); | 
 |       EXPECT_EQ(accept_ech == use_leaf_secret ? X509_V_OK | 
 |                                               : X509_V_ERR_HOSTNAME_MISMATCH, | 
 |                 SSL_get_verify_result(client.get())); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | #if defined(OPENSSL_THREADS) | 
 | // Test that the server ECH config can be swapped out while the |SSL_CTX| is | 
 | // in use on other threads. This test is intended to be run with TSan. | 
 | TEST(SSLTest, ECHThreads) { | 
 |   // Generate a pair of ECHConfigs. | 
 |   bssl::ScopedEVP_HPKE_KEY key1; | 
 |   ASSERT_TRUE(EVP_HPKE_KEY_generate(key1.get(), EVP_hpke_x25519_hkdf_sha256())); | 
 |   uint8_t *ech_config1; | 
 |   size_t ech_config1_len; | 
 |   ASSERT_TRUE(SSL_marshal_ech_config(&ech_config1, &ech_config1_len, | 
 |                                      /*config_id=*/1, key1.get(), | 
 |                                      "public.example", 16)); | 
 |   bssl::UniquePtr<uint8_t> free_ech_config1(ech_config1); | 
 |   bssl::ScopedEVP_HPKE_KEY key2; | 
 |   ASSERT_TRUE(EVP_HPKE_KEY_generate(key2.get(), EVP_hpke_x25519_hkdf_sha256())); | 
 |   uint8_t *ech_config2; | 
 |   size_t ech_config2_len; | 
 |   ASSERT_TRUE(SSL_marshal_ech_config(&ech_config2, &ech_config2_len, | 
 |                                      /*config_id=*/2, key2.get(), | 
 |                                      "public.example", 16)); | 
 |   bssl::UniquePtr<uint8_t> free_ech_config2(ech_config2); | 
 |  | 
 |   // |keys1| contains the first config. |keys12| contains both. | 
 |   bssl::UniquePtr<SSL_ECH_KEYS> keys1(SSL_ECH_KEYS_new()); | 
 |   ASSERT_TRUE(keys1); | 
 |   ASSERT_TRUE(SSL_ECH_KEYS_add(keys1.get(), /*is_retry_config=*/1, ech_config1, | 
 |                                ech_config1_len, key1.get())); | 
 |   bssl::UniquePtr<SSL_ECH_KEYS> keys12(SSL_ECH_KEYS_new()); | 
 |   ASSERT_TRUE(keys12); | 
 |   ASSERT_TRUE(SSL_ECH_KEYS_add(keys12.get(), /*is_retry_config=*/1, ech_config2, | 
 |                                ech_config2_len, key2.get())); | 
 |   ASSERT_TRUE(SSL_ECH_KEYS_add(keys12.get(), /*is_retry_config=*/0, ech_config1, | 
 |                                ech_config1_len, key1.get())); | 
 |  | 
 |   bssl::UniquePtr<SSL_CTX> server_ctx = | 
 |       CreateContextWithTestCertificate(TLS_method()); | 
 |   ASSERT_TRUE(server_ctx); | 
 |   ASSERT_TRUE(SSL_CTX_set1_ech_keys(server_ctx.get(), keys1.get())); | 
 |  | 
 |   bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
 |   ASSERT_TRUE(client_ctx); | 
 |   bssl::UniquePtr<SSL> client, server; | 
 |   ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), | 
 |                                     server_ctx.get())); | 
 |   ASSERT_TRUE(InstallECHConfigList(client.get(), keys1.get())); | 
 |  | 
 |   // In parallel, complete the connection and reconfigure the ECHConfig. Note | 
 |   // |keys12| supports all the keys in |keys1|, so the handshake should complete | 
 |   // the same whichever the server uses. | 
 |   std::vector<std::thread> threads; | 
 |   threads.emplace_back([&] { | 
 |     ASSERT_TRUE(CompleteHandshakes(client.get(), server.get())); | 
 |     EXPECT_TRUE(SSL_ech_accepted(client.get())); | 
 |     EXPECT_TRUE(SSL_ech_accepted(server.get())); | 
 |   }); | 
 |   threads.emplace_back([&] { | 
 |     EXPECT_TRUE(SSL_CTX_set1_ech_keys(server_ctx.get(), keys12.get())); | 
 |   }); | 
 |   for (auto &thread : threads) { | 
 |     thread.join(); | 
 |   } | 
 | } | 
 | #endif  // OPENSSL_THREADS | 
 |  | 
 | TEST(SSLTest, TLS13ExporterAvailability) { | 
 |   bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
 |   bssl::UniquePtr<SSL_CTX> server_ctx = | 
 |       CreateContextWithTestCertificate(TLS_method()); | 
 |   ASSERT_TRUE(client_ctx); | 
 |   ASSERT_TRUE(server_ctx); | 
 |   // Configure only TLS 1.3. | 
 |   ASSERT_TRUE(SSL_CTX_set_min_proto_version(client_ctx.get(), TLS1_3_VERSION)); | 
 |   ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), TLS1_3_VERSION)); | 
 |  | 
 |   bssl::UniquePtr<SSL> client, server; | 
 |   ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), | 
 |                                     server_ctx.get())); | 
 |  | 
 |   std::vector<uint8_t> buffer(32); | 
 |   const char *label = "EXPORTER-test-label"; | 
 |  | 
 |   // The exporters are not available before the handshake starts. | 
 |   EXPECT_FALSE(SSL_export_keying_material(client.get(), buffer.data(), | 
 |                                           buffer.size(), label, strlen(label), | 
 |                                           nullptr, 0, 0)); | 
 |   EXPECT_FALSE(SSL_export_keying_material(server.get(), buffer.data(), | 
 |                                           buffer.size(), label, strlen(label), | 
 |                                           nullptr, 0, 0)); | 
 |  | 
 |   // Send the client's first flight of handshake messages. | 
 |   int client_ret = SSL_do_handshake(client.get()); | 
 |   EXPECT_EQ(SSL_get_error(client.get(), client_ret), SSL_ERROR_WANT_READ); | 
 |  | 
 |   // The handshake isn't far enough for the exporters to work. | 
 |   EXPECT_FALSE(SSL_export_keying_material(client.get(), buffer.data(), | 
 |                                           buffer.size(), label, strlen(label), | 
 |                                           nullptr, 0, 0)); | 
 |   EXPECT_FALSE(SSL_export_keying_material(server.get(), buffer.data(), | 
 |                                           buffer.size(), label, strlen(label), | 
 |                                           nullptr, 0, 0)); | 
 |  | 
 |   // Send all the server's handshake messages. | 
 |   int server_ret = SSL_do_handshake(server.get()); | 
 |   EXPECT_EQ(SSL_get_error(server.get(), server_ret), SSL_ERROR_WANT_READ); | 
 |  | 
 |   // At this point in the handshake, the server should have the exporter key | 
 |   // derived since it's sent its Finished message. The client hasn't yet | 
 |   // processed the server's handshake messages, so the exporter shouldn't be | 
 |   // available to the client. | 
 |   EXPECT_FALSE(SSL_export_keying_material(client.get(), buffer.data(), | 
 |                                           buffer.size(), label, strlen(label), | 
 |                                           nullptr, 0, 0)); | 
 |   EXPECT_TRUE(SSL_export_keying_material(server.get(), buffer.data(), | 
 |                                          buffer.size(), label, strlen(label), | 
 |                                          nullptr, 0, 0)); | 
 |  | 
 |   // Finish the handshake on the client. | 
 |   EXPECT_EQ(SSL_do_handshake(client.get()), 1); | 
 |  | 
 |   // The exporter should be available on both endpoints. | 
 |   EXPECT_TRUE(SSL_export_keying_material(client.get(), buffer.data(), | 
 |                                          buffer.size(), label, strlen(label), | 
 |                                          nullptr, 0, 0)); | 
 |   EXPECT_TRUE(SSL_export_keying_material(server.get(), buffer.data(), | 
 |                                          buffer.size(), label, strlen(label), | 
 |                                          nullptr, 0, 0)); | 
 |  | 
 |   // Finish the handshake on the server. | 
 |   EXPECT_EQ(SSL_do_handshake(server.get()), 1); | 
 |  | 
 |   // The exporter should still be available on both endpoints. | 
 |   EXPECT_TRUE(SSL_export_keying_material(client.get(), buffer.data(), | 
 |                                          buffer.size(), label, strlen(label), | 
 |                                          nullptr, 0, 0)); | 
 |   EXPECT_TRUE(SSL_export_keying_material(server.get(), buffer.data(), | 
 |                                          buffer.size(), label, strlen(label), | 
 |                                          nullptr, 0, 0)); | 
 | } | 
 |  | 
 | static void AppendSession(SSL_SESSION *session, void *arg) { | 
 |   std::vector<SSL_SESSION*> *out = | 
 |       reinterpret_cast<std::vector<SSL_SESSION*>*>(arg); | 
 |   out->push_back(session); | 
 | } | 
 |  | 
 | // CacheEquals returns true if |ctx|'s session cache consists of |expected|, in | 
 | // order. | 
 | static bool CacheEquals(SSL_CTX *ctx, | 
 |                         const std::vector<SSL_SESSION*> &expected) { | 
 |   // Check the linked list. | 
 |   SSL_SESSION *ptr = ctx->session_cache_head; | 
 |   for (SSL_SESSION *session : expected) { | 
 |     if (ptr != session) { | 
 |       return false; | 
 |     } | 
 |     // TODO(davidben): This is an absurd way to denote the end of the list. | 
 |     if (ptr->next == | 
 |         reinterpret_cast<SSL_SESSION *>(&ctx->session_cache_tail)) { | 
 |       ptr = nullptr; | 
 |     } else { | 
 |       ptr = ptr->next; | 
 |     } | 
 |   } | 
 |   if (ptr != nullptr) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Check the hash table. | 
 |   std::vector<SSL_SESSION*> actual, expected_copy; | 
 |   lh_SSL_SESSION_doall_arg(ctx->sessions, AppendSession, &actual); | 
 |   expected_copy = expected; | 
 |  | 
 |   std::sort(actual.begin(), actual.end()); | 
 |   std::sort(expected_copy.begin(), expected_copy.end()); | 
 |  | 
 |   return actual == expected_copy; | 
 | } | 
 |  | 
 | static bssl::UniquePtr<SSL_SESSION> CreateTestSession(uint32_t number) { | 
 |   bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method())); | 
 |   if (!ssl_ctx) { | 
 |     return nullptr; | 
 |   } | 
 |   bssl::UniquePtr<SSL_SESSION> ret(SSL_SESSION_new(ssl_ctx.get())); | 
 |   if (!ret) { | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   uint8_t id[SSL3_SSL_SESSION_ID_LENGTH] = {0}; | 
 |   OPENSSL_memcpy(id, &number, sizeof(number)); | 
 |   if (!SSL_SESSION_set1_id(ret.get(), id, sizeof(id))) { | 
 |     return nullptr; | 
 |   } | 
 |   return ret; | 
 | } | 
 |  | 
 | // Test that the internal session cache behaves as expected. | 
 | TEST(SSLTest, InternalSessionCache) { | 
 |   bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
 |   ASSERT_TRUE(ctx); | 
 |  | 
 |   // Prepare 10 test sessions. | 
 |   std::vector<bssl::UniquePtr<SSL_SESSION>> sessions; | 
 |   for (int i = 0; i < 10; i++) { | 
 |     bssl::UniquePtr<SSL_SESSION> session = CreateTestSession(i); | 
 |     ASSERT_TRUE(session); | 
 |     sessions.push_back(std::move(session)); | 
 |   } | 
 |  | 
 |   SSL_CTX_sess_set_cache_size(ctx.get(), 5); | 
 |  | 
 |   // Insert all the test sessions. | 
 |   for (const auto &session : sessions) { | 
 |     ASSERT_TRUE(SSL_CTX_add_session(ctx.get(), session.get())); | 
 |   } | 
 |  | 
 |   // Only the last five should be in the list. | 
 |   ASSERT_TRUE(CacheEquals( | 
 |       ctx.get(), {sessions[9].get(), sessions[8].get(), sessions[7].get(), | 
 |                   sessions[6].get(), sessions[5].get()})); | 
 |  | 
 |   // Inserting an element already in the cache should fail and leave the cache | 
 |   // unchanged. | 
 |   ASSERT_FALSE(SSL_CTX_add_session(ctx.get(), sessions[7].get())); | 
 |   ASSERT_TRUE(CacheEquals( | 
 |       ctx.get(), {sessions[9].get(), sessions[8].get(), sessions[7].get(), | 
 |                   sessions[6].get(), sessions[5].get()})); | 
 |  | 
 |   // Although collisions should be impossible (256-bit session IDs), the cache | 
 |   // must handle them gracefully. | 
 |   bssl::UniquePtr<SSL_SESSION> collision(CreateTestSession(7)); | 
 |   ASSERT_TRUE(collision); | 
 |   ASSERT_TRUE(SSL_CTX_add_session(ctx.get(), collision.get())); | 
 |   ASSERT_TRUE(CacheEquals( | 
 |       ctx.get(), {collision.get(), sessions[9].get(), sessions[8].get(), | 
 |                   sessions[6].get(), sessions[5].get()})); | 
 |  | 
 |   // Removing sessions behaves correctly. | 
 |   ASSERT_TRUE(SSL_CTX_remove_session(ctx.get(), sessions[6].get())); | 
 |   ASSERT_TRUE(CacheEquals(ctx.get(), {collision.get(), sessions[9].get(), | 
 |                                       sessions[8].get(), sessions[5].get()})); | 
 |  | 
 |   // Removing sessions requires an exact match. | 
 |   ASSERT_FALSE(SSL_CTX_remove_session(ctx.get(), sessions[0].get())); | 
 |   ASSERT_FALSE(SSL_CTX_remove_session(ctx.get(), sessions[7].get())); | 
 |  | 
 |   // The cache remains unchanged. | 
 |   ASSERT_TRUE(CacheEquals(ctx.get(), {collision.get(), sessions[9].get(), | 
 |                                       sessions[8].get(), sessions[5].get()})); | 
 | } | 
 |  | 
 | static uint16_t EpochFromSequence(uint64_t seq) { | 
 |   return static_cast<uint16_t>(seq >> 48); | 
 | } | 
 |  | 
 | static const uint8_t kTestName[] = { | 
 |     0x30, 0x45, 0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13, | 
 |     0x02, 0x41, 0x55, 0x31, 0x13, 0x30, 0x11, 0x06, 0x03, 0x55, 0x04, 0x08, | 
 |     0x0c, 0x0a, 0x53, 0x6f, 0x6d, 0x65, 0x2d, 0x53, 0x74, 0x61, 0x74, 0x65, | 
 |     0x31, 0x21, 0x30, 0x1f, 0x06, 0x03, 0x55, 0x04, 0x0a, 0x0c, 0x18, 0x49, | 
 |     0x6e, 0x74, 0x65, 0x72, 0x6e, 0x65, 0x74, 0x20, 0x57, 0x69, 0x64, 0x67, | 
 |     0x69, 0x74, 0x73, 0x20, 0x50, 0x74, 0x79, 0x20, 0x4c, 0x74, 0x64, | 
 | }; | 
 |  | 
 | // SSLVersionTest executes its test cases under all available protocol versions. | 
 | // Test cases call |Connect| to create a connection using context objects with | 
 | // the protocol version fixed to the current version under test. | 
 | class SSLVersionTest : public ::testing::TestWithParam<VersionParam> { | 
 |  protected: | 
 |   SSLVersionTest() : cert_(GetTestCertificate()), key_(GetTestKey()) {} | 
 |  | 
 |   void SetUp() { ResetContexts(); } | 
 |  | 
 |   bssl::UniquePtr<SSL_CTX> CreateContext() const { | 
 |     const SSL_METHOD *method = is_dtls() ? DTLS_method() : TLS_method(); | 
 |     bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(method)); | 
 |     if (!ctx || !SSL_CTX_set_min_proto_version(ctx.get(), version()) || | 
 |         !SSL_CTX_set_max_proto_version(ctx.get(), version())) { | 
 |       return nullptr; | 
 |     } | 
 |     return ctx; | 
 |   } | 
 |  | 
 |   void ResetContexts() { | 
 |     ASSERT_TRUE(cert_); | 
 |     ASSERT_TRUE(key_); | 
 |     client_ctx_ = CreateContext(); | 
 |     ASSERT_TRUE(client_ctx_); | 
 |     server_ctx_ = CreateContext(); | 
 |     ASSERT_TRUE(server_ctx_); | 
 |     // Set up a server cert. Client certs can be set up explicitly. | 
 |     ASSERT_TRUE(UseCertAndKey(server_ctx_.get())); | 
 |   } | 
 |  | 
 |   bool UseCertAndKey(SSL_CTX *ctx) const { | 
 |     return SSL_CTX_use_certificate(ctx, cert_.get()) && | 
 |            SSL_CTX_use_PrivateKey(ctx, key_.get()); | 
 |   } | 
 |  | 
 |   bool Connect(const ClientConfig &config = ClientConfig()) { | 
 |     return ConnectClientAndServer(&client_, &server_, client_ctx_.get(), | 
 |                                   server_ctx_.get(), config, | 
 |                                   shed_handshake_config_); | 
 |   } | 
 |  | 
 |   uint16_t version() const { return GetParam().version; } | 
 |  | 
 |   bool is_dtls() const { | 
 |     return GetParam().ssl_method == VersionParam::is_dtls; | 
 |   } | 
 |  | 
 |   bool shed_handshake_config_ = true; | 
 |   bssl::UniquePtr<SSL> client_, server_; | 
 |   bssl::UniquePtr<SSL_CTX> server_ctx_, client_ctx_; | 
 |   bssl::UniquePtr<X509> cert_; | 
 |   bssl::UniquePtr<EVP_PKEY> key_; | 
 | }; | 
 |  | 
 | INSTANTIATE_TEST_SUITE_P(WithVersion, SSLVersionTest, | 
 |                          testing::ValuesIn(kAllVersions), | 
 |                          [](const testing::TestParamInfo<VersionParam> &i) { | 
 |                            return i.param.name; | 
 |                          }); | 
 |  | 
 | TEST_P(SSLVersionTest, SequenceNumber) { | 
 |   ASSERT_TRUE(Connect()); | 
 |  | 
 |   // Drain any post-handshake messages to ensure there are no unread records | 
 |   // on either end. | 
 |   ASSERT_TRUE(FlushNewSessionTickets(client_.get(), server_.get())); | 
 |  | 
 |   uint64_t client_read_seq = SSL_get_read_sequence(client_.get()); | 
 |   uint64_t client_write_seq = SSL_get_write_sequence(client_.get()); | 
 |   uint64_t server_read_seq = SSL_get_read_sequence(server_.get()); | 
 |   uint64_t server_write_seq = SSL_get_write_sequence(server_.get()); | 
 |  | 
 |   if (is_dtls()) { | 
 |     // Both client and server must be at epoch 1. | 
 |     EXPECT_EQ(EpochFromSequence(client_read_seq), 1); | 
 |     EXPECT_EQ(EpochFromSequence(client_write_seq), 1); | 
 |     EXPECT_EQ(EpochFromSequence(server_read_seq), 1); | 
 |     EXPECT_EQ(EpochFromSequence(server_write_seq), 1); | 
 |  | 
 |     // The next record to be written should exceed the largest received. | 
 |     EXPECT_GT(client_write_seq, server_read_seq); | 
 |     EXPECT_GT(server_write_seq, client_read_seq); | 
 |   } else { | 
 |     // The next record to be written should equal the next to be received. | 
 |     EXPECT_EQ(client_write_seq, server_read_seq); | 
 |     EXPECT_EQ(server_write_seq, client_read_seq); | 
 |   } | 
 |  | 
 |   // Send a record from client to server. | 
 |   uint8_t byte = 0; | 
 |   EXPECT_EQ(SSL_write(client_.get(), &byte, 1), 1); | 
 |   EXPECT_EQ(SSL_read(server_.get(), &byte, 1), 1); | 
 |  | 
 |   // The client write and server read sequence numbers should have | 
 |   // incremented. | 
 |   EXPECT_EQ(client_write_seq + 1, SSL_get_write_sequence(client_.get())); | 
 |   EXPECT_EQ(server_read_seq + 1, SSL_get_read_sequence(server_.get())); | 
 | } | 
 |  | 
 | TEST_P(SSLVersionTest, OneSidedShutdown) { | 
 |   // SSL_shutdown is a no-op in DTLS. | 
 |   if (is_dtls()) { | 
 |     return; | 
 |   } | 
 |   ASSERT_TRUE(Connect()); | 
 |  | 
 |   // Shut down half the connection. |SSL_shutdown| will return 0 to signal only | 
 |   // one side has shut down. | 
 |   ASSERT_EQ(SSL_shutdown(client_.get()), 0); | 
 |  | 
 |   // Reading from the server should consume the EOF. | 
 |   uint8_t byte; | 
 |   ASSERT_EQ(SSL_read(server_.get(), &byte, 1), 0); | 
 |   ASSERT_EQ(SSL_get_error(server_.get(), 0), SSL_ERROR_ZERO_RETURN); | 
 |  | 
 |   // However, the server may continue to write data and then shut down the | 
 |   // connection. | 
 |   byte = 42; | 
 |   ASSERT_EQ(SSL_write(server_.get(), &byte, 1), 1); | 
 |   ASSERT_EQ(SSL_read(client_.get(), &byte, 1), 1); | 
 |   ASSERT_EQ(byte, 42); | 
 |  | 
 |   // The server may then shutdown the connection. | 
 |   EXPECT_EQ(SSL_shutdown(server_.get()), 1); | 
 |   EXPECT_EQ(SSL_shutdown(client_.get()), 1); | 
 | } | 
 |  | 
 | // Test that, after calling |SSL_shutdown|, |SSL_write| fails. | 
 | TEST_P(SSLVersionTest, WriteAfterShutdown) { | 
 |   ASSERT_TRUE(Connect()); | 
 |  | 
 |   for (SSL *ssl : {client_.get(), server_.get()}) { | 
 |     SCOPED_TRACE(SSL_is_server(ssl) ? "server" : "client"); | 
 |  | 
 |     bssl::UniquePtr<BIO> mem(BIO_new(BIO_s_mem())); | 
 |     ASSERT_TRUE(mem); | 
 |     SSL_set0_wbio(ssl, bssl::UpRef(mem).release()); | 
 |  | 
 |     // Shut down half the connection. |SSL_shutdown| will return 0 to signal | 
 |     // only one side has shut down. | 
 |     ASSERT_EQ(SSL_shutdown(ssl), 0); | 
 |  | 
 |     // |ssl| should have written an alert to the transport. | 
 |     const uint8_t *unused; | 
 |     size_t len; | 
 |     ASSERT_TRUE(BIO_mem_contents(mem.get(), &unused, &len)); | 
 |     EXPECT_NE(0u, len); | 
 |     EXPECT_TRUE(BIO_reset(mem.get())); | 
 |  | 
 |     // Writing should fail. | 
 |     EXPECT_EQ(-1, SSL_write(ssl, "a", 1)); | 
 |  | 
 |     // Nothing should be written to the transport. | 
 |     ASSERT_TRUE(BIO_mem_contents(mem.get(), &unused, &len)); | 
 |     EXPECT_EQ(0u, len); | 
 |   } | 
 | } | 
 |  | 
 | // Test that, after sending a fatal alert in a failed |SSL_read|, |SSL_write| | 
 | // fails. | 
 | TEST_P(SSLVersionTest, WriteAfterReadSentFatalAlert) { | 
 |   // Decryption failures are not fatal in DTLS. | 
 |   if (is_dtls()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   ASSERT_TRUE(Connect()); | 
 |  | 
 |   // Save the write |BIO|s as the test will overwrite them. | 
 |   bssl::UniquePtr<BIO> client_wbio = bssl::UpRef(SSL_get_wbio(client_.get())); | 
 |   bssl::UniquePtr<BIO> server_wbio = bssl::UpRef(SSL_get_wbio(server_.get())); | 
 |  | 
 |   for (bool test_server : {false, true}) { | 
 |     SCOPED_TRACE(test_server ? "server" : "client"); | 
 |     SSL *ssl = test_server ? server_.get() : client_.get(); | 
 |     BIO *other_wbio = test_server ? client_wbio.get() : server_wbio.get(); | 
 |  | 
 |     bssl::UniquePtr<BIO> mem(BIO_new(BIO_s_mem())); | 
 |     ASSERT_TRUE(mem); | 
 |     SSL_set0_wbio(ssl, bssl::UpRef(mem).release()); | 
 |  | 
 |     // Read an invalid record from the peer. | 
 |     static const uint8_t kInvalidRecord[] = "invalid record"; | 
 |     EXPECT_EQ(int{sizeof(kInvalidRecord)}, | 
 |               BIO_write(other_wbio, kInvalidRecord, sizeof(kInvalidRecord))); | 
 |     char buf[256]; | 
 |     EXPECT_EQ(-1, SSL_read(ssl, buf, sizeof(buf))); | 
 |  | 
 |     // |ssl| should have written an alert to the transport. | 
 |     const uint8_t *unused; | 
 |     size_t len; | 
 |     ASSERT_TRUE(BIO_mem_contents(mem.get(), &unused, &len)); | 
 |     EXPECT_NE(0u, len); | 
 |     EXPECT_TRUE(BIO_reset(mem.get())); | 
 |  | 
 |     // Writing should fail. | 
 |     EXPECT_EQ(-1, SSL_write(ssl, "a", 1)); | 
 |  | 
 |     // Nothing should be written to the transport. | 
 |     ASSERT_TRUE(BIO_mem_contents(mem.get(), &unused, &len)); | 
 |     EXPECT_EQ(0u, len); | 
 |   } | 
 | } | 
 |  | 
 | // Test that, after sending a fatal alert from the handshake, |SSL_write| fails. | 
 | TEST_P(SSLVersionTest, WriteAfterHandshakeSentFatalAlert) { | 
 |   for (bool test_server : {false, true}) { | 
 |     SCOPED_TRACE(test_server ? "server" : "client"); | 
 |  | 
 |     bssl::UniquePtr<SSL> ssl( | 
 |         SSL_new(test_server ? server_ctx_.get() : client_ctx_.get())); | 
 |     ASSERT_TRUE(ssl); | 
 |     if (test_server) { | 
 |       SSL_set_accept_state(ssl.get()); | 
 |     } else { | 
 |       SSL_set_connect_state(ssl.get()); | 
 |     } | 
 |  | 
 |     std::vector<uint8_t> invalid; | 
 |     if (is_dtls()) { | 
 |       // In DTLS, invalid records are discarded. To cause the handshake to fail, | 
 |       // use a valid handshake record with invalid contents. | 
 |       invalid.push_back(SSL3_RT_HANDSHAKE); | 
 |       invalid.push_back(DTLS1_VERSION >> 8); | 
 |       invalid.push_back(DTLS1_VERSION & 0xff); | 
 |       // epoch and sequence_number | 
 |       for (int i = 0; i < 8; i++) { | 
 |         invalid.push_back(0); | 
 |       } | 
 |       // A one-byte fragment is invalid. | 
 |       invalid.push_back(0); | 
 |       invalid.push_back(1); | 
 |       // Arbitrary contents. | 
 |       invalid.push_back(0); | 
 |     } else { | 
 |       invalid = {'i', 'n', 'v', 'a', 'l', 'i', 'd'}; | 
 |     } | 
 |     bssl::UniquePtr<BIO> rbio( | 
 |         BIO_new_mem_buf(invalid.data(), invalid.size())); | 
 |     ASSERT_TRUE(rbio); | 
 |     SSL_set0_rbio(ssl.get(), rbio.release()); | 
 |  | 
 |     bssl::UniquePtr<BIO> mem(BIO_new(BIO_s_mem())); | 
 |     ASSERT_TRUE(mem); | 
 |     SSL_set0_wbio(ssl.get(), bssl::UpRef(mem).release()); | 
 |  | 
 |     // The handshake should fail. | 
 |     EXPECT_EQ(-1, SSL_do_handshake(ssl.get())); | 
 |     EXPECT_EQ(SSL_ERROR_SSL, SSL_get_error(ssl.get(), -1)); | 
 |     uint32_t err = ERR_get_error(); | 
 |  | 
 |     // |ssl| should have written an alert (and, in the client's case, a | 
 |     // ClientHello) to the transport. | 
 |     const uint8_t *unused; | 
 |     size_t len; | 
 |     ASSERT_TRUE(BIO_mem_contents(mem.get(), &unused, &len)); | 
 |     EXPECT_NE(0u, len); | 
 |     EXPECT_TRUE(BIO_reset(mem.get())); | 
 |  | 
 |     // Writing should fail, with the same error as the handshake. | 
 |     EXPECT_EQ(-1, SSL_write(ssl.get(), "a", 1)); | 
 |     EXPECT_EQ(SSL_ERROR_SSL, SSL_get_error(ssl.get(), -1)); | 
 |     EXPECT_EQ(err, ERR_get_error()); | 
 |  | 
 |     // Nothing should be written to the transport. | 
 |     ASSERT_TRUE(BIO_mem_contents(mem.get(), &unused, &len)); | 
 |     EXPECT_EQ(0u, len); | 
 |   } | 
 | } | 
 |  | 
 | // Test that, after seeing TLS 1.2 in response to early data, |SSL_write| | 
 | // continues to report |SSL_R_WRONG_VERSION_ON_EARLY_DATA|. See | 
 | // https://crbug.com/1078515. | 
 | TEST(SSLTest, WriteAfterWrongVersionOnEarlyData) { | 
 |   // Set up some 0-RTT-enabled contexts. | 
 |   bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
 |   bssl::UniquePtr<SSL_CTX> server_ctx = | 
 |       CreateContextWithTestCertificate(TLS_method()); | 
 |   ASSERT_TRUE(client_ctx); | 
 |   ASSERT_TRUE(server_ctx); | 
 |   SSL_CTX_set_early_data_enabled(client_ctx.get(), 1); | 
 |   SSL_CTX_set_early_data_enabled(server_ctx.get(), 1); | 
 |   SSL_CTX_set_session_cache_mode(client_ctx.get(), SSL_SESS_CACHE_BOTH); | 
 |   SSL_CTX_set_session_cache_mode(server_ctx.get(), SSL_SESS_CACHE_BOTH); | 
 |  | 
 |   // Get an early-data-capable session. | 
 |   bssl::UniquePtr<SSL_SESSION> session = | 
 |       CreateClientSession(client_ctx.get(), server_ctx.get()); | 
 |   ASSERT_TRUE(session); | 
 |   EXPECT_TRUE(SSL_SESSION_early_data_capable(session.get())); | 
 |  | 
 |   // Offer the session to the server, but now the server speaks TLS 1.2. | 
 |   bssl::UniquePtr<SSL> client, server; | 
 |   ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), | 
 |                                     server_ctx.get())); | 
 |   SSL_set_session(client.get(), session.get()); | 
 |   EXPECT_TRUE(SSL_set_max_proto_version(server.get(), TLS1_2_VERSION)); | 
 |  | 
 |   // The client handshake initially succeeds in the early data state. | 
 |   EXPECT_EQ(1, SSL_do_handshake(client.get())); | 
 |   EXPECT_TRUE(SSL_in_early_data(client.get())); | 
 |  | 
 |   // The server processes the ClientHello and negotiates TLS 1.2. | 
 |   EXPECT_EQ(-1, SSL_do_handshake(server.get())); | 
 |   EXPECT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(server.get(), -1)); | 
 |   EXPECT_EQ(TLS1_2_VERSION, SSL_version(server.get())); | 
 |  | 
 |   // Capture the client's output. | 
 |   bssl::UniquePtr<BIO> mem(BIO_new(BIO_s_mem())); | 
 |   ASSERT_TRUE(mem); | 
 |   SSL_set0_wbio(client.get(), bssl::UpRef(mem).release()); | 
 |  | 
 |   // The client processes the ServerHello and fails. | 
 |   EXPECT_EQ(-1, SSL_do_handshake(client.get())); | 
 |   EXPECT_EQ(SSL_ERROR_SSL, SSL_get_error(client.get(), -1)); | 
 |   uint32_t err = ERR_get_error(); | 
 |   EXPECT_EQ(ERR_LIB_SSL, ERR_GET_LIB(err)); | 
 |   EXPECT_EQ(SSL_R_WRONG_VERSION_ON_EARLY_DATA, ERR_GET_REASON(err)); | 
 |  | 
 |   // The client should have written an alert to the transport. | 
 |   const uint8_t *unused; | 
 |   size_t len; | 
 |   ASSERT_TRUE(BIO_mem_contents(mem.get(), &unused, &len)); | 
 |   EXPECT_NE(0u, len); | 
 |   EXPECT_TRUE(BIO_reset(mem.get())); | 
 |  | 
 |   // Writing should fail, with the same error as the handshake. | 
 |   EXPECT_EQ(-1, SSL_write(client.get(), "a", 1)); | 
 |   EXPECT_EQ(SSL_ERROR_SSL, SSL_get_error(client.get(), -1)); | 
 |   err = ERR_get_error(); | 
 |   EXPECT_EQ(ERR_LIB_SSL, ERR_GET_LIB(err)); | 
 |   EXPECT_EQ(SSL_R_WRONG_VERSION_ON_EARLY_DATA, ERR_GET_REASON(err)); | 
 |  | 
 |   // Nothing should be written to the transport. | 
 |   ASSERT_TRUE(BIO_mem_contents(mem.get(), &unused, &len)); | 
 |   EXPECT_EQ(0u, len); | 
 | } | 
 |  | 
 | TEST(SSLTest, SessionDuplication) { | 
 |   bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
 |   bssl::UniquePtr<SSL_CTX> server_ctx = | 
 |       CreateContextWithTestCertificate(TLS_method()); | 
 |   ASSERT_TRUE(client_ctx); | 
 |   ASSERT_TRUE(server_ctx); | 
 |  | 
 |   bssl::UniquePtr<SSL> client, server; | 
 |   ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
 |                                      server_ctx.get())); | 
 |  | 
 |   SSL_SESSION *session0 = SSL_get_session(client.get()); | 
 |   bssl::UniquePtr<SSL_SESSION> session1 = | 
 |       bssl::SSL_SESSION_dup(session0, SSL_SESSION_DUP_ALL); | 
 |   ASSERT_TRUE(session1); | 
 |  | 
 |   session1->not_resumable = false; | 
 |  | 
 |   uint8_t *s0_bytes, *s1_bytes; | 
 |   size_t s0_len, s1_len; | 
 |  | 
 |   ASSERT_TRUE(SSL_SESSION_to_bytes(session0, &s0_bytes, &s0_len)); | 
 |   bssl::UniquePtr<uint8_t> free_s0(s0_bytes); | 
 |  | 
 |   ASSERT_TRUE(SSL_SESSION_to_bytes(session1.get(), &s1_bytes, &s1_len)); | 
 |   bssl::UniquePtr<uint8_t> free_s1(s1_bytes); | 
 |  | 
 |   EXPECT_EQ(Bytes(s0_bytes, s0_len), Bytes(s1_bytes, s1_len)); | 
 | } | 
 |  | 
 | static void ExpectFDs(const SSL *ssl, int rfd, int wfd) { | 
 |   EXPECT_EQ(rfd, SSL_get_fd(ssl)); | 
 |   EXPECT_EQ(rfd, SSL_get_rfd(ssl)); | 
 |   EXPECT_EQ(wfd, SSL_get_wfd(ssl)); | 
 |  | 
 |   // The wrapper BIOs are always equal when fds are equal, even if set | 
 |   // individually. | 
 |   if (rfd == wfd) { | 
 |     EXPECT_EQ(SSL_get_rbio(ssl), SSL_get_wbio(ssl)); | 
 |   } | 
 | } | 
 |  | 
 | TEST(SSLTest, SetFD) { | 
 |   bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
 |   ASSERT_TRUE(ctx); | 
 |  | 
 |   // Test setting different read and write FDs. | 
 |   bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); | 
 |   ASSERT_TRUE(ssl); | 
 |   EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1)); | 
 |   EXPECT_TRUE(SSL_set_wfd(ssl.get(), 2)); | 
 |   ExpectFDs(ssl.get(), 1, 2); | 
 |  | 
 |   // Test setting the same FD. | 
 |   ssl.reset(SSL_new(ctx.get())); | 
 |   ASSERT_TRUE(ssl); | 
 |   EXPECT_TRUE(SSL_set_fd(ssl.get(), 1)); | 
 |   ExpectFDs(ssl.get(), 1, 1); | 
 |  | 
 |   // Test setting the same FD one side at a time. | 
 |   ssl.reset(SSL_new(ctx.get())); | 
 |   ASSERT_TRUE(ssl); | 
 |   EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1)); | 
 |   EXPECT_TRUE(SSL_set_wfd(ssl.get(), 1)); | 
 |   ExpectFDs(ssl.get(), 1, 1); | 
 |  | 
 |   // Test setting the same FD in the other order. | 
 |   ssl.reset(SSL_new(ctx.get())); | 
 |   ASSERT_TRUE(ssl); | 
 |   EXPECT_TRUE(SSL_set_wfd(ssl.get(), 1)); | 
 |   EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1)); | 
 |   ExpectFDs(ssl.get(), 1, 1); | 
 |  | 
 |   // Test changing the read FD partway through. | 
 |   ssl.reset(SSL_new(ctx.get())); | 
 |   ASSERT_TRUE(ssl); | 
 |   EXPECT_TRUE(SSL_set_fd(ssl.get(), 1)); | 
 |   EXPECT_TRUE(SSL_set_rfd(ssl.get(), 2)); | 
 |   ExpectFDs(ssl.get(), 2, 1); | 
 |  | 
 |   // Test changing the write FD partway through. | 
 |   ssl.reset(SSL_new(ctx.get())); | 
 |   ASSERT_TRUE(ssl); | 
 |   EXPECT_TRUE(SSL_set_fd(ssl.get(), 1)); | 
 |   EXPECT_TRUE(SSL_set_wfd(ssl.get(), 2)); | 
 |   ExpectFDs(ssl.get(), 1, 2); | 
 |  | 
 |   // Test a no-op change to the read FD partway through. | 
 |   ssl.reset(SSL_new(ctx.get())); | 
 |   ASSERT_TRUE(ssl); | 
 |   EXPECT_TRUE(SSL_set_fd(ssl.get(), 1)); | 
 |   EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1)); | 
 |   ExpectFDs(ssl.get(), 1, 1); | 
 |  | 
 |   // Test a no-op change to the write FD partway through. | 
 |   ssl.reset(SSL_new(ctx.get())); | 
 |   ASSERT_TRUE(ssl); | 
 |   EXPECT_TRUE(SSL_set_fd(ssl.get(), 1)); | 
 |   EXPECT_TRUE(SSL_set_wfd(ssl.get(), 1)); | 
 |   ExpectFDs(ssl.get(), 1, 1); | 
 |  | 
 |   // ASan builds will implicitly test that the internal |BIO| reference-counting | 
 |   // is correct. | 
 | } | 
 |  | 
 | TEST(SSLTest, SetBIO) { | 
 |   bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
 |   ASSERT_TRUE(ctx); | 
 |  | 
 |   bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); | 
 |   bssl::UniquePtr<BIO> bio1(BIO_new(BIO_s_mem())), bio2(BIO_new(BIO_s_mem())), | 
 |       bio3(BIO_new(BIO_s_mem())); | 
 |   ASSERT_TRUE(ssl); | 
 |   ASSERT_TRUE(bio1); | 
 |   ASSERT_TRUE(bio2); | 
 |   ASSERT_TRUE(bio3); | 
 |  | 
 |   // SSL_set_bio takes one reference when the parameters are the same. | 
 |   BIO_up_ref(bio1.get()); | 
 |   SSL_set_bio(ssl.get(), bio1.get(), bio1.get()); | 
 |  | 
 |   // Repeating the call does nothing. | 
 |   SSL_set_bio(ssl.get(), bio1.get(), bio1.get()); | 
 |  | 
 |   // It takes one reference each when the parameters are different. | 
 |   BIO_up_ref(bio2.get()); | 
 |   BIO_up_ref(bio3.get()); | 
 |   SSL_set_bio(ssl.get(), bio2.get(), bio3.get()); | 
 |  | 
 |   // Repeating the call does nothing. | 
 |   SSL_set_bio(ssl.get(), bio2.get(), bio3.get()); | 
 |  | 
 |   // It takes one reference when changing only wbio. | 
 |   BIO_up_ref(bio1.get()); | 
 |   SSL_set_bio(ssl.get(), bio2.get(), bio1.get()); | 
 |  | 
 |   // It takes one reference when changing only rbio and the two are different. | 
 |   BIO_up_ref(bio3.get()); | 
 |   SSL_set_bio(ssl.get(), bio3.get(), bio1.get()); | 
 |  | 
 |   // If setting wbio to rbio, it takes no additional references. | 
 |   SSL_set_bio(ssl.get(), bio3.get(), bio3.get()); | 
 |  | 
 |   // From there, wbio may be switched to something else. | 
 |   BIO_up_ref(bio1.get()); | 
 |   SSL_set_bio(ssl.get(), bio3.get(), bio1.get()); | 
 |  | 
 |   // If setting rbio to wbio, it takes no additional references. | 
 |   SSL_set_bio(ssl.get(), bio1.get(), bio1.get()); | 
 |  | 
 |   // From there, rbio may be switched to something else, but, for historical | 
 |   // reasons, it takes a reference to both parameters. | 
 |   BIO_up_ref(bio1.get()); | 
 |   BIO_up_ref(bio2.get()); | 
 |   SSL_set_bio(ssl.get(), bio2.get(), bio1.get()); | 
 |  | 
 |   // ASAN builds will implicitly test that the internal |BIO| reference-counting | 
 |   // is correct. | 
 | } | 
 |  | 
 | static int VerifySucceed(X509_STORE_CTX *store_ctx, void *arg) { return 1; } | 
 |  | 
 | TEST_P(SSLVersionTest, GetPeerCertificate) { | 
 |   ASSERT_TRUE(UseCertAndKey(client_ctx_.get())); | 
 |  | 
 |   // Configure both client and server to accept any certificate. | 
 |   SSL_CTX_set_verify(client_ctx_.get(), | 
 |                      SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, | 
 |                      nullptr); | 
 |   SSL_CTX_set_cert_verify_callback(client_ctx_.get(), VerifySucceed, NULL); | 
 |   SSL_CTX_set_verify(server_ctx_.get(), | 
 |                      SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, | 
 |                      nullptr); | 
 |   SSL_CTX_set_cert_verify_callback(server_ctx_.get(), VerifySucceed, NULL); | 
 |  | 
 |   ASSERT_TRUE(Connect()); | 
 |  | 
 |   // Client and server should both see the leaf certificate. | 
 |   bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(server_.get())); | 
 |   ASSERT_TRUE(peer); | 
 |   ASSERT_EQ(X509_cmp(cert_.get(), peer.get()), 0); | 
 |  | 
 |   peer.reset(SSL_get_peer_certificate(client_.get())); | 
 |   ASSERT_TRUE(peer); | 
 |   ASSERT_EQ(X509_cmp(cert_.get(), peer.get()), 0); | 
 |  | 
 |   // However, for historical reasons, the X509 chain includes the leaf on the | 
 |   // client, but does not on the server. | 
 |   EXPECT_EQ(sk_X509_num(SSL_get_peer_cert_chain(client_.get())), 1u); | 
 |   EXPECT_EQ(sk_CRYPTO_BUFFER_num(SSL_get0_peer_certificates(client_.get())), | 
 |             1u); | 
 |  | 
 |   EXPECT_EQ(sk_X509_num(SSL_get_peer_cert_chain(server_.get())), 0u); | 
 |   EXPECT_EQ(sk_CRYPTO_BUFFER_num(SSL_get0_peer_certificates(server_.get())), | 
 |             1u); | 
 | } | 
 |  | 
 | TEST_P(SSLVersionTest, NoPeerCertificate) { | 
 |   SSL_CTX_set_verify(server_ctx_.get(), SSL_VERIFY_PEER, nullptr); | 
 |   SSL_CTX_set_cert_verify_callback(server_ctx_.get(), VerifySucceed, NULL); | 
 |   SSL_CTX_set_cert_verify_callback(client_ctx_.get(), VerifySucceed, NULL); | 
 |  | 
 |   ASSERT_TRUE(Connect()); | 
 |  | 
 |   // Server should not see a peer certificate. | 
 |   bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(server_.get())); | 
 |   ASSERT_FALSE(peer); | 
 |   ASSERT_FALSE(SSL_get0_peer_certificates(server_.get())); | 
 | } | 
 |  | 
 | TEST_P(SSLVersionTest, RetainOnlySHA256OfCerts) { | 
 |   uint8_t *cert_der = NULL; | 
 |   int cert_der_len = i2d_X509(cert_.get(), &cert_der); | 
 |   ASSERT_GE(cert_der_len, 0); | 
 |   bssl::UniquePtr<uint8_t> free_cert_der(cert_der); | 
 |  | 
 |   uint8_t cert_sha256[SHA256_DIGEST_LENGTH]; | 
 |   SHA256(cert_der, cert_der_len, cert_sha256); | 
 |  | 
 |   ASSERT_TRUE(UseCertAndKey(client_ctx_.get())); | 
 |  | 
 |   // Configure both client and server to accept any certificate, but the | 
 |   // server must retain only the SHA-256 of the peer. | 
 |   SSL_CTX_set_verify(client_ctx_.get(), | 
 |                      SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, | 
 |                      nullptr); | 
 |   SSL_CTX_set_verify(server_ctx_.get(), | 
 |                      SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, | 
 |                      nullptr); | 
 |   SSL_CTX_set_cert_verify_callback(client_ctx_.get(), VerifySucceed, NULL); | 
 |   SSL_CTX_set_cert_verify_callback(server_ctx_.get(), VerifySucceed, NULL); | 
 |   SSL_CTX_set_retain_only_sha256_of_client_certs(server_ctx_.get(), 1); | 
 |  | 
 |   ASSERT_TRUE(Connect()); | 
 |  | 
 |   // The peer certificate has been dropped. | 
 |   bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(server_.get())); | 
 |   EXPECT_FALSE(peer); | 
 |  | 
 |   SSL_SESSION *session = SSL_get_session(server_.get()); | 
 |   EXPECT_TRUE(SSL_SESSION_has_peer_sha256(session)); | 
 |  | 
 |   const uint8_t *peer_sha256; | 
 |   size_t peer_sha256_len; | 
 |   SSL_SESSION_get0_peer_sha256(session, &peer_sha256, &peer_sha256_len); | 
 |   EXPECT_EQ(Bytes(cert_sha256), Bytes(peer_sha256, peer_sha256_len)); | 
 | } | 
 |  | 
 | // Tests that our ClientHellos do not change unexpectedly. These are purely | 
 | // change detection tests. If they fail as part of an intentional ClientHello | 
 | // change, update the test vector. | 
 | TEST(SSLTest, ClientHello) { | 
 |   struct { | 
 |     uint16_t max_version; | 
 |     std::vector<uint8_t> expected; | 
 |   } kTests[] = { | 
 |       {TLS1_VERSION, | 
 |        {0x16, 0x03, 0x01, 0x00, 0x58, 0x01, 0x00, 0x00, 0x54, 0x03, 0x01, 0x00, | 
 |         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
 |         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
 |         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0c, 0xc0, 0x09, | 
 |         0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14, 0x00, 0x2f, 0x00, 0x35, 0x01, 0x00, | 
 |         0x00, 0x1f, 0x00, 0x17, 0x00, 0x00, 0xff, 0x01, 0x00, 0x01, 0x00, 0x00, | 
 |         0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, 0x17, 0x00, 0x18, 0x00, | 
 |         0x0b, 0x00, 0x02, 0x01, 0x00, 0x00, 0x23, 0x00, 0x00}}, | 
 |       {TLS1_1_VERSION, | 
 |        {0x16, 0x03, 0x01, 0x00, 0x58, 0x01, 0x00, 0x00, 0x54, 0x03, 0x02, 0x00, | 
 |         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
 |         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
 |         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0c, 0xc0, 0x09, | 
 |         0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14, 0x00, 0x2f, 0x00, 0x35, 0x01, 0x00, | 
 |         0x00, 0x1f, 0x00, 0x17, 0x00, 0x00, 0xff, 0x01, 0x00, 0x01, 0x00, 0x00, | 
 |         0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, 0x17, 0x00, 0x18, 0x00, | 
 |         0x0b, 0x00, 0x02, 0x01, 0x00, 0x00, 0x23, 0x00, 0x00}}, | 
 |       {TLS1_2_VERSION, | 
 |        {0x16, 0x03, 0x01, 0x00, 0x80, 0x01, 0x00, 0x00, 0x7c, 0x03, 0x03, 0x00, | 
 |         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
 |         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
 |         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1c, 0xcc, 0xa9, | 
 |         0xcc, 0xa8, 0xc0, 0x2b, 0xc0, 0x2f, 0xc0, 0x2c, 0xc0, 0x30, 0xc0, 0x09, | 
 |         0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14, 0x00, 0x9c, 0x00, 0x9d, 0x00, 0x2f, | 
 |         0x00, 0x35, 0x01, 0x00, 0x00, 0x37, 0x00, 0x17, 0x00, 0x00, 0xff, 0x01, | 
 |         0x00, 0x01, 0x00, 0x00, 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, | 
 |         0x17, 0x00, 0x18, 0x00, 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00, 0x23, 0x00, | 
 |         0x00, 0x00, 0x0d, 0x00, 0x14, 0x00, 0x12, 0x04, 0x03, 0x08, 0x04, 0x04, | 
 |         0x01, 0x05, 0x03, 0x08, 0x05, 0x05, 0x01, 0x08, 0x06, 0x06, 0x01, 0x02, | 
 |         0x01}}, | 
 |       // TODO(davidben): Add a change detector for TLS 1.3 once the spec and our | 
 |       // implementation has settled enough that it won't change. | 
 |   }; | 
 |  | 
 |   for (const auto &t : kTests) { | 
 |     SCOPED_TRACE(t.max_version); | 
 |  | 
 |     bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
 |     ASSERT_TRUE(ctx); | 
 |     // Our default cipher list varies by CPU capabilities, so manually place the | 
 |     // ChaCha20 ciphers in front. | 
 |     const char *cipher_list = "CHACHA20:ALL"; | 
 |     ASSERT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), t.max_version)); | 
 |     ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(ctx.get(), cipher_list)); | 
 |  | 
 |     bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); | 
 |     ASSERT_TRUE(ssl); | 
 |     std::vector<uint8_t> client_hello; | 
 |     ASSERT_TRUE(GetClientHello(ssl.get(), &client_hello)); | 
 |  | 
 |     // Zero the client_random. | 
 |     constexpr size_t kRandomOffset = 1 + 2 + 2 +  // record header | 
 |                                      1 + 3 +      // handshake message header | 
 |                                      2;           // client_version | 
 |     ASSERT_GE(client_hello.size(), kRandomOffset + SSL3_RANDOM_SIZE); | 
 |     OPENSSL_memset(client_hello.data() + kRandomOffset, 0, SSL3_RANDOM_SIZE); | 
 |  | 
 |     if (client_hello != t.expected) { | 
 |       ADD_FAILURE() << "ClientHellos did not match."; | 
 |       // Print the value manually so it is easier to update the test vector. | 
 |       for (size_t i = 0; i < client_hello.size(); i += 12) { | 
 |         printf("     %c", i == 0 ? '{' : ' '); | 
 |         for (size_t j = i; j < client_hello.size() && j < i + 12; j++) { | 
 |           if (j > i) { | 
 |             printf(" "); | 
 |           } | 
 |           printf("0x%02x", client_hello[j]); | 
 |           if (j < client_hello.size() - 1) { | 
 |             printf(","); | 
 |           } | 
 |         } | 
 |         if (i + 12 >= client_hello.size()) { | 
 |           printf("}},"); | 
 |         } | 
 |         printf("\n"); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void ExpectSessionReused(SSL_CTX *client_ctx, SSL_CTX *server_ctx, | 
 |                                 SSL_SESSION *session, bool want_reused) { | 
 |   bssl::UniquePtr<SSL> client, server; | 
 |   ClientConfig config; | 
 |   config.session = session; | 
 |   ASSERT_TRUE( | 
 |       ConnectClientAndServer(&client, &server, client_ctx, server_ctx, config)); | 
 |  | 
 |   EXPECT_EQ(SSL_session_reused(client.get()), SSL_session_reused(server.get())); | 
 |  | 
 |   bool was_reused = !!SSL_session_reused(client.get()); | 
 |   EXPECT_EQ(was_reused, want_reused); | 
 | } | 
 |  | 
 | static bssl::UniquePtr<SSL_SESSION> ExpectSessionRenewed(SSL_CTX *client_ctx, | 
 |                                                          SSL_CTX *server_ctx, | 
 |                                                          SSL_SESSION *session) { | 
 |   g_last_session = nullptr; | 
 |   SSL_CTX_sess_set_new_cb(client_ctx, SaveLastSession); | 
 |  | 
 |   bssl::UniquePtr<SSL> client, server; | 
 |   ClientConfig config; | 
 |   config.session = session; | 
 |   if (!ConnectClientAndServer(&client, &server, client_ctx, server_ctx, | 
 |                               config) || | 
 |       !FlushNewSessionTickets(client.get(), server.get())) { | 
 |     fprintf(stderr, "Failed to connect client and server.\n"); | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   if (SSL_session_reused(client.get()) != SSL_session_reused(server.get())) { | 
 |     fprintf(stderr, "Client and server were inconsistent.\n"); | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   if (!SSL_session_reused(client.get())) { | 
 |     fprintf(stderr, "Session was not reused.\n"); | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   SSL_CTX_sess_set_new_cb(client_ctx, nullptr); | 
 |  | 
 |   if (!g_last_session) { | 
 |     fprintf(stderr, "Client did not receive a renewed session.\n"); | 
 |     return nullptr; | 
 |   } | 
 |   return std::move(g_last_session); | 
 | } | 
 |  | 
 | static void ExpectTicketKeyChanged(SSL_CTX *ctx, uint8_t *inout_key, | 
 |                                    bool changed) { | 
 |   uint8_t new_key[kTicketKeyLen]; | 
 |   // May return 0, 1 or 48. | 
 |   ASSERT_EQ(SSL_CTX_get_tlsext_ticket_keys(ctx, new_key, kTicketKeyLen), 1); | 
 |   if (changed) { | 
 |     ASSERT_NE(Bytes(inout_key, kTicketKeyLen), Bytes(new_key)); | 
 |   } else { | 
 |     ASSERT_EQ(Bytes(inout_key, kTicketKeyLen), Bytes(new_key)); | 
 |   } | 
 |   OPENSSL_memcpy(inout_key, new_key, kTicketKeyLen); | 
 | } | 
 |  | 
 | static int SwitchSessionIDContextSNI(SSL *ssl, int *out_alert, void *arg) { | 
 |   static const uint8_t kContext[] = {3}; | 
 |  | 
 |   if (!SSL_set_session_id_context(ssl, kContext, sizeof(kContext))) { | 
 |     return SSL_TLSEXT_ERR_ALERT_FATAL; | 
 |   } | 
 |  | 
 |   return SSL_TLSEXT_ERR_OK; | 
 | } | 
 |  | 
 | TEST_P(SSLVersionTest, SessionIDContext) { | 
 |   static const uint8_t kContext1[] = {1}; | 
 |   static const uint8_t kContext2[] = {2}; | 
 |  | 
 |   ASSERT_TRUE(SSL_CTX_set_session_id_context(server_ctx_.get(), kContext1, | 
 |                                              sizeof(kContext1))); | 
 |  | 
 |   SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |   SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |  | 
 |   bssl::UniquePtr<SSL_SESSION> session = | 
 |       CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
 |   ASSERT_TRUE(session); | 
 |  | 
 |   TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
 |                                   session.get(), | 
 |                                   true /* expect session reused */)); | 
 |  | 
 |   // Change the session ID context. | 
 |   ASSERT_TRUE(SSL_CTX_set_session_id_context(server_ctx_.get(), kContext2, | 
 |                                              sizeof(kContext2))); | 
 |  | 
 |   TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
 |                                   session.get(), | 
 |                                   false /* expect session not reused */)); | 
 |  | 
 |   // Change the session ID context back and install an SNI callback to switch | 
 |   // it. | 
 |   ASSERT_TRUE(SSL_CTX_set_session_id_context(server_ctx_.get(), kContext1, | 
 |                                              sizeof(kContext1))); | 
 |  | 
 |   SSL_CTX_set_tlsext_servername_callback(server_ctx_.get(), | 
 |                                          SwitchSessionIDContextSNI); | 
 |  | 
 |   TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
 |                                   session.get(), | 
 |                                   false /* expect session not reused */)); | 
 |  | 
 |   // Switch the session ID context with the early callback instead. | 
 |   SSL_CTX_set_tlsext_servername_callback(server_ctx_.get(), nullptr); | 
 |   SSL_CTX_set_select_certificate_cb( | 
 |       server_ctx_.get(), | 
 |       [](const SSL_CLIENT_HELLO *client_hello) -> ssl_select_cert_result_t { | 
 |         static const uint8_t kContext[] = {3}; | 
 |  | 
 |         if (!SSL_set_session_id_context(client_hello->ssl, kContext, | 
 |                                         sizeof(kContext))) { | 
 |           return ssl_select_cert_error; | 
 |         } | 
 |  | 
 |         return ssl_select_cert_success; | 
 |       }); | 
 |  | 
 |   TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
 |                                   session.get(), | 
 |                                   false /* expect session not reused */)); | 
 | } | 
 |  | 
 | static timeval g_current_time; | 
 |  | 
 | static void CurrentTimeCallback(const SSL *ssl, timeval *out_clock) { | 
 |   *out_clock = g_current_time; | 
 | } | 
 |  | 
 | static void FrozenTimeCallback(const SSL *ssl, timeval *out_clock) { | 
 |   out_clock->tv_sec = 1000; | 
 |   out_clock->tv_usec = 0; | 
 | } | 
 |  | 
 | static int RenewTicketCallback(SSL *ssl, uint8_t *key_name, uint8_t *iv, | 
 |                                EVP_CIPHER_CTX *ctx, HMAC_CTX *hmac_ctx, | 
 |                                int encrypt) { | 
 |   static const uint8_t kZeros[16] = {0}; | 
 |  | 
 |   if (encrypt) { | 
 |     OPENSSL_memcpy(key_name, kZeros, sizeof(kZeros)); | 
 |     RAND_bytes(iv, 16); | 
 |   } else if (OPENSSL_memcmp(key_name, kZeros, 16) != 0) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (!HMAC_Init_ex(hmac_ctx, kZeros, sizeof(kZeros), EVP_sha256(), NULL) || | 
 |       !EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, kZeros, iv, encrypt)) { | 
 |     return -1; | 
 |   } | 
 |  | 
 |   // Returning two from the callback in decrypt mode renews the | 
 |   // session in TLS 1.2 and below. | 
 |   return encrypt ? 1 : 2; | 
 | } | 
 |  | 
 | static bool GetServerTicketTime(long *out, const SSL_SESSION *session) { | 
 |   const uint8_t *ticket; | 
 |   size_t ticket_len; | 
 |   SSL_SESSION_get0_ticket(session, &ticket, &ticket_len); | 
 |   if (ticket_len < 16 + 16 + SHA256_DIGEST_LENGTH) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   const uint8_t *ciphertext = ticket + 16 + 16; | 
 |   size_t len = ticket_len - 16 - 16 - SHA256_DIGEST_LENGTH; | 
 |   auto plaintext = std::make_unique<uint8_t[]>(len); | 
 |  | 
 | #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) | 
 |   // Fuzzer-mode tickets are unencrypted. | 
 |   OPENSSL_memcpy(plaintext.get(), ciphertext, len); | 
 | #else | 
 |   static const uint8_t kZeros[16] = {0}; | 
 |   const uint8_t *iv = ticket + 16; | 
 |   bssl::ScopedEVP_CIPHER_CTX ctx; | 
 |   int len1, len2; | 
 |   if (len > INT_MAX || | 
 |       !EVP_DecryptInit_ex(ctx.get(), EVP_aes_128_cbc(), nullptr, kZeros, iv) || | 
 |       !EVP_DecryptUpdate(ctx.get(), plaintext.get(), &len1, ciphertext, | 
 |                          static_cast<int>(len)) || | 
 |       !EVP_DecryptFinal_ex(ctx.get(), plaintext.get() + len1, &len2)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   len = static_cast<size_t>(len1 + len2); | 
 | #endif | 
 |  | 
 |   bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method())); | 
 |   if (!ssl_ctx) { | 
 |     return false; | 
 |   } | 
 |   bssl::UniquePtr<SSL_SESSION> server_session( | 
 |       SSL_SESSION_from_bytes(plaintext.get(), len, ssl_ctx.get())); | 
 |   if (!server_session) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   *out = SSL_SESSION_get_time(server_session.get()); | 
 |   return true; | 
 | } | 
 |  | 
 | TEST_P(SSLVersionTest, SessionTimeout) { | 
 |   for (bool server_test : {false, true}) { | 
 |     SCOPED_TRACE(server_test); | 
 |  | 
 |     ASSERT_NO_FATAL_FAILURE(ResetContexts()); | 
 |     SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |     SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |  | 
 |     static const time_t kStartTime = 1000; | 
 |     g_current_time.tv_sec = kStartTime; | 
 |  | 
 |     // We are willing to use a longer lifetime for TLS 1.3 sessions as | 
 |     // resumptions still perform ECDHE. | 
 |     const time_t timeout = version() == TLS1_3_VERSION | 
 |                                ? SSL_DEFAULT_SESSION_PSK_DHE_TIMEOUT | 
 |                                : SSL_DEFAULT_SESSION_TIMEOUT; | 
 |  | 
 |     // Both client and server must enforce session timeouts. We configure the | 
 |     // other side with a frozen clock so it never expires tickets. | 
 |     if (server_test) { | 
 |       SSL_CTX_set_current_time_cb(client_ctx_.get(), FrozenTimeCallback); | 
 |       SSL_CTX_set_current_time_cb(server_ctx_.get(), CurrentTimeCallback); | 
 |     } else { | 
 |       SSL_CTX_set_current_time_cb(client_ctx_.get(), CurrentTimeCallback); | 
 |       SSL_CTX_set_current_time_cb(server_ctx_.get(), FrozenTimeCallback); | 
 |     } | 
 |  | 
 |     // Configure a ticket callback which renews tickets. | 
 |     SSL_CTX_set_tlsext_ticket_key_cb(server_ctx_.get(), RenewTicketCallback); | 
 |  | 
 |     bssl::UniquePtr<SSL_SESSION> session = | 
 |         CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
 |     ASSERT_TRUE(session); | 
 |  | 
 |     // Advance the clock just behind the timeout. | 
 |     g_current_time.tv_sec += timeout - 1; | 
 |  | 
 |     TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
 |                                     session.get(), | 
 |                                     true /* expect session reused */)); | 
 |  | 
 |     // Advance the clock one more second. | 
 |     g_current_time.tv_sec++; | 
 |  | 
 |     TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
 |                                     session.get(), | 
 |                                     false /* expect session not reused */)); | 
 |  | 
 |     // Rewind the clock to before the session was minted. | 
 |     g_current_time.tv_sec = kStartTime - 1; | 
 |  | 
 |     TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
 |                                     session.get(), | 
 |                                     false /* expect session not reused */)); | 
 |  | 
 |     // Renew the session 10 seconds before expiration. | 
 |     time_t new_start_time = kStartTime + timeout - 10; | 
 |     g_current_time.tv_sec = new_start_time; | 
 |     bssl::UniquePtr<SSL_SESSION> new_session = ExpectSessionRenewed( | 
 |         client_ctx_.get(), server_ctx_.get(), session.get()); | 
 |     ASSERT_TRUE(new_session); | 
 |  | 
 |     // This new session is not the same object as before. | 
 |     EXPECT_NE(session.get(), new_session.get()); | 
 |  | 
 |     // Check the sessions have timestamps measured from issuance. | 
 |     long session_time = 0; | 
 |     if (server_test) { | 
 |       ASSERT_TRUE(GetServerTicketTime(&session_time, new_session.get())); | 
 |     } else { | 
 |       session_time = SSL_SESSION_get_time(new_session.get()); | 
 |     } | 
 |  | 
 |     ASSERT_EQ(session_time, g_current_time.tv_sec); | 
 |  | 
 |     if (version() == TLS1_3_VERSION) { | 
 |       // Renewal incorporates fresh key material in TLS 1.3, so we extend the | 
 |       // lifetime TLS 1.3. | 
 |       g_current_time.tv_sec = new_start_time + timeout - 1; | 
 |       TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
 |                                       new_session.get(), | 
 |                                       true /* expect session reused */)); | 
 |  | 
 |       // The new session expires after the new timeout. | 
 |       g_current_time.tv_sec = new_start_time + timeout + 1; | 
 |       TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
 |                                       new_session.get(), | 
 |                                       false /* expect session ot reused */)); | 
 |  | 
 |       // Renew the session until it begins just past the auth timeout. | 
 |       time_t auth_end_time = kStartTime + SSL_DEFAULT_SESSION_AUTH_TIMEOUT; | 
 |       while (new_start_time < auth_end_time - 1000) { | 
 |         // Get as close as possible to target start time. | 
 |         new_start_time = | 
 |             std::min(auth_end_time - 1000, new_start_time + timeout - 1); | 
 |         g_current_time.tv_sec = new_start_time; | 
 |         new_session = ExpectSessionRenewed(client_ctx_.get(), server_ctx_.get(), | 
 |                                            new_session.get()); | 
 |         ASSERT_TRUE(new_session); | 
 |       } | 
 |  | 
 |       // Now the session's lifetime is bound by the auth timeout. | 
 |       g_current_time.tv_sec = auth_end_time - 1; | 
 |       TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
 |                                       new_session.get(), | 
 |                                       true /* expect session reused */)); | 
 |  | 
 |       g_current_time.tv_sec = auth_end_time + 1; | 
 |       TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
 |                                       new_session.get(), | 
 |                                       false /* expect session ot reused */)); | 
 |     } else { | 
 |       // The new session is usable just before the old expiration. | 
 |       g_current_time.tv_sec = kStartTime + timeout - 1; | 
 |       TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
 |                                       new_session.get(), | 
 |                                       true /* expect session reused */)); | 
 |  | 
 |       // Renewal does not extend the lifetime, so it is not usable beyond the | 
 |       // old expiration. | 
 |       g_current_time.tv_sec = kStartTime + timeout + 1; | 
 |       TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
 |                                       new_session.get(), | 
 |                                       false /* expect session not reused */)); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(SSLVersionTest, DefaultTicketKeyInitialization) { | 
 |   static const uint8_t kZeroKey[kTicketKeyLen] = {}; | 
 |   uint8_t ticket_key[kTicketKeyLen]; | 
 |   ASSERT_EQ(1, SSL_CTX_get_tlsext_ticket_keys(server_ctx_.get(), ticket_key, | 
 |                                               kTicketKeyLen)); | 
 |   ASSERT_NE(0, OPENSSL_memcmp(ticket_key, kZeroKey, kTicketKeyLen)); | 
 | } | 
 |  | 
 | TEST_P(SSLVersionTest, DefaultTicketKeyRotation) { | 
 |   static const time_t kStartTime = 1001; | 
 |   g_current_time.tv_sec = kStartTime; | 
 |  | 
 |   // We use session reuse as a proxy for ticket decryption success, hence | 
 |   // disable session timeouts. | 
 |   SSL_CTX_set_timeout(server_ctx_.get(), std::numeric_limits<uint32_t>::max()); | 
 |   SSL_CTX_set_session_psk_dhe_timeout(server_ctx_.get(), | 
 |                                       std::numeric_limits<uint32_t>::max()); | 
 |  | 
 |   SSL_CTX_set_current_time_cb(client_ctx_.get(), FrozenTimeCallback); | 
 |   SSL_CTX_set_current_time_cb(server_ctx_.get(), CurrentTimeCallback); | 
 |  | 
 |   SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |   SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_OFF); | 
 |  | 
 |   // Initialize ticket_key with the current key and check that it was | 
 |   // initialized to something, not all zeros. | 
 |   uint8_t ticket_key[kTicketKeyLen] = {0}; | 
 |   TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key, | 
 |                                      true /* changed */)); | 
 |  | 
 |   // Verify ticket resumption actually works. | 
 |   bssl::UniquePtr<SSL> client, server; | 
 |   bssl::UniquePtr<SSL_SESSION> session = | 
 |       CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
 |   ASSERT_TRUE(session); | 
 |   TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
 |                                   session.get(), true /* reused */)); | 
 |  | 
 |   // Advance time to just before key rotation. | 
 |   g_current_time.tv_sec += SSL_DEFAULT_TICKET_KEY_ROTATION_INTERVAL - 1; | 
 |   TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
 |                                   session.get(), true /* reused */)); | 
 |   TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key, | 
 |                                      false /* NOT changed */)); | 
 |  | 
 |   // Force key rotation. | 
 |   g_current_time.tv_sec += 1; | 
 |   bssl::UniquePtr<SSL_SESSION> new_session = | 
 |       CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
 |   TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key, | 
 |                                      true /* changed */)); | 
 |  | 
 |   // Resumption with both old and new ticket should work. | 
 |   TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
 |                                   session.get(), true /* reused */)); | 
 |   TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
 |                                   new_session.get(), true /* reused */)); | 
 |   TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key, | 
 |                                      false /* NOT changed */)); | 
 |  | 
 |   // Force key rotation again. Resumption with the old ticket now fails. | 
 |   g_current_time.tv_sec += SSL_DEFAULT_TICKET_KEY_ROTATION_INTERVAL; | 
 |   TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
 |                                   session.get(), false /* NOT reused */)); | 
 |   TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key, | 
 |                                      true /* changed */)); | 
 |  | 
 |   // But resumption with the newer session still works. | 
 |   TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
 |                                   new_session.get(), true /* reused */)); | 
 | } | 
 |  | 
 | static int SwitchContext(SSL *ssl, int *out_alert, void *arg) { | 
 |   SSL_CTX *ctx = reinterpret_cast<SSL_CTX *>(arg); | 
 |   SSL_set_SSL_CTX(ssl, ctx); | 
 |   return SSL_TLSEXT_ERR_OK; | 
 | } | 
 |  | 
 | TEST_P(SSLVersionTest, SNICallback) { | 
 |   bssl::UniquePtr<X509> cert2 = GetECDSATestCertificate(); | 
 |   ASSERT_TRUE(cert2); | 
 |   bssl::UniquePtr<EVP_PKEY> key2 = GetECDSATestKey(); | 
 |   ASSERT_TRUE(key2); | 
 |  | 
 |   // Test that switching the |SSL_CTX| at the SNI callback behaves correctly. | 
 |   static const uint16_t kECDSAWithSHA256 = SSL_SIGN_ECDSA_SECP256R1_SHA256; | 
 |  | 
 |   static const uint8_t kSCTList[] = {0, 6, 0, 4, 5, 6, 7, 8}; | 
 |   static const uint8_t kOCSPResponse[] = {1, 2, 3, 4}; | 
 |  | 
 |   bssl::UniquePtr<SSL_CTX> server_ctx2 = CreateContext(); | 
 |   ASSERT_TRUE(server_ctx2); | 
 |   ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx2.get(), cert2.get())); | 
 |   ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx2.get(), key2.get())); | 
 |   ASSERT_TRUE(SSL_CTX_set_signed_cert_timestamp_list( | 
 |       server_ctx2.get(), kSCTList, sizeof(kSCTList))); | 
 |   ASSERT_TRUE(SSL_CTX_set_ocsp_response(server_ctx2.get(), kOCSPResponse, | 
 |                                         sizeof(kOCSPResponse))); | 
 |   // Historically signing preferences would be lost in some cases with the | 
 |   // SNI callback, which triggers the TLS 1.2 SHA-1 default. To ensure | 
 |   // this doesn't happen when |version| is TLS 1.2, configure the private | 
 |   // key to only sign SHA-256. | 
 |   ASSERT_TRUE(SSL_CTX_set_signing_algorithm_prefs(server_ctx2.get(), | 
 |                                                   &kECDSAWithSHA256, 1)); | 
 |  | 
 |   SSL_CTX_set_tlsext_servername_callback(server_ctx_.get(), SwitchContext); | 
 |   SSL_CTX_set_tlsext_servername_arg(server_ctx_.get(), server_ctx2.get()); | 
 |  | 
 |   SSL_CTX_enable_signed_cert_timestamps(client_ctx_.get()); | 
 |   SSL_CTX_enable_ocsp_stapling(client_ctx_.get()); | 
 |  | 
 |   ASSERT_TRUE(Connect()); | 
 |  | 
 |   // The client should have received |cert2|. | 
 |   bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(client_.get())); | 
 |   ASSERT_TRUE(peer); | 
 |   EXPECT_EQ(X509_cmp(peer.get(), cert2.get()), 0); | 
 |  | 
 |   // The client should have received |server_ctx2|'s SCT list. | 
 |   const uint8_t *data; | 
 |   size_t len; | 
 |   SSL_get0_signed_cert_timestamp_list(client_.get(), &data, &len); | 
 |   EXPECT_EQ(Bytes(kSCTList), Bytes(data, len)); | 
 |  | 
 |   // The client should have received |server_ctx2|'s OCSP response. | 
 |   SSL_get0_ocsp_response(client_.get(), &data, &len); | 
 |   EXPECT_EQ(Bytes(kOCSPResponse), Bytes(data, len)); | 
 | } | 
 |  | 
 | // Test that the early callback can swap the maximum version. | 
 | TEST(SSLTest, EarlyCallbackVersionSwitch) { | 
 |   bssl::UniquePtr<SSL_CTX> server_ctx = | 
 |       CreateContextWithTestCertificate(TLS_method()); | 
 |   bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
 |   ASSERT_TRUE(server_ctx); | 
 |   ASSERT_TRUE(client_ctx); | 
 |   ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), TLS1_3_VERSION)); | 
 |   ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_3_VERSION)); | 
 |  | 
 |   SSL_CTX_set_select_certificate_cb( | 
 |       server_ctx.get(), | 
 |       [](const SSL_CLIENT_HELLO *client_hello) -> ssl_select_cert_result_t { | 
 |         if (!SSL_set_max_proto_version(client_hello->ssl, TLS1_2_VERSION)) { | 
 |           return ssl_select_cert_error; | 
 |         } | 
 |  | 
 |         return ssl_select_cert_success; | 
 |       }); | 
 |  | 
 |   bssl::UniquePtr<SSL> client, server; | 
 |   ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
 |                                      server_ctx.get())); | 
 |   EXPECT_EQ(TLS1_2_VERSION, SSL_version(client.get())); | 
 | } | 
 |  | 
 | TEST(SSLTest, SetVersion) { | 
 |   bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
 |   ASSERT_TRUE(ctx); | 
 |  | 
 |   // Set valid TLS versions. | 
 |   for (const auto &vers : kAllVersions) { | 
 |     SCOPED_TRACE(vers.name); | 
 |     if (vers.ssl_method == VersionParam::is_tls) { | 
 |       EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), vers.version)); | 
 |       EXPECT_EQ(SSL_CTX_get_max_proto_version(ctx.get()), vers.version); | 
 |       EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), vers.version)); | 
 |       EXPECT_EQ(SSL_CTX_get_min_proto_version(ctx.get()), vers.version); | 
 |     } | 
 |   } | 
 |  | 
 |   // Invalid TLS versions are rejected. | 
 |   EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), DTLS1_VERSION)); | 
 |   EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0x0200)); | 
 |   EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0x1234)); | 
 |   EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), DTLS1_VERSION)); | 
 |   EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0x0200)); | 
 |   EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0x1234)); | 
 |  | 
 |   // Zero is the default version. | 
 |   EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), 0)); | 
 |   EXPECT_EQ(TLS1_3_VERSION, SSL_CTX_get_max_proto_version(ctx.get())); | 
 |   EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), 0)); | 
 |   EXPECT_EQ(TLS1_VERSION, SSL_CTX_get_min_proto_version(ctx.get())); | 
 |  | 
 |   // SSL 3.0 is not available. | 
 |   EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), SSL3_VERSION)); | 
 |  | 
 |   ctx.reset(SSL_CTX_new(DTLS_method())); | 
 |   ASSERT_TRUE(ctx); | 
 |  | 
 |   // Set valid DTLS versions. | 
 |   for (const auto &vers : kAllVersions) { | 
 |     SCOPED_TRACE(vers.name); | 
 |     if (vers.ssl_method == VersionParam::is_dtls) { | 
 |       EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), vers.version)); | 
 |       EXPECT_EQ(SSL_CTX_get_max_proto_version(ctx.get()), vers.version); | 
 |       EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), vers.version)); | 
 |       EXPECT_EQ(SSL_CTX_get_min_proto_version(ctx.get()), vers.version); | 
 |     } | 
 |   } | 
 |  | 
 |   // Invalid DTLS versions are rejected. | 
 |   EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_VERSION)); | 
 |   EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0xfefe /* DTLS 1.1 */)); | 
 |   EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0xfffe /* DTLS 0.1 */)); | 
 |   EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0x1234)); | 
 |   EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_VERSION)); | 
 |   EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0xfefe /* DTLS 1.1 */)); | 
 |   EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0xfffe /* DTLS 0.1 */)); | 
 |   EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0x1234)); | 
 |  | 
 |   // Zero is the default version. | 
 |   EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), 0)); | 
 |   EXPECT_EQ(DTLS1_2_VERSION, SSL_CTX_get_max_proto_version(ctx.get())); | 
 |   EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), 0)); | 
 |   EXPECT_EQ(DTLS1_VERSION, SSL_CTX_get_min_proto_version(ctx.get())); | 
 | } | 
 |  | 
 | static const char *GetVersionName(uint16_t version) { | 
 |   switch (version) { | 
 |     case TLS1_VERSION: | 
 |       return "TLSv1"; | 
 |     case TLS1_1_VERSION: | 
 |       return "TLSv1.1"; | 
 |     case TLS1_2_VERSION: | 
 |       return "TLSv1.2"; | 
 |     case TLS1_3_VERSION: | 
 |       return "TLSv1.3"; | 
 |     case DTLS1_VERSION: | 
 |       return "DTLSv1"; | 
 |     case DTLS1_2_VERSION: | 
 |       return "DTLSv1.2"; | 
 |     default: | 
 |       return "???"; | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(SSLVersionTest, Version) { | 
 |   ASSERT_TRUE(Connect()); | 
 |  | 
 |   EXPECT_EQ(SSL_version(client_.get()), version()); | 
 |   EXPECT_EQ(SSL_version(server_.get()), version()); | 
 |  | 
 |   // Test the version name is reported as expected. | 
 |   const char *version_name = GetVersionName(version()); | 
 |   EXPECT_EQ(strcmp(version_name, SSL_get_version(client_.get())), 0); | 
 |   EXPECT_EQ(strcmp(version_name, SSL_get_version(server_.get())), 0); | 
 |  | 
 |   // Test SSL_SESSION reports the same name. | 
 |   const char *client_name = | 
 |       SSL_SESSION_get_version(SSL_get_session(client_.get())); | 
 |   const char *server_name = | 
 |       SSL_SESSION_get_version(SSL_get_session(server_.get())); | 
 |   EXPECT_EQ(strcmp(version_name, client_name), 0); | 
 |   EXPECT_EQ(strcmp(version_name, server_name), 0); | 
 | } | 
 |  | 
 | // Tests that that |SSL_get_pending_cipher| is available during the ALPN | 
 | // selection callback. | 
 | TEST_P(SSLVersionTest, ALPNCipherAvailable) { | 
 |   ASSERT_TRUE(UseCertAndKey(client_ctx_.get())); | 
 |  | 
 |   static const uint8_t kALPNProtos[] = {0x03, 'f', 'o', 'o'}; | 
 |   ASSERT_EQ(SSL_CTX_set_alpn_protos(client_ctx_.get(), kALPNProtos, | 
 |                                     sizeof(kALPNProtos)), | 
 |             0); | 
 |  | 
 |   // The ALPN callback does not fail the handshake on error, so have the | 
 |   // callback write a boolean. | 
 |   std::pair<uint16_t, bool> callback_state(version(), false); | 
 |   SSL_CTX_set_alpn_select_cb( | 
 |       server_ctx_.get(), | 
 |       [](SSL *ssl, const uint8_t **out, uint8_t *out_len, const uint8_t *in, | 
 |          unsigned in_len, void *arg) -> int { | 
 |         auto state = reinterpret_cast<std::pair<uint16_t, bool> *>(arg); | 
 |         if (SSL_get_pending_cipher(ssl) != nullptr && | 
 |             SSL_version(ssl) == state->first) { | 
 |           state->second = true; | 
 |         } | 
 |         return SSL_TLSEXT_ERR_NOACK; | 
 |       }, | 
 |       &callback_state); | 
 |  | 
 |   ASSERT_TRUE(Connect()); | 
 |  | 
 |   ASSERT_TRUE(callback_state.second); | 
 | } | 
 |  | 
 | TEST_P(SSLVersionTest, SSLClearSessionResumption) { | 
 |   // Skip this for TLS 1.3. TLS 1.3's ticket mechanism is incompatible with this | 
 |   // API pattern. | 
 |   if (version() == TLS1_3_VERSION) { | 
 |     return; | 
 |   } | 
 |  | 
 |   shed_handshake_config_ = false; | 
 |   ASSERT_TRUE(Connect()); | 
 |  | 
 |   EXPECT_FALSE(SSL_session_reused(client_.get())); | 
 |   EXPECT_FALSE(SSL_session_reused(server_.get())); | 
 |  | 
 |   // Reset everything. | 
 |   ASSERT_TRUE(SSL_clear(client_.get())); | 
 |   ASSERT_TRUE(SSL_clear(server_.get())); | 
 |  | 
 |   // Attempt to connect a second time. | 
 |   ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get())); | 
 |  | 
 |   // |SSL_clear| should implicitly offer the previous session to the server. | 
 |   EXPECT_TRUE(SSL_session_reused(client_.get())); | 
 |   EXPECT_TRUE(SSL_session_reused(server_.get())); | 
 | } | 
 |  | 
 | TEST_P(SSLVersionTest, SSLClearFailsWithShedding) { | 
 |   shed_handshake_config_ = false; | 
 |   ASSERT_TRUE(Connect()); | 
 |   ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get())); | 
 |  | 
 |   // Reset everything. | 
 |   ASSERT_TRUE(SSL_clear(client_.get())); | 
 |   ASSERT_TRUE(SSL_clear(server_.get())); | 
 |  | 
 |   // Now enable shedding, and connect a second time. | 
 |   shed_handshake_config_ = true; | 
 |   ASSERT_TRUE(Connect()); | 
 |   ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get())); | 
 |  | 
 |   // |SSL_clear| should now fail. | 
 |   ASSERT_FALSE(SSL_clear(client_.get())); | 
 |   ASSERT_FALSE(SSL_clear(server_.get())); | 
 | } | 
 |  | 
 | static bool ChainsEqual(STACK_OF(X509) * chain, | 
 |                         const std::vector<X509 *> &expected) { | 
 |   if (sk_X509_num(chain) != expected.size()) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   for (size_t i = 0; i < expected.size(); i++) { | 
 |     if (X509_cmp(sk_X509_value(chain, i), expected[i]) != 0) { | 
 |       return false; | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | TEST_P(SSLVersionTest, AutoChain) { | 
 |   cert_ = GetChainTestCertificate(); | 
 |   ASSERT_TRUE(cert_); | 
 |   key_ = GetChainTestKey(); | 
 |   ASSERT_TRUE(key_); | 
 |   bssl::UniquePtr<X509> intermediate = GetChainTestIntermediate(); | 
 |   ASSERT_TRUE(intermediate); | 
 |  | 
 |   ASSERT_TRUE(UseCertAndKey(client_ctx_.get())); | 
 |   ASSERT_TRUE(UseCertAndKey(server_ctx_.get())); | 
 |  | 
 |   // Configure both client and server to accept any certificate. Add | 
 |   // |intermediate| to the cert store. | 
 |   ASSERT_TRUE(X509_STORE_add_cert(SSL_CTX_get_cert_store(client_ctx_.get()), | 
 |                                   intermediate.get())); | 
 |   ASSERT_TRUE(X509_STORE_add_cert(SSL_CTX_get_cert_store(server_ctx_.get()), | 
 |                                   intermediate.get())); | 
 |   SSL_CTX_set_verify(client_ctx_.get(), | 
 |                      SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, | 
 |                      nullptr); | 
 |   SSL_CTX_set_verify(server_ctx_.get(), | 
 |                      SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, | 
 |                      nullptr); | 
 |   SSL_CTX_set_cert_verify_callback(client_ctx_.get(), VerifySucceed, NULL); | 
 |   SSL_CTX_set_cert_verify_callback(server_ctx_.get(), VerifySucceed, NULL); | 
 |  | 
 |   // By default, the client and server should each only send the leaf. | 
 |   ASSERT_TRUE(Connect()); | 
 |  | 
 |   EXPECT_TRUE( | 
 |       ChainsEqual(SSL_get_peer_full_cert_chain(client_.get()), {cert_.get()})); | 
 |   EXPECT_TRUE( | 
 |       ChainsEqual(SSL_get_peer_full_cert_chain(server_.get()), {cert_.get()})); | 
 |  | 
 |   // If auto-chaining is enabled, then the intermediate is sent. | 
 |   SSL_CTX_clear_mode(client_ctx_.get(), SSL_MODE_NO_AUTO_CHAIN); | 
 |   SSL_CTX_clear_mode(server_ctx_.get(), SSL_MODE_NO_AUTO_CHAIN); | 
 |   ASSERT_TRUE(Connect()); | 
 |  | 
 |   EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(client_.get()), | 
 |                           {cert_.get(), intermediate.get()})); | 
 |   EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(server_.get()), | 
 |                           {cert_.get(), intermediate.get()})); | 
 |  | 
 |   // Auto-chaining does not override explicitly-configured intermediates. | 
 |   ASSERT_TRUE(SSL_CTX_add1_chain_cert(client_ctx_.get(), cert_.get())); | 
 |   ASSERT_TRUE(SSL_CTX_add1_chain_cert(server_ctx_.get(), cert_.get())); | 
 |   ASSERT_TRUE(Connect()); | 
 |  | 
 |   EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(client_.get()), | 
 |                           {cert_.get(), cert_.get()})); | 
 |  | 
 |   EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(server_.get()), | 
 |                           {cert_.get(), cert_.get()})); | 
 | } | 
 |  | 
 | static bool ExpectSingleError(int lib, int reason) { | 
 |   const char *expected = ERR_reason_error_string(ERR_PACK(lib, reason)); | 
 |   int err = ERR_get_error(); | 
 |   if (ERR_GET_LIB(err) != lib || ERR_GET_REASON(err) != reason) { | 
 |     char buf[ERR_ERROR_STRING_BUF_LEN]; | 
 |     ERR_error_string_n(err, buf, sizeof(buf)); | 
 |     fprintf(stderr, "Wanted %s, got: %s.\n", expected, buf); | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (ERR_peek_error() != 0) { | 
 |     fprintf(stderr, "Unexpected error following %s.\n", expected); | 
 |     return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | TEST_P(SSLVersionTest, SSLWriteRetry) { | 
 |   if (is_dtls()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   for (bool enable_partial_write : {false, true}) { | 
 |     SCOPED_TRACE(enable_partial_write); | 
 |  | 
 |     // Connect a client and server. | 
 |     ASSERT_TRUE(Connect()); | 
 |  | 
 |     if (enable_partial_write) { | 
 |       SSL_set_mode(client_.get(), SSL_MODE_ENABLE_PARTIAL_WRITE); | 
 |     } | 
 |  | 
 |     // Write without reading until the buffer is full and we have an unfinished | 
 |     // write. Keep a count so we may reread it again later. "hello!" will be | 
 |     // written in two chunks, "hello" and "!". | 
 |     char data[] = "hello!"; | 
 |     static const int kChunkLen = 5;  // The length of "hello". | 
 |     unsigned count = 0; | 
 |     for (;;) { | 
 |       int ret = SSL_write(client_.get(), data, kChunkLen); | 
 |       if (ret <= 0) { | 
 |         ASSERT_EQ(SSL_get_error(client_.get(), ret), SSL_ERROR_WANT_WRITE); | 
 |         break; | 
 |       } | 
 |       ASSERT_EQ(ret, 5); | 
 |       count++; | 
 |     } | 
 |  | 
 |     // Retrying with the same parameters is legal. | 
 |     ASSERT_EQ( | 
 |         SSL_get_error(client_.get(), SSL_write(client_.get(), data, kChunkLen)), | 
 |         SSL_ERROR_WANT_WRITE); | 
 |  | 
 |     // Retrying with the same buffer but shorter length is not legal. | 
 |     ASSERT_EQ(SSL_get_error(client_.get(), | 
 |                             SSL_write(client_.get(), data, kChunkLen - 1)), | 
 |               SSL_ERROR_SSL); | 
 |     ASSERT_TRUE(ExpectSingleError(ERR_LIB_SSL, SSL_R_BAD_WRITE_RETRY)); | 
 |  | 
 |     // Retrying with a different buffer pointer is not legal. | 
 |     char data2[] = "hello"; | 
 |     ASSERT_EQ(SSL_get_error(client_.get(), | 
 |                             SSL_write(client_.get(), data2, kChunkLen)), | 
 |               SSL_ERROR_SSL); | 
 |     ASSERT_TRUE(ExpectSingleError(ERR_LIB_SSL, SSL_R_BAD_WRITE_RETRY)); | 
 |  | 
 |     // With |SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER|, the buffer may move. | 
 |     SSL_set_mode(client_.get(), SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER); | 
 |     ASSERT_EQ(SSL_get_error(client_.get(), | 
 |                             SSL_write(client_.get(), data2, kChunkLen)), | 
 |               SSL_ERROR_WANT_WRITE); | 
 |  | 
 |     // |SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER| does not disable length checks. | 
 |     ASSERT_EQ(SSL_get_error(client_.get(), | 
 |                             SSL_write(client_.get(), data2, kChunkLen - 1)), | 
 |               SSL_ERROR_SSL); | 
 |     ASSERT_TRUE(ExpectSingleError(ERR_LIB_SSL, SSL_R_BAD_WRITE_RETRY)); | 
 |  | 
 |     // Retrying with a larger buffer is legal. | 
 |     ASSERT_EQ(SSL_get_error(client_.get(), | 
 |                             SSL_write(client_.get(), data, kChunkLen + 1)), | 
 |               SSL_ERROR_WANT_WRITE); | 
 |  | 
 |     // Drain the buffer. | 
 |     char buf[20]; | 
 |     for (unsigned i = 0; i < count; i++) { | 
 |       ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen); | 
 |       ASSERT_EQ(OPENSSL_memcmp(buf, "hello", kChunkLen), 0); | 
 |     } | 
 |  | 
 |     // Now that there is space, a retry with a larger buffer should flush the | 
 |     // pending record, skip over that many bytes of input (on assumption they | 
 |     // are the same), and write the remainder. If SSL_MODE_ENABLE_PARTIAL_WRITE | 
 |     // is set, this will complete in two steps. | 
 |     char data_longer[] = "_____!!!!!"; | 
 |     if (enable_partial_write) { | 
 |       ASSERT_EQ(SSL_write(client_.get(), data_longer, 2 * kChunkLen), | 
 |                 kChunkLen); | 
 |       ASSERT_EQ(SSL_write(client_.get(), data_longer + kChunkLen, kChunkLen), | 
 |                 kChunkLen); | 
 |     } else { | 
 |       ASSERT_EQ(SSL_write(client_.get(), data_longer, 2 * kChunkLen), | 
 |                 2 * kChunkLen); | 
 |     } | 
 |  | 
 |     // Check the last write was correct. The data will be spread over two | 
 |     // records, so SSL_read returns twice. | 
 |     ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen); | 
 |     ASSERT_EQ(OPENSSL_memcmp(buf, "hello", kChunkLen), 0); | 
 |     ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen); | 
 |     ASSERT_EQ(OPENSSL_memcmp(buf, "!!!!!", kChunkLen), 0); | 
 |  | 
 |     // Fill the transport buffer again. This time only leave room for one | 
 |     // record. | 
 |     count = 0; | 
 |     for (;;) { | 
 |       int ret = SSL_write(client_.get(), data, kChunkLen); | 
 |       if (ret <= 0) { | 
 |         ASSERT_EQ(SSL_get_error(client_.get(), ret), SSL_ERROR_WANT_WRITE); | 
 |         break; | 
 |       } | 
 |       ASSERT_EQ(ret, 5); | 
 |       count++; | 
 |     } | 
 |     ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen); | 
 |     ASSERT_EQ(OPENSSL_memcmp(buf, "hello", kChunkLen), 0); | 
 |     count--; | 
 |  | 
 |     // Retry the last write, with a longer input. The first half is the most | 
 |     // recently failed write, from filling the buffer. |SSL_write| should write | 
 |     // that to the transport, and then attempt to write the second half. | 
 |     int ret = SSL_write(client_.get(), data_longer, 2 * kChunkLen); | 
 |     if (enable_partial_write) { | 
 |       // If partial writes are allowed, the write will succeed partially. | 
 |       ASSERT_EQ(ret, kChunkLen); | 
 |  | 
 |       // Check the first half and make room for another record. | 
 |       ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen); | 
 |       ASSERT_EQ(OPENSSL_memcmp(buf, "hello", kChunkLen), 0); | 
 |       count--; | 
 |  | 
 |       // Finish writing the input. | 
 |       ASSERT_EQ(SSL_write(client_.get(), data_longer + kChunkLen, kChunkLen), | 
 |                 kChunkLen); | 
 |     } else { | 
 |       // Otherwise, although the first half made it to the transport, the second | 
 |       // half is blocked. | 
 |       ASSERT_EQ(ret, -1); | 
 |       ASSERT_EQ(SSL_get_error(client_.get(), -1), SSL_ERROR_WANT_WRITE); | 
 |  | 
 |       // Check the first half and make room for another record. | 
 |       ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen); | 
 |       ASSERT_EQ(OPENSSL_memcmp(buf, "hello", kChunkLen), 0); | 
 |       count--; | 
 |  | 
 |       // Retrying with fewer bytes than previously attempted is an error. If the | 
 |       // input length is less than the number of bytes successfully written, the | 
 |       // check happens at a different point, with a different error. | 
 |       // | 
 |       // TODO(davidben): Should these cases use the same error? | 
 |       ASSERT_EQ( | 
 |           SSL_get_error(client_.get(), | 
 |                         SSL_write(client_.get(), data_longer, kChunkLen - 1)), | 
 |           SSL_ERROR_SSL); | 
 |       ASSERT_TRUE(ExpectSingleError(ERR_LIB_SSL, SSL_R_BAD_LENGTH)); | 
 |  | 
 |       // Complete the write with the correct retry. | 
 |       ASSERT_EQ(SSL_write(client_.get(), data_longer, 2 * kChunkLen), | 
 |                 2 * kChunkLen); | 
 |     } | 
 |  | 
 |     // Drain the input and ensure everything was written correctly. | 
 |     for (unsigned i = 0; i < count; i++) { | 
 |       ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen); | 
 |       ASSERT_EQ(OPENSSL_memcmp(buf, "hello", kChunkLen), 0); | 
 |     } | 
 |  | 
 |     // The final write is spread over two records. | 
 |     ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen); | 
 |     ASSERT_EQ(OPENSSL_memcmp(buf, "hello", kChunkLen), 0); | 
 |     ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen); | 
 |     ASSERT_EQ(OPENSSL_memcmp(buf, "!!!!!", kChunkLen), 0); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(SSLVersionTest, RecordCallback) { | 
 |   for (bool test_server : {true, false}) { | 
 |     SCOPED_TRACE(test_server); | 
 |     ASSERT_NO_FATAL_FAILURE(ResetContexts()); | 
 |  | 
 |     bool read_seen = false; | 
 |     bool write_seen = false; | 
 |     auto cb = [&](int is_write, int cb_version, int cb_type, const void *buf, | 
 |                   size_t len, SSL *ssl) { | 
 |       if (cb_type != SSL3_RT_HEADER) { | 
 |         return; | 
 |       } | 
 |  | 
 |       // The callback does not report a version for records. | 
 |       EXPECT_EQ(0, cb_version); | 
 |  | 
 |       if (is_write) { | 
 |         write_seen = true; | 
 |       } else { | 
 |         read_seen = true; | 
 |       } | 
 |  | 
 |       // Sanity-check that the record header is plausible. | 
 |       CBS cbs; | 
 |       CBS_init(&cbs, reinterpret_cast<const uint8_t *>(buf), len); | 
 |       uint8_t type; | 
 |       uint16_t record_version, length; | 
 |       ASSERT_TRUE(CBS_get_u8(&cbs, &type)); | 
 |       ASSERT_TRUE(CBS_get_u16(&cbs, &record_version)); | 
 |       EXPECT_EQ(record_version & 0xff00, version() & 0xff00); | 
 |       if (is_dtls()) { | 
 |         uint16_t epoch; | 
 |         ASSERT_TRUE(CBS_get_u16(&cbs, &epoch)); | 
 |         EXPECT_TRUE(epoch == 0 || epoch == 1) << "Invalid epoch: " << epoch; | 
 |         ASSERT_TRUE(CBS_skip(&cbs, 6)); | 
 |       } | 
 |       ASSERT_TRUE(CBS_get_u16(&cbs, &length)); | 
 |       EXPECT_EQ(0u, CBS_len(&cbs)); | 
 |     }; | 
 |     using CallbackType = decltype(cb); | 
 |     SSL_CTX *ctx = test_server ? server_ctx_.get() : client_ctx_.get(); | 
 |     SSL_CTX_set_msg_callback( | 
 |         ctx, [](int is_write, int cb_version, int cb_type, const void *buf, | 
 |                 size_t len, SSL *ssl, void *arg) { | 
 |           CallbackType *cb_ptr = reinterpret_cast<CallbackType *>(arg); | 
 |           (*cb_ptr)(is_write, cb_version, cb_type, buf, len, ssl); | 
 |         }); | 
 |     SSL_CTX_set_msg_callback_arg(ctx, &cb); | 
 |  | 
 |     ASSERT_TRUE(Connect()); | 
 |  | 
 |     EXPECT_TRUE(read_seen); | 
 |     EXPECT_TRUE(write_seen); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(SSLVersionTest, GetServerName) { | 
 |   ClientConfig config; | 
 |   config.servername = "host1"; | 
 |  | 
 |   SSL_CTX_set_tlsext_servername_callback( | 
 |       server_ctx_.get(), [](SSL *ssl, int *out_alert, void *arg) -> int { | 
 |         // During the handshake, |SSL_get_servername| must match |config|. | 
 |         ClientConfig *config_p = reinterpret_cast<ClientConfig *>(arg); | 
 |         EXPECT_STREQ(config_p->servername.c_str(), | 
 |                      SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name)); | 
 |         return SSL_TLSEXT_ERR_OK; | 
 |       }); | 
 |   SSL_CTX_set_tlsext_servername_arg(server_ctx_.get(), &config); | 
 |  | 
 |   ASSERT_TRUE(Connect(config)); | 
 |   // After the handshake, it must also be available. | 
 |   EXPECT_STREQ(config.servername.c_str(), | 
 |                SSL_get_servername(server_.get(), TLSEXT_NAMETYPE_host_name)); | 
 |  | 
 |   // Establish a session under host1. | 
 |   SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |   SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |   bssl::UniquePtr<SSL_SESSION> session = | 
 |       CreateClientSession(client_ctx_.get(), server_ctx_.get(), config); | 
 |  | 
 |   // If the client resumes a session with a different name, |SSL_get_servername| | 
 |   // must return the new name. | 
 |   ASSERT_TRUE(session); | 
 |   config.session = session.get(); | 
 |   config.servername = "host2"; | 
 |   ASSERT_TRUE(Connect(config)); | 
 |   EXPECT_STREQ(config.servername.c_str(), | 
 |                SSL_get_servername(server_.get(), TLSEXT_NAMETYPE_host_name)); | 
 | } | 
 |  | 
 | // Test that session cache mode bits are honored in the client session callback. | 
 | TEST_P(SSLVersionTest, ClientSessionCacheMode) { | 
 |   SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_OFF); | 
 |   EXPECT_FALSE(CreateClientSession(client_ctx_.get(), server_ctx_.get())); | 
 |  | 
 |   SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_CLIENT); | 
 |   EXPECT_TRUE(CreateClientSession(client_ctx_.get(), server_ctx_.get())); | 
 |  | 
 |   SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_SERVER); | 
 |   EXPECT_FALSE(CreateClientSession(client_ctx_.get(), server_ctx_.get())); | 
 | } | 
 |  | 
 | // Test that all versions survive tiny write buffers. In particular, TLS 1.3 | 
 | // NewSessionTickets are written post-handshake. Servers that block | 
 | // |SSL_do_handshake| on writing them will deadlock if clients are not draining | 
 | // the buffer. Test that we do not do this. | 
 | TEST_P(SSLVersionTest, SmallBuffer) { | 
 |   // DTLS is a datagram protocol and requires packet-sized buffers. | 
 |   if (is_dtls()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   // Test both flushing NewSessionTickets with a zero-sized write and | 
 |   // non-zero-sized write. | 
 |   for (bool use_zero_write : {false, true}) { | 
 |     SCOPED_TRACE(use_zero_write); | 
 |  | 
 |     g_last_session = nullptr; | 
 |     SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |     SSL_CTX_sess_set_new_cb(client_ctx_.get(), SaveLastSession); | 
 |  | 
 |     bssl::UniquePtr<SSL> client(SSL_new(client_ctx_.get())), | 
 |         server(SSL_new(server_ctx_.get())); | 
 |     ASSERT_TRUE(client); | 
 |     ASSERT_TRUE(server); | 
 |     SSL_set_connect_state(client.get()); | 
 |     SSL_set_accept_state(server.get()); | 
 |  | 
 |     // Use a tiny buffer. | 
 |     BIO *bio1, *bio2; | 
 |     ASSERT_TRUE(BIO_new_bio_pair(&bio1, 1, &bio2, 1)); | 
 |  | 
 |     // SSL_set_bio takes ownership. | 
 |     SSL_set_bio(client.get(), bio1, bio1); | 
 |     SSL_set_bio(server.get(), bio2, bio2); | 
 |  | 
 |     ASSERT_TRUE(CompleteHandshakes(client.get(), server.get())); | 
 |     if (version() >= TLS1_3_VERSION) { | 
 |       // The post-handshake ticket should not have been processed yet. | 
 |       EXPECT_FALSE(g_last_session); | 
 |     } | 
 |  | 
 |     if (use_zero_write) { | 
 |       ASSERT_TRUE(FlushNewSessionTickets(client.get(), server.get())); | 
 |       EXPECT_TRUE(g_last_session); | 
 |     } | 
 |  | 
 |     // Send some data from server to client. If |use_zero_write| is false, this | 
 |     // will also flush the NewSessionTickets. | 
 |     static const char kMessage[] = "hello world"; | 
 |     char buf[sizeof(kMessage)]; | 
 |     for (;;) { | 
 |       int server_ret = SSL_write(server.get(), kMessage, sizeof(kMessage)); | 
 |       int server_err = SSL_get_error(server.get(), server_ret); | 
 |       int client_ret = SSL_read(client.get(), buf, sizeof(buf)); | 
 |       int client_err = SSL_get_error(client.get(), client_ret); | 
 |  | 
 |       // The server will write a single record, so every iteration should see | 
 |       // |SSL_ERROR_WANT_WRITE| and |SSL_ERROR_WANT_READ|, until the final | 
 |       // iteration, where both will complete. | 
 |       if (server_ret > 0) { | 
 |         EXPECT_EQ(server_ret, static_cast<int>(sizeof(kMessage))); | 
 |         EXPECT_EQ(client_ret, static_cast<int>(sizeof(kMessage))); | 
 |         EXPECT_EQ(Bytes(buf), Bytes(kMessage)); | 
 |         break; | 
 |       } | 
 |  | 
 |       ASSERT_EQ(server_ret, -1); | 
 |       ASSERT_EQ(server_err, SSL_ERROR_WANT_WRITE); | 
 |       ASSERT_EQ(client_ret, -1); | 
 |       ASSERT_EQ(client_err, SSL_ERROR_WANT_READ); | 
 |     } | 
 |  | 
 |     // The NewSessionTickets should have been flushed and processed. | 
 |     EXPECT_TRUE(g_last_session); | 
 |   } | 
 | } | 
 |  | 
 | TEST(SSLTest, AddChainCertHack) { | 
 |   // Ensure that we don't accidently break the hack that we have in place to | 
 |   // keep curl and serf happy when they use an |X509| even after transfering | 
 |   // ownership. | 
 |  | 
 |   bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
 |   ASSERT_TRUE(ctx); | 
 |   X509 *cert = GetTestCertificate().release(); | 
 |   ASSERT_TRUE(cert); | 
 |   SSL_CTX_add0_chain_cert(ctx.get(), cert); | 
 |  | 
 |   // This should not trigger a use-after-free. | 
 |   X509_cmp(cert, cert); | 
 | } | 
 |  | 
 | TEST(SSLTest, GetCertificate) { | 
 |   bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
 |   ASSERT_TRUE(ctx); | 
 |   bssl::UniquePtr<X509> cert = GetTestCertificate(); | 
 |   ASSERT_TRUE(cert); | 
 |   ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), cert.get())); | 
 |   bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); | 
 |   ASSERT_TRUE(ssl); | 
 |  | 
 |   X509 *cert2 = SSL_CTX_get0_certificate(ctx.get()); | 
 |   ASSERT_TRUE(cert2); | 
 |   X509 *cert3 = SSL_get_certificate(ssl.get()); | 
 |   ASSERT_TRUE(cert3); | 
 |  | 
 |   // The old and new certificates must be identical. | 
 |   EXPECT_EQ(0, X509_cmp(cert.get(), cert2)); | 
 |   EXPECT_EQ(0, X509_cmp(cert.get(), cert3)); | 
 |  | 
 |   uint8_t *der = nullptr; | 
 |   long der_len = i2d_X509(cert.get(), &der); | 
 |   ASSERT_LT(0, der_len); | 
 |   bssl::UniquePtr<uint8_t> free_der(der); | 
 |  | 
 |   uint8_t *der2 = nullptr; | 
 |   long der2_len = i2d_X509(cert2, &der2); | 
 |   ASSERT_LT(0, der2_len); | 
 |   bssl::UniquePtr<uint8_t> free_der2(der2); | 
 |  | 
 |   uint8_t *der3 = nullptr; | 
 |   long der3_len = i2d_X509(cert3, &der3); | 
 |   ASSERT_LT(0, der3_len); | 
 |   bssl::UniquePtr<uint8_t> free_der3(der3); | 
 |  | 
 |   // They must also encode identically. | 
 |   EXPECT_EQ(Bytes(der, der_len), Bytes(der2, der2_len)); | 
 |   EXPECT_EQ(Bytes(der, der_len), Bytes(der3, der3_len)); | 
 | } | 
 |  | 
 | TEST(SSLTest, SetChainAndKeyMismatch) { | 
 |   bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_with_buffers_method())); | 
 |   ASSERT_TRUE(ctx); | 
 |  | 
 |   bssl::UniquePtr<EVP_PKEY> key = GetTestKey(); | 
 |   ASSERT_TRUE(key); | 
 |   bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer(); | 
 |   ASSERT_TRUE(leaf); | 
 |   std::vector<CRYPTO_BUFFER*> chain = { | 
 |       leaf.get(), | 
 |   }; | 
 |  | 
 |   // Should fail because |GetTestKey| doesn't match the chain-test certificate. | 
 |   ASSERT_FALSE(SSL_CTX_set_chain_and_key(ctx.get(), &chain[0], chain.size(), | 
 |                                          key.get(), nullptr)); | 
 |   ERR_clear_error(); | 
 | } | 
 |  | 
 | TEST(SSLTest, SetChainAndKey) { | 
 |   bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_with_buffers_method())); | 
 |   ASSERT_TRUE(client_ctx); | 
 |   bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_with_buffers_method())); | 
 |   ASSERT_TRUE(server_ctx); | 
 |  | 
 |   ASSERT_EQ(nullptr, SSL_CTX_get0_chain(server_ctx.get())); | 
 |  | 
 |   bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey(); | 
 |   ASSERT_TRUE(key); | 
 |   bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer(); | 
 |   ASSERT_TRUE(leaf); | 
 |   bssl::UniquePtr<CRYPTO_BUFFER> intermediate = | 
 |       GetChainTestIntermediateBuffer(); | 
 |   ASSERT_TRUE(intermediate); | 
 |   std::vector<CRYPTO_BUFFER*> chain = { | 
 |       leaf.get(), intermediate.get(), | 
 |   }; | 
 |   ASSERT_TRUE(SSL_CTX_set_chain_and_key(server_ctx.get(), &chain[0], | 
 |                                         chain.size(), key.get(), nullptr)); | 
 |  | 
 |   ASSERT_EQ(chain.size(), | 
 |             sk_CRYPTO_BUFFER_num(SSL_CTX_get0_chain(server_ctx.get()))); | 
 |  | 
 |   SSL_CTX_set_custom_verify( | 
 |       client_ctx.get(), SSL_VERIFY_PEER, | 
 |       [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { | 
 |         return ssl_verify_ok; | 
 |       }); | 
 |  | 
 |   bssl::UniquePtr<SSL> client, server; | 
 |   ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
 |                                      server_ctx.get())); | 
 | } | 
 |  | 
 | TEST(SSLTest, BuffersFailWithoutCustomVerify) { | 
 |   bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_with_buffers_method())); | 
 |   ASSERT_TRUE(client_ctx); | 
 |   bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_with_buffers_method())); | 
 |   ASSERT_TRUE(server_ctx); | 
 |  | 
 |   bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey(); | 
 |   ASSERT_TRUE(key); | 
 |   bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer(); | 
 |   ASSERT_TRUE(leaf); | 
 |   std::vector<CRYPTO_BUFFER*> chain = { leaf.get() }; | 
 |   ASSERT_TRUE(SSL_CTX_set_chain_and_key(server_ctx.get(), &chain[0], | 
 |                                         chain.size(), key.get(), nullptr)); | 
 |  | 
 |   // Without SSL_CTX_set_custom_verify(), i.e. with everything in the default | 
 |   // configuration, certificate verification should fail. | 
 |   bssl::UniquePtr<SSL> client, server; | 
 |   ASSERT_FALSE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
 |                                       server_ctx.get())); | 
 |  | 
 |   // Whereas with a verifier, the connection should succeed. | 
 |   SSL_CTX_set_custom_verify( | 
 |       client_ctx.get(), SSL_VERIFY_PEER, | 
 |       [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { | 
 |         return ssl_verify_ok; | 
 |       }); | 
 |   ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
 |                                      server_ctx.get())); | 
 | } | 
 |  | 
 | TEST(SSLTest, CustomVerify) { | 
 |   bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_with_buffers_method())); | 
 |   ASSERT_TRUE(client_ctx); | 
 |   bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_with_buffers_method())); | 
 |   ASSERT_TRUE(server_ctx); | 
 |  | 
 |   bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey(); | 
 |   ASSERT_TRUE(key); | 
 |   bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer(); | 
 |   ASSERT_TRUE(leaf); | 
 |   std::vector<CRYPTO_BUFFER*> chain = { leaf.get() }; | 
 |   ASSERT_TRUE(SSL_CTX_set_chain_and_key(server_ctx.get(), &chain[0], | 
 |                                         chain.size(), key.get(), nullptr)); | 
 |  | 
 |   SSL_CTX_set_custom_verify( | 
 |       client_ctx.get(), SSL_VERIFY_PEER, | 
 |       [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { | 
 |         return ssl_verify_ok; | 
 |       }); | 
 |  | 
 |   bssl::UniquePtr<SSL> client, server; | 
 |   ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
 |                                      server_ctx.get())); | 
 |  | 
 |   // With SSL_VERIFY_PEER, ssl_verify_invalid should result in a dropped | 
 |   // connection. | 
 |   SSL_CTX_set_custom_verify( | 
 |       client_ctx.get(), SSL_VERIFY_PEER, | 
 |       [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { | 
 |         return ssl_verify_invalid; | 
 |       }); | 
 |  | 
 |   ASSERT_FALSE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
 |                                       server_ctx.get())); | 
 |  | 
 |   // But with SSL_VERIFY_NONE, ssl_verify_invalid should not cause a dropped | 
 |   // connection. | 
 |   SSL_CTX_set_custom_verify( | 
 |       client_ctx.get(), SSL_VERIFY_NONE, | 
 |       [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { | 
 |         return ssl_verify_invalid; | 
 |       }); | 
 |  | 
 |   ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
 |                                      server_ctx.get())); | 
 | } | 
 |  | 
 | TEST(SSLTest, ClientCABuffers) { | 
 |   bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_with_buffers_method())); | 
 |   ASSERT_TRUE(client_ctx); | 
 |   bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_with_buffers_method())); | 
 |   ASSERT_TRUE(server_ctx); | 
 |  | 
 |   bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey(); | 
 |   ASSERT_TRUE(key); | 
 |   bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer(); | 
 |   ASSERT_TRUE(leaf); | 
 |   bssl::UniquePtr<CRYPTO_BUFFER> intermediate = | 
 |       GetChainTestIntermediateBuffer(); | 
 |   ASSERT_TRUE(intermediate); | 
 |   std::vector<CRYPTO_BUFFER *> chain = { | 
 |       leaf.get(), | 
 |       intermediate.get(), | 
 |   }; | 
 |   ASSERT_TRUE(SSL_CTX_set_chain_and_key(server_ctx.get(), &chain[0], | 
 |                                         chain.size(), key.get(), nullptr)); | 
 |  | 
 |   bssl::UniquePtr<CRYPTO_BUFFER> ca_name( | 
 |       CRYPTO_BUFFER_new(kTestName, sizeof(kTestName), nullptr)); | 
 |   ASSERT_TRUE(ca_name); | 
 |   bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> ca_names( | 
 |       sk_CRYPTO_BUFFER_new_null()); | 
 |   ASSERT_TRUE(ca_names); | 
 |   ASSERT_TRUE(PushToStack(ca_names.get(), std::move(ca_name))); | 
 |   SSL_CTX_set0_client_CAs(server_ctx.get(), ca_names.release()); | 
 |  | 
 |   // Configure client and server to accept all certificates. | 
 |   SSL_CTX_set_custom_verify( | 
 |       client_ctx.get(), SSL_VERIFY_PEER, | 
 |       [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { | 
 |         return ssl_verify_ok; | 
 |       }); | 
 |   SSL_CTX_set_custom_verify( | 
 |       server_ctx.get(), SSL_VERIFY_PEER, | 
 |       [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { | 
 |         return ssl_verify_ok; | 
 |       }); | 
 |  | 
 |   bool cert_cb_called = false; | 
 |   SSL_CTX_set_cert_cb( | 
 |       client_ctx.get(), | 
 |       [](SSL *ssl, void *arg) -> int { | 
 |         const STACK_OF(CRYPTO_BUFFER) *peer_names = | 
 |             SSL_get0_server_requested_CAs(ssl); | 
 |         EXPECT_EQ(1u, sk_CRYPTO_BUFFER_num(peer_names)); | 
 |         CRYPTO_BUFFER *peer_name = sk_CRYPTO_BUFFER_value(peer_names, 0); | 
 |         EXPECT_EQ(Bytes(kTestName), Bytes(CRYPTO_BUFFER_data(peer_name), | 
 |                                           CRYPTO_BUFFER_len(peer_name))); | 
 |         *reinterpret_cast<bool *>(arg) = true; | 
 |         return 1; | 
 |       }, | 
 |       &cert_cb_called); | 
 |  | 
 |   bssl::UniquePtr<SSL> client, server; | 
 |   ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
 |                                      server_ctx.get())); | 
 |   EXPECT_TRUE(cert_cb_called); | 
 | } | 
 |  | 
 | // Configuring the empty cipher list, though an error, should still modify the | 
 | // configuration. | 
 | TEST(SSLTest, EmptyCipherList) { | 
 |   bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
 |   ASSERT_TRUE(ctx); | 
 |  | 
 |   // Initially, the cipher list is not empty. | 
 |   EXPECT_NE(0u, sk_SSL_CIPHER_num(SSL_CTX_get_ciphers(ctx.get()))); | 
 |  | 
 |   // Configuring the empty cipher list fails. | 
 |   EXPECT_FALSE(SSL_CTX_set_cipher_list(ctx.get(), "")); | 
 |   ERR_clear_error(); | 
 |  | 
 |   // But the cipher list is still updated to empty. | 
 |   EXPECT_EQ(0u, sk_SSL_CIPHER_num(SSL_CTX_get_ciphers(ctx.get()))); | 
 | } | 
 |  | 
 | // ssl_test_ticket_aead_failure_mode enumerates the possible ways in which the | 
 | // test |SSL_TICKET_AEAD_METHOD| can fail. | 
 | enum ssl_test_ticket_aead_failure_mode { | 
 |   ssl_test_ticket_aead_ok = 0, | 
 |   ssl_test_ticket_aead_seal_fail, | 
 |   ssl_test_ticket_aead_open_soft_fail, | 
 |   ssl_test_ticket_aead_open_hard_fail, | 
 | }; | 
 |  | 
 | struct ssl_test_ticket_aead_state { | 
 |   unsigned retry_count; | 
 |   ssl_test_ticket_aead_failure_mode failure_mode; | 
 | }; | 
 |  | 
 | static int ssl_test_ticket_aead_ex_index_dup(CRYPTO_EX_DATA *to, | 
 |                                              const CRYPTO_EX_DATA *from, | 
 |                                              void **from_d, int index, | 
 |                                              long argl, void *argp) { | 
 |   abort(); | 
 | } | 
 |  | 
 | static void ssl_test_ticket_aead_ex_index_free(void *parent, void *ptr, | 
 |                                                CRYPTO_EX_DATA *ad, int index, | 
 |                                                long argl, void *argp) { | 
 |   auto state = reinterpret_cast<ssl_test_ticket_aead_state*>(ptr); | 
 |   if (state == nullptr) { | 
 |     return; | 
 |   } | 
 |  | 
 |   OPENSSL_free(state); | 
 | } | 
 |  | 
 | static CRYPTO_once_t g_ssl_test_ticket_aead_ex_index_once = CRYPTO_ONCE_INIT; | 
 | static int g_ssl_test_ticket_aead_ex_index; | 
 |  | 
 | static int ssl_test_ticket_aead_get_ex_index() { | 
 |   CRYPTO_once(&g_ssl_test_ticket_aead_ex_index_once, [] { | 
 |     g_ssl_test_ticket_aead_ex_index = SSL_get_ex_new_index( | 
 |         0, nullptr, nullptr, ssl_test_ticket_aead_ex_index_dup, | 
 |         ssl_test_ticket_aead_ex_index_free); | 
 |   }); | 
 |   return g_ssl_test_ticket_aead_ex_index; | 
 | } | 
 |  | 
 | static size_t ssl_test_ticket_aead_max_overhead(SSL *ssl) { | 
 |   return 1; | 
 | } | 
 |  | 
 | static int ssl_test_ticket_aead_seal(SSL *ssl, uint8_t *out, size_t *out_len, | 
 |                                      size_t max_out_len, const uint8_t *in, | 
 |                                      size_t in_len) { | 
 |   auto state = reinterpret_cast<ssl_test_ticket_aead_state *>( | 
 |       SSL_get_ex_data(ssl, ssl_test_ticket_aead_get_ex_index())); | 
 |  | 
 |   if (state->failure_mode == ssl_test_ticket_aead_seal_fail || | 
 |       max_out_len < in_len + 1) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   OPENSSL_memmove(out, in, in_len); | 
 |   out[in_len] = 0xff; | 
 |   *out_len = in_len + 1; | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | static ssl_ticket_aead_result_t ssl_test_ticket_aead_open( | 
 |     SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out_len, | 
 |     const uint8_t *in, size_t in_len) { | 
 |   auto state = reinterpret_cast<ssl_test_ticket_aead_state *>( | 
 |       SSL_get_ex_data(ssl, ssl_test_ticket_aead_get_ex_index())); | 
 |  | 
 |   if (state->retry_count > 0) { | 
 |     state->retry_count--; | 
 |     return ssl_ticket_aead_retry; | 
 |   } | 
 |  | 
 |   switch (state->failure_mode) { | 
 |     case ssl_test_ticket_aead_ok: | 
 |       break; | 
 |     case ssl_test_ticket_aead_seal_fail: | 
 |       // If |seal| failed then there shouldn't be any ticket to try and | 
 |       // decrypt. | 
 |       abort(); | 
 |       break; | 
 |     case ssl_test_ticket_aead_open_soft_fail: | 
 |       return ssl_ticket_aead_ignore_ticket; | 
 |     case ssl_test_ticket_aead_open_hard_fail: | 
 |       return ssl_ticket_aead_error; | 
 |   } | 
 |  | 
 |   if (in_len == 0 || in[in_len - 1] != 0xff) { | 
 |     return ssl_ticket_aead_ignore_ticket; | 
 |   } | 
 |  | 
 |   if (max_out_len < in_len - 1) { | 
 |     return ssl_ticket_aead_error; | 
 |   } | 
 |  | 
 |   OPENSSL_memmove(out, in, in_len - 1); | 
 |   *out_len = in_len - 1; | 
 |   return ssl_ticket_aead_success; | 
 | } | 
 |  | 
 | static const SSL_TICKET_AEAD_METHOD kSSLTestTicketMethod = { | 
 |   ssl_test_ticket_aead_max_overhead, | 
 |   ssl_test_ticket_aead_seal, | 
 |   ssl_test_ticket_aead_open, | 
 | }; | 
 |  | 
 | static void ConnectClientAndServerWithTicketMethod( | 
 |     bssl::UniquePtr<SSL> *out_client, bssl::UniquePtr<SSL> *out_server, | 
 |     SSL_CTX *client_ctx, SSL_CTX *server_ctx, unsigned retry_count, | 
 |     ssl_test_ticket_aead_failure_mode failure_mode, SSL_SESSION *session) { | 
 |   bssl::UniquePtr<SSL> client(SSL_new(client_ctx)), server(SSL_new(server_ctx)); | 
 |   ASSERT_TRUE(client); | 
 |   ASSERT_TRUE(server); | 
 |   SSL_set_connect_state(client.get()); | 
 |   SSL_set_accept_state(server.get()); | 
 |  | 
 |   auto state = reinterpret_cast<ssl_test_ticket_aead_state *>( | 
 |       OPENSSL_malloc(sizeof(ssl_test_ticket_aead_state))); | 
 |   ASSERT_TRUE(state); | 
 |   OPENSSL_memset(state, 0, sizeof(ssl_test_ticket_aead_state)); | 
 |   state->retry_count = retry_count; | 
 |   state->failure_mode = failure_mode; | 
 |  | 
 |   ASSERT_GE(ssl_test_ticket_aead_get_ex_index(), 0); | 
 |   ASSERT_TRUE(SSL_set_ex_data(server.get(), ssl_test_ticket_aead_get_ex_index(), | 
 |                               state)); | 
 |  | 
 |   SSL_set_session(client.get(), session); | 
 |  | 
 |   BIO *bio1, *bio2; | 
 |   ASSERT_TRUE(BIO_new_bio_pair(&bio1, 0, &bio2, 0)); | 
 |  | 
 |   // SSL_set_bio takes ownership. | 
 |   SSL_set_bio(client.get(), bio1, bio1); | 
 |   SSL_set_bio(server.get(), bio2, bio2); | 
 |  | 
 |   if (CompleteHandshakes(client.get(), server.get())) { | 
 |     *out_client = std::move(client); | 
 |     *out_server = std::move(server); | 
 |   } else { | 
 |     out_client->reset(); | 
 |     out_server->reset(); | 
 |   } | 
 | } | 
 |  | 
 | using TicketAEADMethodParam = | 
 |     testing::tuple<uint16_t, unsigned, ssl_test_ticket_aead_failure_mode>; | 
 |  | 
 | class TicketAEADMethodTest | 
 |     : public ::testing::TestWithParam<TicketAEADMethodParam> {}; | 
 |  | 
 | TEST_P(TicketAEADMethodTest, Resume) { | 
 |   bssl::UniquePtr<SSL_CTX> server_ctx = | 
 |       CreateContextWithTestCertificate(TLS_method()); | 
 |   ASSERT_TRUE(server_ctx); | 
 |   bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
 |   ASSERT_TRUE(client_ctx); | 
 |  | 
 |   const uint16_t version = testing::get<0>(GetParam()); | 
 |   const unsigned retry_count = testing::get<1>(GetParam()); | 
 |   const ssl_test_ticket_aead_failure_mode failure_mode = | 
 |       testing::get<2>(GetParam()); | 
 |  | 
 |   ASSERT_TRUE(SSL_CTX_set_min_proto_version(client_ctx.get(), version)); | 
 |   ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), version)); | 
 |   ASSERT_TRUE(SSL_CTX_set_min_proto_version(server_ctx.get(), version)); | 
 |   ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), version)); | 
 |  | 
 |   SSL_CTX_set_session_cache_mode(client_ctx.get(), SSL_SESS_CACHE_BOTH); | 
 |   SSL_CTX_set_session_cache_mode(server_ctx.get(), SSL_SESS_CACHE_BOTH); | 
 |   SSL_CTX_set_current_time_cb(client_ctx.get(), FrozenTimeCallback); | 
 |   SSL_CTX_set_current_time_cb(server_ctx.get(), FrozenTimeCallback); | 
 |   SSL_CTX_sess_set_new_cb(client_ctx.get(), SaveLastSession); | 
 |  | 
 |   SSL_CTX_set_ticket_aead_method(server_ctx.get(), &kSSLTestTicketMethod); | 
 |  | 
 |   bssl::UniquePtr<SSL> client, server; | 
 |   ASSERT_NO_FATAL_FAILURE(ConnectClientAndServerWithTicketMethod( | 
 |       &client, &server, client_ctx.get(), server_ctx.get(), retry_count, | 
 |       failure_mode, nullptr)); | 
 |   switch (failure_mode) { | 
 |     case ssl_test_ticket_aead_ok: | 
 |     case ssl_test_ticket_aead_open_hard_fail: | 
 |     case ssl_test_ticket_aead_open_soft_fail: | 
 |       ASSERT_TRUE(client); | 
 |       break; | 
 |     case ssl_test_ticket_aead_seal_fail: | 
 |       EXPECT_FALSE(client); | 
 |       return; | 
 |   } | 
 |   EXPECT_FALSE(SSL_session_reused(client.get())); | 
 |   EXPECT_FALSE(SSL_session_reused(server.get())); | 
 |  | 
 |   ASSERT_TRUE(FlushNewSessionTickets(client.get(), server.get())); | 
 |   bssl::UniquePtr<SSL_SESSION> session = std::move(g_last_session); | 
 |   ASSERT_NO_FATAL_FAILURE(ConnectClientAndServerWithTicketMethod( | 
 |       &client, &server, client_ctx.get(), server_ctx.get(), retry_count, | 
 |       failure_mode, session.get())); | 
 |   switch (failure_mode) { | 
 |     case ssl_test_ticket_aead_ok: | 
 |       ASSERT_TRUE(client); | 
 |       EXPECT_TRUE(SSL_session_reused(client.get())); | 
 |       EXPECT_TRUE(SSL_session_reused(server.get())); | 
 |       break; | 
 |     case ssl_test_ticket_aead_seal_fail: | 
 |       abort(); | 
 |       break; | 
 |     case ssl_test_ticket_aead_open_hard_fail: | 
 |       EXPECT_FALSE(client); | 
 |       break; | 
 |     case ssl_test_ticket_aead_open_soft_fail: | 
 |       ASSERT_TRUE(client); | 
 |       EXPECT_FALSE(SSL_session_reused(client.get())); | 
 |       EXPECT_FALSE(SSL_session_reused(server.get())); | 
 |   } | 
 | } | 
 |  | 
 | std::string TicketAEADMethodParamToString( | 
 |     const testing::TestParamInfo<TicketAEADMethodParam> ¶ms) { | 
 |   std::string ret = GetVersionName(std::get<0>(params.param)); | 
 |   // GTest only allows alphanumeric characters and '_' in the parameter | 
 |   // string. Additionally filter out the 'v' to get "TLS13" over "TLSv13". | 
 |   for (auto it = ret.begin(); it != ret.end();) { | 
 |     if (*it == '.' || *it == 'v') { | 
 |       it = ret.erase(it); | 
 |     } else { | 
 |       ++it; | 
 |     } | 
 |   } | 
 |   char retry_count[256]; | 
 |   snprintf(retry_count, sizeof(retry_count), "%u", std::get<1>(params.param)); | 
 |   ret += "_"; | 
 |   ret += retry_count; | 
 |   ret += "Retries_"; | 
 |   switch (std::get<2>(params.param)) { | 
 |     case ssl_test_ticket_aead_ok: | 
 |       ret += "OK"; | 
 |       break; | 
 |     case ssl_test_ticket_aead_seal_fail: | 
 |       ret += "SealFail"; | 
 |       break; | 
 |     case ssl_test_ticket_aead_open_soft_fail: | 
 |       ret += "OpenSoftFail"; | 
 |       break; | 
 |     case ssl_test_ticket_aead_open_hard_fail: | 
 |       ret += "OpenHardFail"; | 
 |       break; | 
 |   } | 
 |   return ret; | 
 | } | 
 |  | 
 | INSTANTIATE_TEST_SUITE_P( | 
 |     TicketAEADMethodTests, TicketAEADMethodTest, | 
 |     testing::Combine(testing::Values(TLS1_2_VERSION, TLS1_3_VERSION), | 
 |                      testing::Values(0, 1, 2), | 
 |                      testing::Values(ssl_test_ticket_aead_ok, | 
 |                                      ssl_test_ticket_aead_seal_fail, | 
 |                                      ssl_test_ticket_aead_open_soft_fail, | 
 |                                      ssl_test_ticket_aead_open_hard_fail)), | 
 |     TicketAEADMethodParamToString); | 
 |  | 
 | TEST(SSLTest, SelectNextProto) { | 
 |   uint8_t *result; | 
 |   uint8_t result_len; | 
 |  | 
 |   // If there is an overlap, it should be returned. | 
 |   EXPECT_EQ(OPENSSL_NPN_NEGOTIATED, | 
 |             SSL_select_next_proto(&result, &result_len, | 
 |                                   (const uint8_t *)"\1a\2bb\3ccc", 9, | 
 |                                   (const uint8_t *)"\1x\1y\1a\1z", 8)); | 
 |   EXPECT_EQ(Bytes("a"), Bytes(result, result_len)); | 
 |  | 
 |   EXPECT_EQ(OPENSSL_NPN_NEGOTIATED, | 
 |             SSL_select_next_proto(&result, &result_len, | 
 |                                   (const uint8_t *)"\1a\2bb\3ccc", 9, | 
 |                                   (const uint8_t *)"\1x\1y\2bb\1z", 9)); | 
 |   EXPECT_EQ(Bytes("bb"), Bytes(result, result_len)); | 
 |  | 
 |   EXPECT_EQ(OPENSSL_NPN_NEGOTIATED, | 
 |             SSL_select_next_proto(&result, &result_len, | 
 |                                   (const uint8_t *)"\1a\2bb\3ccc", 9, | 
 |                                   (const uint8_t *)"\1x\1y\3ccc\1z", 10)); | 
 |   EXPECT_EQ(Bytes("ccc"), Bytes(result, result_len)); | 
 |  | 
 |   // Peer preference order takes precedence over local. | 
 |   EXPECT_EQ(OPENSSL_NPN_NEGOTIATED, | 
 |             SSL_select_next_proto(&result, &result_len, | 
 |                                   (const uint8_t *)"\1a\2bb\3ccc", 9, | 
 |                                   (const uint8_t *)"\3ccc\2bb\1a", 9)); | 
 |   EXPECT_EQ(Bytes("a"), Bytes(result, result_len)); | 
 |  | 
 |   // If there is no overlap, return the first local protocol. | 
 |   EXPECT_EQ(OPENSSL_NPN_NO_OVERLAP, | 
 |             SSL_select_next_proto(&result, &result_len, | 
 |                                   (const uint8_t *)"\1a\2bb\3ccc", 9, | 
 |                                   (const uint8_t *)"\1x\2yy\3zzz", 9)); | 
 |   EXPECT_EQ(Bytes("x"), Bytes(result, result_len)); | 
 |  | 
 |   EXPECT_EQ(OPENSSL_NPN_NO_OVERLAP, | 
 |             SSL_select_next_proto(&result, &result_len, nullptr, 0, | 
 |                                   (const uint8_t *)"\1x\2yy\3zzz", 9)); | 
 |   EXPECT_EQ(Bytes("x"), Bytes(result, result_len)); | 
 | } | 
 |  | 
 | // The client should gracefully handle no suitable ciphers being enabled. | 
 | TEST(SSLTest, NoCiphersAvailable) { | 
 |   bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
 |   ASSERT_TRUE(ctx); | 
 |  | 
 |   // Configure |client_ctx| with a cipher list that does not intersect with its | 
 |   // version configuration. | 
 |   ASSERT_TRUE(SSL_CTX_set_strict_cipher_list( | 
 |       ctx.get(), "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256")); | 
 |   ASSERT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_1_VERSION)); | 
 |  | 
 |   bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); | 
 |   ASSERT_TRUE(ssl); | 
 |   SSL_set_connect_state(ssl.get()); | 
 |  | 
 |   UniquePtr<BIO> rbio(BIO_new(BIO_s_mem())), wbio(BIO_new(BIO_s_mem())); | 
 |   ASSERT_TRUE(rbio); | 
 |   ASSERT_TRUE(wbio); | 
 |   SSL_set0_rbio(ssl.get(), rbio.release()); | 
 |   SSL_set0_wbio(ssl.get(), wbio.release()); | 
 |  | 
 |   int ret = SSL_do_handshake(ssl.get()); | 
 |   EXPECT_EQ(-1, ret); | 
 |   EXPECT_EQ(SSL_ERROR_SSL, SSL_get_error(ssl.get(), ret)); | 
 |   uint32_t err = ERR_get_error(); | 
 |   EXPECT_EQ(ERR_LIB_SSL, ERR_GET_LIB(err)); | 
 |   EXPECT_EQ(SSL_R_NO_CIPHERS_AVAILABLE, ERR_GET_REASON(err)); | 
 | } | 
 |  | 
 | TEST_P(SSLVersionTest, SessionVersion) { | 
 |   SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |   SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |  | 
 |   bssl::UniquePtr<SSL_SESSION> session = | 
 |       CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
 |   ASSERT_TRUE(session); | 
 |   EXPECT_EQ(version(), SSL_SESSION_get_protocol_version(session.get())); | 
 |  | 
 |   // Sessions in TLS 1.3 and later should be single-use. | 
 |   EXPECT_EQ(version() == TLS1_3_VERSION, | 
 |             !!SSL_SESSION_should_be_single_use(session.get())); | 
 |  | 
 |   // Making fake sessions for testing works. | 
 |   session.reset(SSL_SESSION_new(client_ctx_.get())); | 
 |   ASSERT_TRUE(session); | 
 |   ASSERT_TRUE(SSL_SESSION_set_protocol_version(session.get(), version())); | 
 |   EXPECT_EQ(version(), SSL_SESSION_get_protocol_version(session.get())); | 
 | } | 
 |  | 
 | TEST_P(SSLVersionTest, SSLPending) { | 
 |   UniquePtr<SSL> ssl(SSL_new(client_ctx_.get())); | 
 |   ASSERT_TRUE(ssl); | 
 |   EXPECT_EQ(0, SSL_pending(ssl.get())); | 
 |  | 
 |   ASSERT_TRUE(Connect()); | 
 |   EXPECT_EQ(0, SSL_pending(client_.get())); | 
 |   EXPECT_EQ(0, SSL_has_pending(client_.get())); | 
 |  | 
 |   ASSERT_EQ(5, SSL_write(server_.get(), "hello", 5)); | 
 |   ASSERT_EQ(5, SSL_write(server_.get(), "world", 5)); | 
 |   EXPECT_EQ(0, SSL_pending(client_.get())); | 
 |   EXPECT_EQ(0, SSL_has_pending(client_.get())); | 
 |  | 
 |   char buf[10]; | 
 |   ASSERT_EQ(1, SSL_peek(client_.get(), buf, 1)); | 
 |   EXPECT_EQ(5, SSL_pending(client_.get())); | 
 |   EXPECT_EQ(1, SSL_has_pending(client_.get())); | 
 |  | 
 |   ASSERT_EQ(1, SSL_read(client_.get(), buf, 1)); | 
 |   EXPECT_EQ(4, SSL_pending(client_.get())); | 
 |   EXPECT_EQ(1, SSL_has_pending(client_.get())); | 
 |  | 
 |   ASSERT_EQ(4, SSL_read(client_.get(), buf, 10)); | 
 |   EXPECT_EQ(0, SSL_pending(client_.get())); | 
 |   if (is_dtls()) { | 
 |     // In DTLS, the two records would have been read as a single datagram and | 
 |     // buffered inside |client_|. Thus, |SSL_has_pending| should return true. | 
 |     // | 
 |     // This test is slightly unrealistic. It relies on |ConnectClientAndServer| | 
 |     // using a |BIO| pair, which does not preserve datagram boundaries. Reading | 
 |     // 1 byte, then 4 bytes, from the first record also relies on | 
 |     // https://crbug.com/boringssl/65. But it does test the codepaths. When | 
 |     // fixing either of these bugs, this test may need to be redone. | 
 |     EXPECT_EQ(1, SSL_has_pending(client_.get())); | 
 |   } else { | 
 |     // In TLS, we do not overread, so |SSL_has_pending| should report no data is | 
 |     // buffered. | 
 |     EXPECT_EQ(0, SSL_has_pending(client_.get())); | 
 |   } | 
 |  | 
 |   ASSERT_EQ(2, SSL_read(client_.get(), buf, 2)); | 
 |   EXPECT_EQ(3, SSL_pending(client_.get())); | 
 |   EXPECT_EQ(1, SSL_has_pending(client_.get())); | 
 | } | 
 |  | 
 | // Test that post-handshake tickets consumed by |SSL_shutdown| are ignored. | 
 | TEST(SSLTest, ShutdownIgnoresTickets) { | 
 |   bssl::UniquePtr<SSL_CTX> ctx(CreateContextWithTestCertificate(TLS_method())); | 
 |   ASSERT_TRUE(ctx); | 
 |   ASSERT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_3_VERSION)); | 
 |   ASSERT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_3_VERSION)); | 
 |  | 
 |   SSL_CTX_set_session_cache_mode(ctx.get(), SSL_SESS_CACHE_BOTH); | 
 |  | 
 |   bssl::UniquePtr<SSL> client, server; | 
 |   ASSERT_TRUE(ConnectClientAndServer(&client, &server, ctx.get(), ctx.get())); | 
 |  | 
 |   SSL_CTX_sess_set_new_cb(ctx.get(), [](SSL *ssl, SSL_SESSION *session) -> int { | 
 |     ADD_FAILURE() << "New session callback called during SSL_shutdown"; | 
 |     return 0; | 
 |   }); | 
 |  | 
 |   // Send close_notify. | 
 |   EXPECT_EQ(0, SSL_shutdown(server.get())); | 
 |   EXPECT_EQ(0, SSL_shutdown(client.get())); | 
 |  | 
 |   // Receive close_notify. | 
 |   EXPECT_EQ(1, SSL_shutdown(server.get())); | 
 |   EXPECT_EQ(1, SSL_shutdown(client.get())); | 
 | } | 
 |  | 
 | TEST(SSLTest, SignatureAlgorithmProperties) { | 
 |   EXPECT_EQ(EVP_PKEY_NONE, SSL_get_signature_algorithm_key_type(0x1234)); | 
 |   EXPECT_EQ(nullptr, SSL_get_signature_algorithm_digest(0x1234)); | 
 |   EXPECT_FALSE(SSL_is_signature_algorithm_rsa_pss(0x1234)); | 
 |  | 
 |   EXPECT_EQ(EVP_PKEY_RSA, | 
 |             SSL_get_signature_algorithm_key_type(SSL_SIGN_RSA_PKCS1_MD5_SHA1)); | 
 |   EXPECT_EQ(EVP_md5_sha1(), | 
 |             SSL_get_signature_algorithm_digest(SSL_SIGN_RSA_PKCS1_MD5_SHA1)); | 
 |   EXPECT_FALSE(SSL_is_signature_algorithm_rsa_pss(SSL_SIGN_RSA_PKCS1_MD5_SHA1)); | 
 |  | 
 |   EXPECT_EQ(EVP_PKEY_EC, SSL_get_signature_algorithm_key_type( | 
 |                              SSL_SIGN_ECDSA_SECP256R1_SHA256)); | 
 |   EXPECT_EQ(EVP_sha256(), SSL_get_signature_algorithm_digest( | 
 |                               SSL_SIGN_ECDSA_SECP256R1_SHA256)); | 
 |   EXPECT_FALSE( | 
 |       SSL_is_signature_algorithm_rsa_pss(SSL_SIGN_ECDSA_SECP256R1_SHA256)); | 
 |  | 
 |   EXPECT_EQ(EVP_PKEY_RSA, | 
 |             SSL_get_signature_algorithm_key_type(SSL_SIGN_RSA_PSS_RSAE_SHA384)); | 
 |   EXPECT_EQ(EVP_sha384(), | 
 |             SSL_get_signature_algorithm_digest(SSL_SIGN_RSA_PSS_RSAE_SHA384)); | 
 |   EXPECT_TRUE(SSL_is_signature_algorithm_rsa_pss(SSL_SIGN_RSA_PSS_RSAE_SHA384)); | 
 | } | 
 |  | 
 | static int XORCompressFunc(SSL *ssl, CBB *out, const uint8_t *in, | 
 |                            size_t in_len) { | 
 |   for (size_t i = 0; i < in_len; i++) { | 
 |     if (!CBB_add_u8(out, in[i] ^ 0x55)) { | 
 |       return 0; | 
 |     } | 
 |   } | 
 |  | 
 |   SSL_set_app_data(ssl, XORCompressFunc); | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | static int XORDecompressFunc(SSL *ssl, CRYPTO_BUFFER **out, | 
 |                              size_t uncompressed_len, const uint8_t *in, | 
 |                              size_t in_len) { | 
 |   if (in_len != uncompressed_len) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   uint8_t *data; | 
 |   *out = CRYPTO_BUFFER_alloc(&data, uncompressed_len); | 
 |   if (*out == nullptr) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   for (size_t i = 0; i < in_len; i++) { | 
 |     data[i] = in[i] ^ 0x55; | 
 |   } | 
 |  | 
 |   SSL_set_app_data(ssl, XORDecompressFunc); | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | TEST(SSLTest, CertCompression) { | 
 |   bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
 |   bssl::UniquePtr<SSL_CTX> server_ctx( | 
 |       CreateContextWithTestCertificate(TLS_method())); | 
 |   ASSERT_TRUE(client_ctx); | 
 |   ASSERT_TRUE(server_ctx); | 
 |  | 
 |   ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), TLS1_3_VERSION)); | 
 |   ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_3_VERSION)); | 
 |   ASSERT_TRUE(SSL_CTX_add_cert_compression_alg( | 
 |       client_ctx.get(), 0x1234, XORCompressFunc, XORDecompressFunc)); | 
 |   ASSERT_TRUE(SSL_CTX_add_cert_compression_alg( | 
 |       server_ctx.get(), 0x1234, XORCompressFunc, XORDecompressFunc)); | 
 |  | 
 |   bssl::UniquePtr<SSL> client, server; | 
 |   ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
 |                                      server_ctx.get())); | 
 |  | 
 |   EXPECT_TRUE(SSL_get_app_data(client.get()) == XORDecompressFunc); | 
 |   EXPECT_TRUE(SSL_get_app_data(server.get()) == XORCompressFunc); | 
 | } | 
 |  | 
 | void MoveBIOs(SSL *dest, SSL *src) { | 
 |   BIO *rbio = SSL_get_rbio(src); | 
 |   BIO_up_ref(rbio); | 
 |   SSL_set0_rbio(dest, rbio); | 
 |  | 
 |   BIO *wbio = SSL_get_wbio(src); | 
 |   BIO_up_ref(wbio); | 
 |   SSL_set0_wbio(dest, wbio); | 
 |  | 
 |   SSL_set0_rbio(src, nullptr); | 
 |   SSL_set0_wbio(src, nullptr); | 
 | } | 
 |  | 
 | TEST(SSLTest, Handoff) { | 
 |   bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
 |   bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method())); | 
 |   bssl::UniquePtr<SSL_CTX> handshaker_ctx( | 
 |       CreateContextWithTestCertificate(TLS_method())); | 
 |   ASSERT_TRUE(client_ctx); | 
 |   ASSERT_TRUE(server_ctx); | 
 |   ASSERT_TRUE(handshaker_ctx); | 
 |  | 
 |   SSL_CTX_set_session_cache_mode(client_ctx.get(), SSL_SESS_CACHE_CLIENT); | 
 |   SSL_CTX_sess_set_new_cb(client_ctx.get(), SaveLastSession); | 
 |   SSL_CTX_set_handoff_mode(server_ctx.get(), true); | 
 |   uint8_t keys[48]; | 
 |   SSL_CTX_get_tlsext_ticket_keys(server_ctx.get(), &keys, sizeof(keys)); | 
 |   SSL_CTX_set_tlsext_ticket_keys(handshaker_ctx.get(), &keys, sizeof(keys)); | 
 |  | 
 |   for (bool early_data : {false, true}) { | 
 |     SCOPED_TRACE(early_data); | 
 |     for (bool is_resume : {false, true}) { | 
 |       SCOPED_TRACE(is_resume); | 
 |       bssl::UniquePtr<SSL> client, server; | 
 |       ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), | 
 |                                         server_ctx.get())); | 
 |       SSL_set_early_data_enabled(client.get(), early_data); | 
 |       if (is_resume) { | 
 |         ASSERT_TRUE(g_last_session); | 
 |         SSL_set_session(client.get(), g_last_session.get()); | 
 |         if (early_data) { | 
 |           EXPECT_GT(g_last_session->ticket_max_early_data, 0u); | 
 |         } | 
 |       } | 
 |  | 
 |  | 
 |       int client_ret = SSL_do_handshake(client.get()); | 
 |       int client_err = SSL_get_error(client.get(), client_ret); | 
 |  | 
 |       uint8_t byte_written; | 
 |       if (early_data && is_resume) { | 
 |         ASSERT_EQ(client_err, 0); | 
 |         EXPECT_TRUE(SSL_in_early_data(client.get())); | 
 |         // Attempt to write early data. | 
 |         byte_written = 43; | 
 |         EXPECT_EQ(SSL_write(client.get(), &byte_written, 1), 1); | 
 |       } else { | 
 |         ASSERT_EQ(client_err, SSL_ERROR_WANT_READ); | 
 |       } | 
 |  | 
 |       int server_ret = SSL_do_handshake(server.get()); | 
 |       int server_err = SSL_get_error(server.get(), server_ret); | 
 |       ASSERT_EQ(server_err, SSL_ERROR_HANDOFF); | 
 |  | 
 |       ScopedCBB cbb; | 
 |       Array<uint8_t> handoff; | 
 |       SSL_CLIENT_HELLO hello; | 
 |       ASSERT_TRUE(CBB_init(cbb.get(), 256)); | 
 |       ASSERT_TRUE(SSL_serialize_handoff(server.get(), cbb.get(), &hello)); | 
 |       ASSERT_TRUE(CBBFinishArray(cbb.get(), &handoff)); | 
 |  | 
 |       bssl::UniquePtr<SSL> handshaker(SSL_new(handshaker_ctx.get())); | 
 |       ASSERT_TRUE(handshaker); | 
 |       // Note split handshakes determines 0-RTT support, for both the current | 
 |       // handshake and newly-issued tickets, entirely by |handshaker|. There is | 
 |       // no need to call |SSL_set_early_data_enabled| on |server|. | 
 |       SSL_set_early_data_enabled(handshaker.get(), 1); | 
 |       ASSERT_TRUE(SSL_apply_handoff(handshaker.get(), handoff)); | 
 |  | 
 |       MoveBIOs(handshaker.get(), server.get()); | 
 |  | 
 |       int handshake_ret = SSL_do_handshake(handshaker.get()); | 
 |       int handshake_err = SSL_get_error(handshaker.get(), handshake_ret); | 
 |       ASSERT_EQ(handshake_err, SSL_ERROR_HANDBACK); | 
 |  | 
 |       // Double-check that additional calls to |SSL_do_handshake| continue | 
 |       // to get |SSL_ERROR_HANDBACK|. | 
 |       handshake_ret = SSL_do_handshake(handshaker.get()); | 
 |       handshake_err = SSL_get_error(handshaker.get(), handshake_ret); | 
 |       ASSERT_EQ(handshake_err, SSL_ERROR_HANDBACK); | 
 |  | 
 |       ScopedCBB cbb_handback; | 
 |       Array<uint8_t> handback; | 
 |       ASSERT_TRUE(CBB_init(cbb_handback.get(), 1024)); | 
 |       ASSERT_TRUE(SSL_serialize_handback(handshaker.get(), cbb_handback.get())); | 
 |       ASSERT_TRUE(CBBFinishArray(cbb_handback.get(), &handback)); | 
 |  | 
 |       bssl::UniquePtr<SSL> server2(SSL_new(server_ctx.get())); | 
 |       ASSERT_TRUE(server2); | 
 |       ASSERT_TRUE(SSL_apply_handback(server2.get(), handback)); | 
 |  | 
 |       MoveBIOs(server2.get(), handshaker.get()); | 
 |       ASSERT_TRUE(CompleteHandshakes(client.get(), server2.get())); | 
 |       EXPECT_EQ(is_resume, SSL_session_reused(client.get())); | 
 |  | 
 |       if (early_data && is_resume) { | 
 |         // In this case, one byte of early data has already been written above. | 
 |         EXPECT_TRUE(SSL_early_data_accepted(client.get())); | 
 |       } else { | 
 |         byte_written = 42; | 
 |         EXPECT_EQ(SSL_write(client.get(), &byte_written, 1), 1); | 
 |       } | 
 |       uint8_t byte; | 
 |       EXPECT_EQ(SSL_read(server2.get(), &byte, 1), 1); | 
 |       EXPECT_EQ(byte_written, byte); | 
 |  | 
 |       byte = 44; | 
 |       EXPECT_EQ(SSL_write(server2.get(), &byte, 1), 1); | 
 |       EXPECT_EQ(SSL_read(client.get(), &byte, 1), 1); | 
 |       EXPECT_EQ(44, byte); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | TEST(SSLTest, HandoffDeclined) { | 
 |   bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
 |   bssl::UniquePtr<SSL_CTX> server_ctx( | 
 |       CreateContextWithTestCertificate(TLS_method())); | 
 |   ASSERT_TRUE(client_ctx); | 
 |   ASSERT_TRUE(server_ctx); | 
 |  | 
 |   SSL_CTX_set_handoff_mode(server_ctx.get(), true); | 
 |   ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_2_VERSION)); | 
 |  | 
 |   bssl::UniquePtr<SSL> client, server; | 
 |   ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), | 
 |                                     server_ctx.get())); | 
 |  | 
 |   int client_ret = SSL_do_handshake(client.get()); | 
 |   int client_err = SSL_get_error(client.get(), client_ret); | 
 |   ASSERT_EQ(client_err, SSL_ERROR_WANT_READ); | 
 |  | 
 |   int server_ret = SSL_do_handshake(server.get()); | 
 |   int server_err = SSL_get_error(server.get(), server_ret); | 
 |   ASSERT_EQ(server_err, SSL_ERROR_HANDOFF); | 
 |  | 
 |   ScopedCBB cbb; | 
 |   SSL_CLIENT_HELLO hello; | 
 |   ASSERT_TRUE(CBB_init(cbb.get(), 256)); | 
 |   ASSERT_TRUE(SSL_serialize_handoff(server.get(), cbb.get(), &hello)); | 
 |  | 
 |   ASSERT_TRUE(SSL_decline_handoff(server.get())); | 
 |  | 
 |   ASSERT_TRUE(CompleteHandshakes(client.get(), server.get())); | 
 |  | 
 |   uint8_t byte = 42; | 
 |   EXPECT_EQ(SSL_write(client.get(), &byte, 1), 1); | 
 |   EXPECT_EQ(SSL_read(server.get(), &byte, 1), 1); | 
 |   EXPECT_EQ(42, byte); | 
 |  | 
 |   byte = 43; | 
 |   EXPECT_EQ(SSL_write(server.get(), &byte, 1), 1); | 
 |   EXPECT_EQ(SSL_read(client.get(), &byte, 1), 1); | 
 |   EXPECT_EQ(43, byte); | 
 | } | 
 |  | 
 | static std::string SigAlgsToString(Span<const uint16_t> sigalgs) { | 
 |   std::string ret = "{"; | 
 |  | 
 |   for (uint16_t v : sigalgs) { | 
 |     if (ret.size() > 1) { | 
 |       ret += ", "; | 
 |     } | 
 |  | 
 |     char buf[8]; | 
 |     snprintf(buf, sizeof(buf) - 1, "0x%02x", v); | 
 |     buf[sizeof(buf)-1] = 0; | 
 |     ret += std::string(buf); | 
 |   } | 
 |  | 
 |   ret += "}"; | 
 |   return ret; | 
 | } | 
 |  | 
 | void ExpectSigAlgsEqual(Span<const uint16_t> expected, | 
 |                         Span<const uint16_t> actual) { | 
 |   bool matches = false; | 
 |   if (expected.size() == actual.size()) { | 
 |     matches = true; | 
 |  | 
 |     for (size_t i = 0; i < expected.size(); i++) { | 
 |       if (expected[i] != actual[i]) { | 
 |         matches = false; | 
 |         break; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (!matches) { | 
 |     ADD_FAILURE() << "expected: " << SigAlgsToString(expected) | 
 |                   << " got: " << SigAlgsToString(actual); | 
 |   } | 
 | } | 
 |  | 
 | TEST(SSLTest, SigAlgs) { | 
 |   static const struct { | 
 |     std::vector<int> input; | 
 |     bool ok; | 
 |     std::vector<uint16_t> expected; | 
 |   } kTests[] = { | 
 |       {{}, true, {}}, | 
 |       {{1}, false, {}}, | 
 |       {{1, 2, 3}, false, {}}, | 
 |       {{NID_sha256, EVP_PKEY_ED25519}, false, {}}, | 
 |       {{NID_sha256, EVP_PKEY_RSA, NID_sha256, EVP_PKEY_RSA}, false, {}}, | 
 |  | 
 |       {{NID_sha256, EVP_PKEY_RSA}, true, {SSL_SIGN_RSA_PKCS1_SHA256}}, | 
 |       {{NID_sha512, EVP_PKEY_RSA}, true, {SSL_SIGN_RSA_PKCS1_SHA512}}, | 
 |       {{NID_sha256, EVP_PKEY_RSA_PSS}, true, {SSL_SIGN_RSA_PSS_RSAE_SHA256}}, | 
 |       {{NID_undef, EVP_PKEY_ED25519}, true, {SSL_SIGN_ED25519}}, | 
 |       {{NID_undef, EVP_PKEY_ED25519, NID_sha384, EVP_PKEY_EC}, | 
 |        true, | 
 |        {SSL_SIGN_ED25519, SSL_SIGN_ECDSA_SECP384R1_SHA384}}, | 
 |   }; | 
 |  | 
 |   UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
 |   ASSERT_TRUE(ctx); | 
 |  | 
 |   unsigned n = 1; | 
 |   for (const auto &test : kTests) { | 
 |     SCOPED_TRACE(n++); | 
 |  | 
 |     const bool ok = | 
 |         SSL_CTX_set1_sigalgs(ctx.get(), test.input.data(), test.input.size()); | 
 |     EXPECT_EQ(ok, test.ok); | 
 |  | 
 |     if (!ok) { | 
 |       ERR_clear_error(); | 
 |     } | 
 |  | 
 |     if (!test.ok) { | 
 |       continue; | 
 |     } | 
 |  | 
 |     ExpectSigAlgsEqual(test.expected, ctx->cert->sigalgs); | 
 |   } | 
 | } | 
 |  | 
 | TEST(SSLTest, SigAlgsList) { | 
 |   static const struct { | 
 |     const char *input; | 
 |     bool ok; | 
 |     std::vector<uint16_t> expected; | 
 |   } kTests[] = { | 
 |       {"", false, {}}, | 
 |       {":", false, {}}, | 
 |       {"+", false, {}}, | 
 |       {"RSA", false, {}}, | 
 |       {"RSA+", false, {}}, | 
 |       {"RSA+SHA256:", false, {}}, | 
 |       {":RSA+SHA256:", false, {}}, | 
 |       {":RSA+SHA256+:", false, {}}, | 
 |       {"!", false, {}}, | 
 |       {"\x01", false, {}}, | 
 |       {"RSA+SHA256:RSA+SHA384:RSA+SHA256", false, {}}, | 
 |       {"RSA-PSS+SHA256:rsa_pss_rsae_sha256", false, {}}, | 
 |  | 
 |       {"RSA+SHA256", true, {SSL_SIGN_RSA_PKCS1_SHA256}}, | 
 |       {"RSA+SHA256:ed25519", | 
 |        true, | 
 |        {SSL_SIGN_RSA_PKCS1_SHA256, SSL_SIGN_ED25519}}, | 
 |       {"ECDSA+SHA256:RSA+SHA512", | 
 |        true, | 
 |        {SSL_SIGN_ECDSA_SECP256R1_SHA256, SSL_SIGN_RSA_PKCS1_SHA512}}, | 
 |       {"ecdsa_secp256r1_sha256:rsa_pss_rsae_sha256", | 
 |        true, | 
 |        {SSL_SIGN_ECDSA_SECP256R1_SHA256, SSL_SIGN_RSA_PSS_RSAE_SHA256}}, | 
 |       {"RSA-PSS+SHA256", true, {SSL_SIGN_RSA_PSS_RSAE_SHA256}}, | 
 |       {"PSS+SHA256", true, {SSL_SIGN_RSA_PSS_RSAE_SHA256}}, | 
 |   }; | 
 |  | 
 |   UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
 |   ASSERT_TRUE(ctx); | 
 |  | 
 |   unsigned n = 1; | 
 |   for (const auto &test : kTests) { | 
 |     SCOPED_TRACE(n++); | 
 |  | 
 |     const bool ok = SSL_CTX_set1_sigalgs_list(ctx.get(), test.input); | 
 |     EXPECT_EQ(ok, test.ok); | 
 |  | 
 |     if (!ok) { | 
 |       if (test.ok) { | 
 |         ERR_print_errors_fp(stderr); | 
 |       } | 
 |       ERR_clear_error(); | 
 |     } | 
 |  | 
 |     if (!test.ok) { | 
 |       continue; | 
 |     } | 
 |  | 
 |     ExpectSigAlgsEqual(test.expected, ctx->cert->sigalgs); | 
 |   } | 
 | } | 
 |  | 
 | TEST(SSLTest, ApplyHandoffRemovesUnsupportedCiphers) { | 
 |   bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method())); | 
 |   ASSERT_TRUE(server_ctx); | 
 |   bssl::UniquePtr<SSL> server(SSL_new(server_ctx.get())); | 
 |   ASSERT_TRUE(server); | 
 |  | 
 |   // handoff is a handoff message that has been artificially modified to pretend | 
 |   // that only TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (0xc02f) is supported. When | 
 |   // it is applied to |server|, all ciphers but that one should be removed. | 
 |   // | 
 |   // To make a new one of these, try sticking this in the |Handoff| test above: | 
 |   // | 
 |   // hexdump(stderr, "", handoff.data(), handoff.size()); | 
 |   // sed -e 's/\(..\)/0x\1, /g' | 
 |   // | 
 |   // and modify serialize_features() to emit only cipher 0x0A. | 
 |  | 
 |   uint8_t handoff[] = { | 
 |       0x30, 0x81, 0x9a, 0x02, 0x01, 0x00, 0x04, 0x00, 0x04, 0x81, 0x82, 0x01, | 
 |       0x00, 0x00, 0x7e, 0x03, 0x03, 0x30, 0x8e, 0x8f, 0x79, 0xd2, 0x87, 0x39, | 
 |       0xc2, 0x23, 0x23, 0x13, 0xca, 0x3c, 0x80, 0x44, 0xfd, 0x80, 0x83, 0x62, | 
 |       0x3c, 0xcc, 0xf8, 0x76, 0xd3, 0x62, 0xbb, 0x54, 0xe3, 0xc4, 0x39, 0x24, | 
 |       0xa5, 0x00, 0x00, 0x1e, 0xc0, 0x2b, 0xc0, 0x2f, 0xc0, 0x2c, 0xc0, 0x30, | 
 |       0xcc, 0xa9, 0xcc, 0xa8, 0xc0, 0x09, 0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14, | 
 |       0x00, 0x9c, 0x00, 0x9d, 0x00, 0x2f, 0x00, 0x35, 0x00, 0x0a, 0x01, 0x00, | 
 |       0x00, 0x37, 0x00, 0x17, 0x00, 0x00, 0xff, 0x01, 0x00, 0x01, 0x00, 0x00, | 
 |       0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, 0x17, 0x00, 0x18, 0x00, | 
 |       0x0b, 0x00, 0x02, 0x01, 0x00, 0x00, 0x23, 0x00, 0x00, 0x00, 0x0d, 0x00, | 
 |       0x14, 0x00, 0x12, 0x04, 0x03, 0x08, 0x04, 0x04, 0x01, 0x05, 0x03, 0x08, | 
 |       0x05, 0x05, 0x01, 0x08, 0x06, 0x06, 0x01, 0x02, 0x01, 0x04, 0x02, 0xc0, | 
 |       0x2f, 0x04, 0x0a, 0x00, 0x15, 0x00, 0x17, 0x00, 0x18, 0x00, 0x19, 0x00, | 
 |       0x1d, | 
 |   }; | 
 |  | 
 |   EXPECT_LT(1u, sk_SSL_CIPHER_num(SSL_get_ciphers(server.get()))); | 
 |   ASSERT_TRUE( | 
 |       SSL_apply_handoff(server.get(), {handoff, OPENSSL_ARRAY_SIZE(handoff)})); | 
 |   EXPECT_EQ(1u, sk_SSL_CIPHER_num(SSL_get_ciphers(server.get()))); | 
 | } | 
 |  | 
 | TEST(SSLTest, ApplyHandoffRemovesUnsupportedCurves) { | 
 |   bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method())); | 
 |   ASSERT_TRUE(server_ctx); | 
 |   bssl::UniquePtr<SSL> server(SSL_new(server_ctx.get())); | 
 |   ASSERT_TRUE(server); | 
 |  | 
 |   // handoff is a handoff message that has been artificially modified to pretend | 
 |   // that only one ECDH group is supported.  When it is applied to |server|, all | 
 |   // groups but that one should be removed. | 
 |   // | 
 |   // See |ApplyHandoffRemovesUnsupportedCiphers| for how to make a new one of | 
 |   // these. | 
 |   uint8_t handoff[] = { | 
 |       0x30, 0x81, 0xc0, 0x02, 0x01, 0x00, 0x04, 0x00, 0x04, 0x81, 0x82, 0x01, | 
 |       0x00, 0x00, 0x7e, 0x03, 0x03, 0x98, 0x30, 0xce, 0xd9, 0xb0, 0xdf, 0x5f, | 
 |       0x82, 0x05, 0x4a, 0x43, 0x67, 0x7e, 0xdb, 0x6a, 0x4f, 0x21, 0x18, 0x4e, | 
 |       0x0d, 0x94, 0x63, 0x18, 0x8b, 0x54, 0x89, 0xdb, 0x8b, 0x1d, 0x84, 0xbc, | 
 |       0x09, 0x00, 0x00, 0x1e, 0xc0, 0x2b, 0xc0, 0x2f, 0xc0, 0x2c, 0xc0, 0x30, | 
 |       0xcc, 0xa9, 0xcc, 0xa8, 0xc0, 0x09, 0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14, | 
 |       0x00, 0x9c, 0x00, 0x9d, 0x00, 0x2f, 0x00, 0x35, 0x00, 0x0a, 0x01, 0x00, | 
 |       0x00, 0x37, 0x00, 0x17, 0x00, 0x00, 0xff, 0x01, 0x00, 0x01, 0x00, 0x00, | 
 |       0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, 0x17, 0x00, 0x18, 0x00, | 
 |       0x0b, 0x00, 0x02, 0x01, 0x00, 0x00, 0x23, 0x00, 0x00, 0x00, 0x0d, 0x00, | 
 |       0x14, 0x00, 0x12, 0x04, 0x03, 0x08, 0x04, 0x04, 0x01, 0x05, 0x03, 0x08, | 
 |       0x05, 0x05, 0x01, 0x08, 0x06, 0x06, 0x01, 0x02, 0x01, 0x04, 0x30, 0x00, | 
 |       0x02, 0x00, 0x0a, 0x00, 0x2f, 0x00, 0x35, 0x00, 0x8c, 0x00, 0x8d, 0x00, | 
 |       0x9c, 0x00, 0x9d, 0x13, 0x01, 0x13, 0x02, 0x13, 0x03, 0xc0, 0x09, 0xc0, | 
 |       0x0a, 0xc0, 0x13, 0xc0, 0x14, 0xc0, 0x2b, 0xc0, 0x2c, 0xc0, 0x2f, 0xc0, | 
 |       0x30, 0xc0, 0x35, 0xc0, 0x36, 0xcc, 0xa8, 0xcc, 0xa9, 0xcc, 0xac, 0x04, | 
 |       0x02, 0x00, 0x17, | 
 |   }; | 
 |  | 
 |   // The zero length means that the default list of groups is used. | 
 |   EXPECT_EQ(0u, server->config->supported_group_list.size()); | 
 |   ASSERT_TRUE( | 
 |       SSL_apply_handoff(server.get(), {handoff, OPENSSL_ARRAY_SIZE(handoff)})); | 
 |   EXPECT_EQ(1u, server->config->supported_group_list.size()); | 
 | } | 
 |  | 
 | TEST(SSLTest, ZeroSizedWiteFlushesHandshakeMessages) { | 
 |   // If there are pending handshake mesages, an |SSL_write| of zero bytes should | 
 |   // flush them. | 
 |   bssl::UniquePtr<SSL_CTX> server_ctx( | 
 |       CreateContextWithTestCertificate(TLS_method())); | 
 |   ASSERT_TRUE(server_ctx); | 
 |   EXPECT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_3_VERSION)); | 
 |   EXPECT_TRUE(SSL_CTX_set_min_proto_version(server_ctx.get(), TLS1_3_VERSION)); | 
 |  | 
 |   bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
 |   ASSERT_TRUE(client_ctx); | 
 |   EXPECT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), TLS1_3_VERSION)); | 
 |   EXPECT_TRUE(SSL_CTX_set_min_proto_version(client_ctx.get(), TLS1_3_VERSION)); | 
 |  | 
 |   bssl::UniquePtr<SSL> client, server; | 
 |   ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
 |                                      server_ctx.get())); | 
 |  | 
 |   BIO *client_wbio = SSL_get_wbio(client.get()); | 
 |   EXPECT_EQ(0u, BIO_wpending(client_wbio)); | 
 |   EXPECT_TRUE(SSL_key_update(client.get(), SSL_KEY_UPDATE_NOT_REQUESTED)); | 
 |   EXPECT_EQ(0u, BIO_wpending(client_wbio)); | 
 |   EXPECT_EQ(0, SSL_write(client.get(), nullptr, 0)); | 
 |   EXPECT_NE(0u, BIO_wpending(client_wbio)); | 
 | } | 
 |  | 
 | TEST_P(SSLVersionTest, VerifyBeforeCertRequest) { | 
 |   // Configure the server to request client certificates. | 
 |   SSL_CTX_set_custom_verify( | 
 |       server_ctx_.get(), SSL_VERIFY_PEER, | 
 |       [](SSL *ssl, uint8_t *out_alert) { return ssl_verify_ok; }); | 
 |  | 
 |   // Configure the client to reject the server certificate. | 
 |   SSL_CTX_set_custom_verify( | 
 |       client_ctx_.get(), SSL_VERIFY_PEER, | 
 |       [](SSL *ssl, uint8_t *out_alert) { return ssl_verify_invalid; }); | 
 |  | 
 |   // cert_cb should not be called. Verification should fail first. | 
 |   SSL_CTX_set_cert_cb(client_ctx_.get(), | 
 |                       [](SSL *ssl, void *arg) { | 
 |                         ADD_FAILURE() << "cert_cb unexpectedly called"; | 
 |                         return 0; | 
 |                       }, | 
 |                       nullptr); | 
 |  | 
 |   bssl::UniquePtr<SSL> client, server; | 
 |   EXPECT_FALSE(ConnectClientAndServer(&client, &server, client_ctx_.get(), | 
 |                                       server_ctx_.get())); | 
 | } | 
 |  | 
 | // Test that ticket-based sessions on the client get fake session IDs. | 
 | TEST_P(SSLVersionTest, FakeIDsForTickets) { | 
 |   SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |   SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |  | 
 |   bssl::UniquePtr<SSL_SESSION> session = | 
 |       CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
 |   ASSERT_TRUE(session); | 
 |  | 
 |   EXPECT_TRUE(SSL_SESSION_has_ticket(session.get())); | 
 |   unsigned session_id_length; | 
 |   SSL_SESSION_get_id(session.get(), &session_id_length); | 
 |   EXPECT_NE(session_id_length, 0u); | 
 | } | 
 |  | 
 | // These tests test multi-threaded behavior. They are intended to run with | 
 | // ThreadSanitizer. | 
 | #if defined(OPENSSL_THREADS) | 
 | TEST_P(SSLVersionTest, SessionCacheThreads) { | 
 |   SSL_CTX_set_options(server_ctx_.get(), SSL_OP_NO_TICKET); | 
 |   SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |   SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |  | 
 |   if (version() == TLS1_3_VERSION) { | 
 |     // Our TLS 1.3 implementation does not support stateful resumption. | 
 |     ASSERT_FALSE(CreateClientSession(client_ctx_.get(), server_ctx_.get())); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Establish two client sessions to test with. | 
 |   bssl::UniquePtr<SSL_SESSION> session1 = | 
 |       CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
 |   ASSERT_TRUE(session1); | 
 |   bssl::UniquePtr<SSL_SESSION> session2 = | 
 |       CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
 |   ASSERT_TRUE(session2); | 
 |  | 
 |   auto connect_with_session = [&](SSL_SESSION *session) { | 
 |     ClientConfig config; | 
 |     config.session = session; | 
 |     UniquePtr<SSL> client, server; | 
 |     ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(), | 
 |                                        server_ctx_.get(), config)); | 
 |   }; | 
 |  | 
 |   // Resume sessions in parallel with establishing new ones. | 
 |   { | 
 |     std::vector<std::thread> threads; | 
 |     threads.emplace_back([&] { connect_with_session(nullptr); }); | 
 |     threads.emplace_back([&] { connect_with_session(nullptr); }); | 
 |     threads.emplace_back([&] { connect_with_session(session1.get()); }); | 
 |     threads.emplace_back([&] { connect_with_session(session1.get()); }); | 
 |     threads.emplace_back([&] { connect_with_session(session2.get()); }); | 
 |     threads.emplace_back([&] { connect_with_session(session2.get()); }); | 
 |     for (auto &thread : threads) { | 
 |       thread.join(); | 
 |     } | 
 |   } | 
 |  | 
 |   // Hit the maximum session cache size across multiple threads, to test the | 
 |   // size enforcement logic. | 
 |   size_t limit = SSL_CTX_sess_number(server_ctx_.get()) + 2; | 
 |   SSL_CTX_sess_set_cache_size(server_ctx_.get(), limit); | 
 |   { | 
 |     std::vector<std::thread> threads; | 
 |     for (int i = 0; i < 4; i++) { | 
 |       threads.emplace_back([&]() { | 
 |         connect_with_session(nullptr); | 
 |         EXPECT_LE(SSL_CTX_sess_number(server_ctx_.get()), limit); | 
 |       }); | 
 |     } | 
 |     for (auto &thread : threads) { | 
 |       thread.join(); | 
 |     } | 
 |     EXPECT_EQ(SSL_CTX_sess_number(server_ctx_.get()), limit); | 
 |   } | 
 |  | 
 |   // Reset the session cache, this time with a mock clock. | 
 |   ASSERT_NO_FATAL_FAILURE(ResetContexts()); | 
 |   SSL_CTX_set_options(server_ctx_.get(), SSL_OP_NO_TICKET); | 
 |   SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |   SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |   SSL_CTX_set_current_time_cb(server_ctx_.get(), CurrentTimeCallback); | 
 |  | 
 |   // Make some sessions at an arbitrary start time. Then expire them. | 
 |   g_current_time.tv_sec = 1000; | 
 |   bssl::UniquePtr<SSL_SESSION> expired_session1 = | 
 |       CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
 |   ASSERT_TRUE(expired_session1); | 
 |   bssl::UniquePtr<SSL_SESSION> expired_session2 = | 
 |       CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
 |   ASSERT_TRUE(expired_session2); | 
 |   g_current_time.tv_sec += 100 * SSL_DEFAULT_SESSION_TIMEOUT; | 
 |  | 
 |   session1 = CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
 |   ASSERT_TRUE(session1); | 
 |  | 
 |   // Every 256 connections, we flush stale sessions from the session cache. Test | 
 |   // this logic is correctly synchronized with other connection attempts. | 
 |   static const int kNumConnections = 256; | 
 |   { | 
 |     std::vector<std::thread> threads; | 
 |     threads.emplace_back([&] { | 
 |       for (int i = 0; i < kNumConnections; i++) { | 
 |         connect_with_session(nullptr); | 
 |       } | 
 |     }); | 
 |     threads.emplace_back([&] { | 
 |       for (int i = 0; i < kNumConnections; i++) { | 
 |         connect_with_session(nullptr); | 
 |       } | 
 |     }); | 
 |     threads.emplace_back([&] { | 
 |       // Never connect with |expired_session2|. The session cache eagerly | 
 |       // removes expired sessions when it sees them. Leaving |expired_session2| | 
 |       // untouched ensures it is instead cleared by periodic flushing. | 
 |       for (int i = 0; i < kNumConnections; i++) { | 
 |         connect_with_session(expired_session1.get()); | 
 |       } | 
 |     }); | 
 |     threads.emplace_back([&] { | 
 |       for (int i = 0; i < kNumConnections; i++) { | 
 |         connect_with_session(session1.get()); | 
 |       } | 
 |     }); | 
 |     for (auto &thread : threads) { | 
 |       thread.join(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(SSLVersionTest, SessionTicketThreads) { | 
 |   for (bool renew_ticket : {false, true}) { | 
 |     SCOPED_TRACE(renew_ticket); | 
 |     ASSERT_NO_FATAL_FAILURE(ResetContexts()); | 
 |     SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |     SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |     if (renew_ticket) { | 
 |       SSL_CTX_set_tlsext_ticket_key_cb(server_ctx_.get(), RenewTicketCallback); | 
 |     } | 
 |  | 
 |     // Establish two client sessions to test with. | 
 |     bssl::UniquePtr<SSL_SESSION> session1 = | 
 |         CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
 |     ASSERT_TRUE(session1); | 
 |     bssl::UniquePtr<SSL_SESSION> session2 = | 
 |         CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
 |     ASSERT_TRUE(session2); | 
 |  | 
 |     auto connect_with_session = [&](SSL_SESSION *session) { | 
 |       ClientConfig config; | 
 |       config.session = session; | 
 |       UniquePtr<SSL> client, server; | 
 |       ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(), | 
 |                                          server_ctx_.get(), config)); | 
 |     }; | 
 |  | 
 |     // Resume sessions in parallel with establishing new ones. | 
 |     { | 
 |       std::vector<std::thread> threads; | 
 |       threads.emplace_back([&] { connect_with_session(nullptr); }); | 
 |       threads.emplace_back([&] { connect_with_session(nullptr); }); | 
 |       threads.emplace_back([&] { connect_with_session(session1.get()); }); | 
 |       threads.emplace_back([&] { connect_with_session(session1.get()); }); | 
 |       threads.emplace_back([&] { connect_with_session(session2.get()); }); | 
 |       threads.emplace_back([&] { connect_with_session(session2.get()); }); | 
 |       for (auto &thread : threads) { | 
 |         thread.join(); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // SSL_CTX_get0_certificate needs to lock internally. Test this works. | 
 | TEST(SSLTest, GetCertificateThreads) { | 
 |   bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
 |   ASSERT_TRUE(ctx); | 
 |   bssl::UniquePtr<X509> cert = GetTestCertificate(); | 
 |   ASSERT_TRUE(cert); | 
 |   ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), cert.get())); | 
 |  | 
 |   // Existing code expects |SSL_CTX_get0_certificate| to be callable from two | 
 |   // threads concurrently. It originally was an immutable operation. Now we | 
 |   // implement it with a thread-safe cache, so it is worth testing. | 
 |   X509 *cert2_thread; | 
 |   std::thread thread( | 
 |       [&] { cert2_thread = SSL_CTX_get0_certificate(ctx.get()); }); | 
 |   X509 *cert2 = SSL_CTX_get0_certificate(ctx.get()); | 
 |   thread.join(); | 
 |  | 
 |   ASSERT_TRUE(cert2); | 
 |   ASSERT_TRUE(cert2_thread); | 
 |   EXPECT_EQ(cert2, cert2_thread); | 
 |   EXPECT_EQ(0, X509_cmp(cert.get(), cert2)); | 
 | } | 
 |  | 
 | // Functions which access properties on the negotiated session are thread-safe | 
 | // where needed. Prior to TLS 1.3, clients resuming sessions and servers | 
 | // performing stateful resumption will share an underlying SSL_SESSION object, | 
 | // potentially across threads. | 
 | TEST_P(SSLVersionTest, SessionPropertiesThreads) { | 
 |   if (version() == TLS1_3_VERSION) { | 
 |     // Our TLS 1.3 implementation does not support stateful resumption. | 
 |     ASSERT_FALSE(CreateClientSession(client_ctx_.get(), server_ctx_.get())); | 
 |     return; | 
 |   } | 
 |  | 
 |   SSL_CTX_set_options(server_ctx_.get(), SSL_OP_NO_TICKET); | 
 |   SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |   SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |  | 
 |   ASSERT_TRUE(UseCertAndKey(client_ctx_.get())); | 
 |   ASSERT_TRUE(UseCertAndKey(server_ctx_.get())); | 
 |  | 
 |   // Configure mutual authentication, so we have more session state. | 
 |   SSL_CTX_set_custom_verify( | 
 |       client_ctx_.get(), SSL_VERIFY_PEER, | 
 |       [](SSL *ssl, uint8_t *out_alert) { return ssl_verify_ok; }); | 
 |   SSL_CTX_set_custom_verify( | 
 |       server_ctx_.get(), SSL_VERIFY_PEER, | 
 |       [](SSL *ssl, uint8_t *out_alert) { return ssl_verify_ok; }); | 
 |  | 
 |   // Establish a client session to test with. | 
 |   bssl::UniquePtr<SSL_SESSION> session = | 
 |       CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
 |   ASSERT_TRUE(session); | 
 |  | 
 |   // Resume with it twice. | 
 |   UniquePtr<SSL> ssls[4]; | 
 |   ClientConfig config; | 
 |   config.session = session.get(); | 
 |   ASSERT_TRUE(ConnectClientAndServer(&ssls[0], &ssls[1], client_ctx_.get(), | 
 |                                      server_ctx_.get(), config)); | 
 |   ASSERT_TRUE(ConnectClientAndServer(&ssls[2], &ssls[3], client_ctx_.get(), | 
 |                                      server_ctx_.get(), config)); | 
 |  | 
 |   // Read properties in parallel. | 
 |   auto read_properties = [](const SSL *ssl) { | 
 |     EXPECT_TRUE(SSL_get_peer_cert_chain(ssl)); | 
 |     bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(ssl)); | 
 |     EXPECT_TRUE(peer); | 
 |     EXPECT_TRUE(SSL_get_current_cipher(ssl)); | 
 |     EXPECT_TRUE(SSL_get_group_id(ssl)); | 
 |   }; | 
 |  | 
 |   std::vector<std::thread> threads; | 
 |   for (const auto &ssl_ptr : ssls) { | 
 |     const SSL *ssl = ssl_ptr.get(); | 
 |     threads.emplace_back([=] { read_properties(ssl); }); | 
 |   } | 
 |   for (auto &thread : threads) { | 
 |     thread.join(); | 
 |   } | 
 | } | 
 |  | 
 | static void SetValueOnFree(void *parent, void *ptr, CRYPTO_EX_DATA *ad, | 
 |                           int index, long argl, void *argp) { | 
 |   if (ptr != nullptr) { | 
 |     *static_cast<long *>(ptr) = argl; | 
 |   } | 
 | } | 
 |  | 
 | // Test that one thread can register ex_data while another thread is destroying | 
 | // an object that uses it. | 
 | TEST(SSLTest, ExDataThreads) { | 
 |   static bool already_run = false; | 
 |   if (already_run) { | 
 |     GTEST_SKIP() << "This test consumes process-global resources and can only " | 
 |                     "be run once in a process. It is not compatible with " | 
 |                     "--gtest_repeat."; | 
 |   } | 
 |   already_run = true; | 
 |  | 
 |   bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
 |   ASSERT_TRUE(ctx); | 
 |  | 
 |   // Register an initial index, so the threads can exercise having any ex_data. | 
 |   int first_index = | 
 |       SSL_get_ex_new_index(-1, nullptr, nullptr, nullptr, SetValueOnFree); | 
 |   ASSERT_GE(first_index, 0); | 
 |  | 
 |   // Callers may register indices concurrently with using other indices. This | 
 |   // may happen if one part of an application is initializing while another part | 
 |   // is already running. | 
 |   static constexpr int kNumIndices = 3; | 
 |   static constexpr int kNumSSLs = 10; | 
 |   int index[kNumIndices]; | 
 |   long values[kNumSSLs]; | 
 |   std::fill(std::begin(values), std::end(values), -2); | 
 |   std::vector<std::thread> threads; | 
 |   for (size_t i = 0; i < kNumIndices; i++) { | 
 |     threads.emplace_back([&, i] { | 
 |       index[i] = SSL_get_ex_new_index(static_cast<long>(i), nullptr, nullptr, | 
 |                                       nullptr, SetValueOnFree); | 
 |       ASSERT_GE(index[i], 0); | 
 |     }); | 
 |   } | 
 |   for (size_t i = 0; i < kNumSSLs; i++) { | 
 |     threads.emplace_back([&, i] { | 
 |       bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); | 
 |       ASSERT_TRUE(ssl); | 
 |       ASSERT_TRUE(SSL_set_ex_data(ssl.get(), first_index, &values[i])); | 
 |     }); | 
 |   } | 
 |   for (auto &thread : threads) { | 
 |     thread.join(); | 
 |   } | 
 |  | 
 |   // Each of the SSL threads should have set their flag via ex_data. | 
 |   for (size_t i = 0; i < kNumSSLs; i++) { | 
 |     EXPECT_EQ(values[i], -1); | 
 |   } | 
 |  | 
 |   // Each of the newly-registered indices should be distinct and work correctly. | 
 |   static_assert(kNumIndices <= kNumSSLs, "values buffer too small"); | 
 |   std::fill(std::begin(values), std::end(values), -2); | 
 |   bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); | 
 |   ASSERT_TRUE(ssl); | 
 |   for (size_t i = 0; i < kNumIndices; i++) { | 
 |     for (size_t j = 0; j < i; j++) { | 
 |       EXPECT_NE(index[i], index[j]); | 
 |     } | 
 |     ASSERT_TRUE(SSL_set_ex_data(ssl.get(), index[i], &values[i])); | 
 |   } | 
 |   ssl = nullptr; | 
 |   for (size_t i = 0; i < kNumIndices; i++) { | 
 |     EXPECT_EQ(values[i], static_cast<long>(i)); | 
 |   } | 
 | } | 
 | #endif  // OPENSSL_THREADS | 
 |  | 
 | constexpr size_t kNumQUICLevels = 4; | 
 | static_assert(ssl_encryption_initial < kNumQUICLevels, | 
 |               "kNumQUICLevels is wrong"); | 
 | static_assert(ssl_encryption_early_data < kNumQUICLevels, | 
 |               "kNumQUICLevels is wrong"); | 
 | static_assert(ssl_encryption_handshake < kNumQUICLevels, | 
 |               "kNumQUICLevels is wrong"); | 
 | static_assert(ssl_encryption_application < kNumQUICLevels, | 
 |               "kNumQUICLevels is wrong"); | 
 |  | 
 | const char *LevelToString(ssl_encryption_level_t level) { | 
 |   switch (level) { | 
 |     case ssl_encryption_initial: | 
 |       return "initial"; | 
 |     case ssl_encryption_early_data: | 
 |       return "early data"; | 
 |     case ssl_encryption_handshake: | 
 |       return "handshake"; | 
 |     case ssl_encryption_application: | 
 |       return "application"; | 
 |   } | 
 |   return "<unknown>"; | 
 | } | 
 |  | 
 | class MockQUICTransport { | 
 |  public: | 
 |   enum class Role { kClient, kServer }; | 
 |  | 
 |   explicit MockQUICTransport(Role role) : role_(role) { | 
 |     // The caller is expected to configure initial secrets. | 
 |     levels_[ssl_encryption_initial].write_secret = {1}; | 
 |     levels_[ssl_encryption_initial].read_secret = {1}; | 
 |   } | 
 |  | 
 |   void set_peer(MockQUICTransport *peer) { peer_ = peer; } | 
 |  | 
 |   bool has_alert() const { return has_alert_; } | 
 |   ssl_encryption_level_t alert_level() const { return alert_level_; } | 
 |   uint8_t alert() const { return alert_; } | 
 |  | 
 |   bool PeerSecretsMatch(ssl_encryption_level_t level) const { | 
 |     return levels_[level].write_secret == peer_->levels_[level].read_secret && | 
 |            levels_[level].read_secret == peer_->levels_[level].write_secret && | 
 |            levels_[level].cipher == peer_->levels_[level].cipher; | 
 |   } | 
 |  | 
 |   bool HasReadSecret(ssl_encryption_level_t level) const { | 
 |     return !levels_[level].read_secret.empty(); | 
 |   } | 
 |  | 
 |   bool HasWriteSecret(ssl_encryption_level_t level) const { | 
 |     return !levels_[level].write_secret.empty(); | 
 |   } | 
 |  | 
 |   void AllowOutOfOrderWrites() { allow_out_of_order_writes_ = true; } | 
 |  | 
 |   bool SetReadSecret(ssl_encryption_level_t level, const SSL_CIPHER *cipher, | 
 |                      Span<const uint8_t> secret) { | 
 |     if (HasReadSecret(level)) { | 
 |       ADD_FAILURE() << LevelToString(level) << " read secret configured twice"; | 
 |       return false; | 
 |     } | 
 |  | 
 |     if (role_ == Role::kClient && level == ssl_encryption_early_data) { | 
 |       ADD_FAILURE() << "Unexpected early data read secret"; | 
 |       return false; | 
 |     } | 
 |  | 
 |     ssl_encryption_level_t ack_level = | 
 |         level == ssl_encryption_early_data ? ssl_encryption_application : level; | 
 |     if (!HasWriteSecret(ack_level)) { | 
 |       ADD_FAILURE() << LevelToString(level) | 
 |                     << " read secret configured before ACK write secret"; | 
 |       return false; | 
 |     } | 
 |  | 
 |     if (cipher == nullptr) { | 
 |       ADD_FAILURE() << "Unexpected null cipher"; | 
 |       return false; | 
 |     } | 
 |  | 
 |     if (level != ssl_encryption_early_data && | 
 |         SSL_CIPHER_get_id(cipher) != levels_[level].cipher) { | 
 |       ADD_FAILURE() << "Cipher suite inconsistent"; | 
 |       return false; | 
 |     } | 
 |  | 
 |     levels_[level].read_secret.assign(secret.begin(), secret.end()); | 
 |     levels_[level].cipher = SSL_CIPHER_get_id(cipher); | 
 |     return true; | 
 |   } | 
 |  | 
 |   bool SetWriteSecret(ssl_encryption_level_t level, const SSL_CIPHER *cipher, | 
 |                       Span<const uint8_t> secret) { | 
 |     if (HasWriteSecret(level)) { | 
 |       ADD_FAILURE() << LevelToString(level) << " write secret configured twice"; | 
 |       return false; | 
 |     } | 
 |  | 
 |     if (role_ == Role::kServer && level == ssl_encryption_early_data) { | 
 |       ADD_FAILURE() << "Unexpected early data write secret"; | 
 |       return false; | 
 |     } | 
 |  | 
 |     if (cipher == nullptr) { | 
 |       ADD_FAILURE() << "Unexpected null cipher"; | 
 |       return false; | 
 |     } | 
 |  | 
 |     levels_[level].write_secret.assign(secret.begin(), secret.end()); | 
 |     levels_[level].cipher = SSL_CIPHER_get_id(cipher); | 
 |     return true; | 
 |   } | 
 |  | 
 |   bool WriteHandshakeData(ssl_encryption_level_t level, | 
 |                           Span<const uint8_t> data) { | 
 |     if (levels_[level].write_secret.empty()) { | 
 |       ADD_FAILURE() << LevelToString(level) | 
 |                     << " write secret not yet configured"; | 
 |       return false; | 
 |     } | 
 |  | 
 |     // Although the levels are conceptually separate, BoringSSL finishes writing | 
 |     // data from a previous level before installing keys for the next level. | 
 |     if (!allow_out_of_order_writes_) { | 
 |       switch (level) { | 
 |         case ssl_encryption_early_data: | 
 |           ADD_FAILURE() << "unexpected handshake data at early data level"; | 
 |           return false; | 
 |         case ssl_encryption_initial: | 
 |           if (!levels_[ssl_encryption_handshake].write_secret.empty()) { | 
 |             ADD_FAILURE() | 
 |                 << LevelToString(level) | 
 |                 << " handshake data written after handshake keys installed"; | 
 |             return false; | 
 |           } | 
 |           OPENSSL_FALLTHROUGH; | 
 |         case ssl_encryption_handshake: | 
 |           if (!levels_[ssl_encryption_application].write_secret.empty()) { | 
 |             ADD_FAILURE() | 
 |                 << LevelToString(level) | 
 |                 << " handshake data written after application keys installed"; | 
 |             return false; | 
 |           } | 
 |           OPENSSL_FALLTHROUGH; | 
 |         case ssl_encryption_application: | 
 |           break; | 
 |       } | 
 |     } | 
 |  | 
 |     levels_[level].write_data.insert(levels_[level].write_data.end(), | 
 |                                      data.begin(), data.end()); | 
 |     return true; | 
 |   } | 
 |  | 
 |   bool SendAlert(ssl_encryption_level_t level, uint8_t alert_value) { | 
 |     if (has_alert_) { | 
 |       ADD_FAILURE() << "duplicate alert sent"; | 
 |       return false; | 
 |     } | 
 |  | 
 |     if (levels_[level].write_secret.empty()) { | 
 |       ADD_FAILURE() << LevelToString(level) | 
 |                     << " write secret not yet configured"; | 
 |       return false; | 
 |     } | 
 |  | 
 |     has_alert_ = true; | 
 |     alert_level_ = level; | 
 |     alert_ = alert_value; | 
 |     return true; | 
 |   } | 
 |  | 
 |   bool ReadHandshakeData(std::vector<uint8_t> *out, | 
 |                          ssl_encryption_level_t level, | 
 |                          size_t num = std::numeric_limits<size_t>::max()) { | 
 |     if (levels_[level].read_secret.empty()) { | 
 |       ADD_FAILURE() << "data read before keys configured in level " << level; | 
 |       return false; | 
 |     } | 
 |     // The peer may not have configured any keys yet. | 
 |     if (peer_->levels_[level].write_secret.empty()) { | 
 |       out->clear(); | 
 |       return true; | 
 |     } | 
 |     // Check the peer computed the same key. | 
 |     if (peer_->levels_[level].write_secret != levels_[level].read_secret) { | 
 |       ADD_FAILURE() << "peer write key does not match read key in level " | 
 |                     << level; | 
 |       return false; | 
 |     } | 
 |     if (peer_->levels_[level].cipher != levels_[level].cipher) { | 
 |       ADD_FAILURE() << "peer cipher does not match in level " << level; | 
 |       return false; | 
 |     } | 
 |     std::vector<uint8_t> *peer_data = &peer_->levels_[level].write_data; | 
 |     num = std::min(num, peer_data->size()); | 
 |     out->assign(peer_data->begin(), peer_data->begin() + num); | 
 |     peer_data->erase(peer_data->begin(), peer_data->begin() + num); | 
 |     return true; | 
 |   } | 
 |  | 
 |  private: | 
 |   Role role_; | 
 |   MockQUICTransport *peer_ = nullptr; | 
 |  | 
 |   bool allow_out_of_order_writes_ = false; | 
 |   bool has_alert_ = false; | 
 |   ssl_encryption_level_t alert_level_ = ssl_encryption_initial; | 
 |   uint8_t alert_ = 0; | 
 |  | 
 |   struct Level { | 
 |     std::vector<uint8_t> write_data; | 
 |     std::vector<uint8_t> write_secret; | 
 |     std::vector<uint8_t> read_secret; | 
 |     uint32_t cipher = 0; | 
 |   }; | 
 |   Level levels_[kNumQUICLevels]; | 
 | }; | 
 |  | 
 | class MockQUICTransportPair { | 
 |  public: | 
 |   MockQUICTransportPair() | 
 |       : client_(MockQUICTransport::Role::kClient), | 
 |         server_(MockQUICTransport::Role::kServer) { | 
 |     client_.set_peer(&server_); | 
 |     server_.set_peer(&client_); | 
 |   } | 
 |  | 
 |   ~MockQUICTransportPair() { | 
 |     client_.set_peer(nullptr); | 
 |     server_.set_peer(nullptr); | 
 |   } | 
 |  | 
 |   MockQUICTransport *client() { return &client_; } | 
 |   MockQUICTransport *server() { return &server_; } | 
 |  | 
 |   bool SecretsMatch(ssl_encryption_level_t level) const { | 
 |     // We only need to check |HasReadSecret| and |HasWriteSecret| on |client_|. | 
 |     // |PeerSecretsMatch| checks that |server_| is analogously configured. | 
 |     return client_.PeerSecretsMatch(level) && | 
 |            client_.HasWriteSecret(level) && | 
 |            (level == ssl_encryption_early_data || client_.HasReadSecret(level)); | 
 |   } | 
 |  | 
 |  private: | 
 |   MockQUICTransport client_; | 
 |   MockQUICTransport server_; | 
 | }; | 
 |  | 
 | class QUICMethodTest : public testing::Test { | 
 |  protected: | 
 |   void SetUp() override { | 
 |     client_ctx_.reset(SSL_CTX_new(TLS_method())); | 
 |     server_ctx_ = CreateContextWithTestCertificate(TLS_method()); | 
 |     ASSERT_TRUE(client_ctx_); | 
 |     ASSERT_TRUE(server_ctx_); | 
 |  | 
 |     SSL_CTX_set_min_proto_version(server_ctx_.get(), TLS1_3_VERSION); | 
 |     SSL_CTX_set_max_proto_version(server_ctx_.get(), TLS1_3_VERSION); | 
 |     SSL_CTX_set_min_proto_version(client_ctx_.get(), TLS1_3_VERSION); | 
 |     SSL_CTX_set_max_proto_version(client_ctx_.get(), TLS1_3_VERSION); | 
 |  | 
 |     static const uint8_t kALPNProtos[] = {0x03, 'f', 'o', 'o'}; | 
 |     ASSERT_EQ(SSL_CTX_set_alpn_protos(client_ctx_.get(), kALPNProtos, | 
 |                                       sizeof(kALPNProtos)), | 
 |               0); | 
 |     SSL_CTX_set_alpn_select_cb( | 
 |         server_ctx_.get(), | 
 |         [](SSL *ssl, const uint8_t **out, uint8_t *out_len, const uint8_t *in, | 
 |            unsigned in_len, void *arg) -> int { | 
 |           return SSL_select_next_proto( | 
 |                      const_cast<uint8_t **>(out), out_len, in, in_len, | 
 |                      kALPNProtos, sizeof(kALPNProtos)) == OPENSSL_NPN_NEGOTIATED | 
 |                      ? SSL_TLSEXT_ERR_OK | 
 |                      : SSL_TLSEXT_ERR_NOACK; | 
 |         }, | 
 |         nullptr); | 
 |   } | 
 |  | 
 |   static MockQUICTransport *TransportFromSSL(const SSL *ssl) { | 
 |     return ex_data_.Get(ssl); | 
 |   } | 
 |  | 
 |   static bool ProvideHandshakeData( | 
 |       SSL *ssl, size_t num = std::numeric_limits<size_t>::max()) { | 
 |     MockQUICTransport *transport = TransportFromSSL(ssl); | 
 |     ssl_encryption_level_t level = SSL_quic_read_level(ssl); | 
 |     std::vector<uint8_t> data; | 
 |     return transport->ReadHandshakeData(&data, level, num) && | 
 |            SSL_provide_quic_data(ssl, level, data.data(), data.size()); | 
 |   } | 
 |  | 
 |   void AllowOutOfOrderWrites() { | 
 |     allow_out_of_order_writes_ = true; | 
 |   } | 
 |  | 
 |   bool CreateClientAndServer() { | 
 |     client_.reset(SSL_new(client_ctx_.get())); | 
 |     server_.reset(SSL_new(server_ctx_.get())); | 
 |     if (!client_ || !server_) { | 
 |       return false; | 
 |     } | 
 |  | 
 |     SSL_set_connect_state(client_.get()); | 
 |     SSL_set_accept_state(server_.get()); | 
 |  | 
 |     transport_ = std::make_unique<MockQUICTransportPair>(); | 
 |     if (!ex_data_.Set(client_.get(), transport_->client()) || | 
 |         !ex_data_.Set(server_.get(), transport_->server())) { | 
 |       return false; | 
 |     } | 
 |     if (allow_out_of_order_writes_) { | 
 |       transport_->client()->AllowOutOfOrderWrites(); | 
 |       transport_->server()->AllowOutOfOrderWrites(); | 
 |     } | 
 |     static const uint8_t client_transport_params[] = {0}; | 
 |     if (!SSL_set_quic_transport_params(client_.get(), client_transport_params, | 
 |                                        sizeof(client_transport_params)) || | 
 |         !SSL_set_quic_transport_params(server_.get(), | 
 |                                        server_transport_params_.data(), | 
 |                                        server_transport_params_.size()) || | 
 |         !SSL_set_quic_early_data_context( | 
 |             server_.get(), server_quic_early_data_context_.data(), | 
 |             server_quic_early_data_context_.size())) { | 
 |       return false; | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |   enum class ExpectedError { | 
 |     kNoError, | 
 |     kClientError, | 
 |     kServerError, | 
 |   }; | 
 |  | 
 |   // CompleteHandshakesForQUIC runs |SSL_do_handshake| on |client_| and | 
 |   // |server_| until each completes once. It returns true on success and false | 
 |   // on failure. | 
 |   bool CompleteHandshakesForQUIC() { | 
 |     return RunQUICHandshakesAndExpectError(ExpectedError::kNoError); | 
 |   } | 
 |  | 
 |   // Runs |SSL_do_handshake| on |client_| and |server_| until each completes | 
 |   // once. If |expect_client_error| is true, it will return true only if the | 
 |   // client handshake failed. Otherwise, it returns true if both handshakes | 
 |   // succeed and false otherwise. | 
 |   bool RunQUICHandshakesAndExpectError(ExpectedError expected_error) { | 
 |     bool client_done = false, server_done = false; | 
 |     while (!client_done || !server_done) { | 
 |       if (!client_done) { | 
 |         if (!ProvideHandshakeData(client_.get())) { | 
 |           ADD_FAILURE() << "ProvideHandshakeData(client_) failed"; | 
 |           return false; | 
 |         } | 
 |         int client_ret = SSL_do_handshake(client_.get()); | 
 |         int client_err = SSL_get_error(client_.get(), client_ret); | 
 |         if (client_ret == 1) { | 
 |           client_done = true; | 
 |         } else if (client_ret != -1 || client_err != SSL_ERROR_WANT_READ) { | 
 |           if (expected_error == ExpectedError::kClientError) { | 
 |             return true; | 
 |           } | 
 |           ADD_FAILURE() << "Unexpected client output: " << client_ret << " " | 
 |                         << client_err; | 
 |           return false; | 
 |         } | 
 |       } | 
 |  | 
 |       if (!server_done) { | 
 |         if (!ProvideHandshakeData(server_.get())) { | 
 |           ADD_FAILURE() << "ProvideHandshakeData(server_) failed"; | 
 |           return false; | 
 |         } | 
 |         int server_ret = SSL_do_handshake(server_.get()); | 
 |         int server_err = SSL_get_error(server_.get(), server_ret); | 
 |         if (server_ret == 1) { | 
 |           server_done = true; | 
 |         } else if (server_ret != -1 || server_err != SSL_ERROR_WANT_READ) { | 
 |           if (expected_error == ExpectedError::kServerError) { | 
 |             return true; | 
 |           } | 
 |           ADD_FAILURE() << "Unexpected server output: " << server_ret << " " | 
 |                         << server_err; | 
 |           return false; | 
 |         } | 
 |       } | 
 |     } | 
 |     return expected_error == ExpectedError::kNoError; | 
 |   } | 
 |  | 
 |   bssl::UniquePtr<SSL_SESSION> CreateClientSessionForQUIC() { | 
 |     g_last_session = nullptr; | 
 |     SSL_CTX_sess_set_new_cb(client_ctx_.get(), SaveLastSession); | 
 |     if (!CreateClientAndServer() || | 
 |         !CompleteHandshakesForQUIC()) { | 
 |       return nullptr; | 
 |     } | 
 |  | 
 |     // The server sent NewSessionTicket messages in the handshake. | 
 |     if (!ProvideHandshakeData(client_.get()) || | 
 |         !SSL_process_quic_post_handshake(client_.get())) { | 
 |       return nullptr; | 
 |     } | 
 |  | 
 |     return std::move(g_last_session); | 
 |   } | 
 |  | 
 |   void ExpectHandshakeSuccess() { | 
 |     EXPECT_TRUE(transport_->SecretsMatch(ssl_encryption_application)); | 
 |     EXPECT_EQ(ssl_encryption_application, SSL_quic_read_level(client_.get())); | 
 |     EXPECT_EQ(ssl_encryption_application, SSL_quic_write_level(client_.get())); | 
 |     EXPECT_EQ(ssl_encryption_application, SSL_quic_read_level(server_.get())); | 
 |     EXPECT_EQ(ssl_encryption_application, SSL_quic_write_level(server_.get())); | 
 |     EXPECT_FALSE(transport_->client()->has_alert()); | 
 |     EXPECT_FALSE(transport_->server()->has_alert()); | 
 |  | 
 |     // SSL_do_handshake is now idempotent. | 
 |     EXPECT_EQ(SSL_do_handshake(client_.get()), 1); | 
 |     EXPECT_EQ(SSL_do_handshake(server_.get()), 1); | 
 |   } | 
 |  | 
 |   // Returns a default SSL_QUIC_METHOD. Individual methods may be overwritten by | 
 |   // the test. | 
 |   SSL_QUIC_METHOD DefaultQUICMethod() { | 
 |     return SSL_QUIC_METHOD{ | 
 |         SetReadSecretCallback, SetWriteSecretCallback, AddHandshakeDataCallback, | 
 |         FlushFlightCallback,   SendAlertCallback, | 
 |     }; | 
 |   } | 
 |  | 
 |   static int SetReadSecretCallback(SSL *ssl, ssl_encryption_level_t level, | 
 |                                    const SSL_CIPHER *cipher, | 
 |                                    const uint8_t *secret, size_t secret_len) { | 
 |     return TransportFromSSL(ssl)->SetReadSecret( | 
 |         level, cipher, MakeConstSpan(secret, secret_len)); | 
 |   } | 
 |  | 
 |   static int SetWriteSecretCallback(SSL *ssl, ssl_encryption_level_t level, | 
 |                                     const SSL_CIPHER *cipher, | 
 |                                     const uint8_t *secret, size_t secret_len) { | 
 |     return TransportFromSSL(ssl)->SetWriteSecret( | 
 |         level, cipher, MakeConstSpan(secret, secret_len)); | 
 |   } | 
 |  | 
 |   static int AddHandshakeDataCallback(SSL *ssl, | 
 |                                       enum ssl_encryption_level_t level, | 
 |                                       const uint8_t *data, size_t len) { | 
 |     EXPECT_EQ(level, SSL_quic_write_level(ssl)); | 
 |     return TransportFromSSL(ssl)->WriteHandshakeData(level, | 
 |                                                      MakeConstSpan(data, len)); | 
 |   } | 
 |  | 
 |   static int FlushFlightCallback(SSL *ssl) { return 1; } | 
 |  | 
 |   static int SendAlertCallback(SSL *ssl, ssl_encryption_level_t level, | 
 |                                uint8_t alert) { | 
 |     EXPECT_EQ(level, SSL_quic_write_level(ssl)); | 
 |     return TransportFromSSL(ssl)->SendAlert(level, alert); | 
 |   } | 
 |  | 
 |   bssl::UniquePtr<SSL_CTX> client_ctx_; | 
 |   bssl::UniquePtr<SSL_CTX> server_ctx_; | 
 |  | 
 |   static UnownedSSLExData<MockQUICTransport> ex_data_; | 
 |   std::unique_ptr<MockQUICTransportPair> transport_; | 
 |  | 
 |   bssl::UniquePtr<SSL> client_; | 
 |   bssl::UniquePtr<SSL> server_; | 
 |  | 
 |   std::vector<uint8_t> server_transport_params_ = {1}; | 
 |   std::vector<uint8_t> server_quic_early_data_context_ = {2}; | 
 |  | 
 |   bool allow_out_of_order_writes_ = false; | 
 | }; | 
 |  | 
 | UnownedSSLExData<MockQUICTransport> QUICMethodTest::ex_data_; | 
 |  | 
 | // Test a full handshake and resumption work. | 
 | TEST_F(QUICMethodTest, Basic) { | 
 |   const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
 |  | 
 |   g_last_session = nullptr; | 
 |  | 
 |   SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |   SSL_CTX_sess_set_new_cb(client_ctx_.get(), SaveLastSession); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
 |  | 
 |   ASSERT_TRUE(CreateClientAndServer()); | 
 |   ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
 |  | 
 |   ExpectHandshakeSuccess(); | 
 |   EXPECT_FALSE(SSL_session_reused(client_.get())); | 
 |   EXPECT_FALSE(SSL_session_reused(server_.get())); | 
 |  | 
 |   // The server sent NewSessionTicket messages in the handshake. | 
 |   EXPECT_FALSE(g_last_session); | 
 |   ASSERT_TRUE(ProvideHandshakeData(client_.get())); | 
 |   EXPECT_EQ(SSL_process_quic_post_handshake(client_.get()), 1); | 
 |   EXPECT_TRUE(g_last_session); | 
 |  | 
 |   // Create a second connection to verify resumption works. | 
 |   ASSERT_TRUE(CreateClientAndServer()); | 
 |   bssl::UniquePtr<SSL_SESSION> session = std::move(g_last_session); | 
 |   SSL_set_session(client_.get(), session.get()); | 
 |  | 
 |   ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
 |  | 
 |   ExpectHandshakeSuccess(); | 
 |   EXPECT_TRUE(SSL_session_reused(client_.get())); | 
 |   EXPECT_TRUE(SSL_session_reused(server_.get())); | 
 | } | 
 |  | 
 | // Test that HelloRetryRequest in QUIC works. | 
 | TEST_F(QUICMethodTest, HelloRetryRequest) { | 
 |   const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
 |  | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
 |  | 
 |   // BoringSSL predicts the most preferred ECDH group, so using different | 
 |   // preferences will trigger HelloRetryRequest. | 
 |   static const int kClientPrefs[] = {NID_X25519, NID_X9_62_prime256v1}; | 
 |   ASSERT_TRUE(SSL_CTX_set1_groups(client_ctx_.get(), kClientPrefs, | 
 |                                   OPENSSL_ARRAY_SIZE(kClientPrefs))); | 
 |   static const int kServerPrefs[] = {NID_X9_62_prime256v1, NID_X25519}; | 
 |   ASSERT_TRUE(SSL_CTX_set1_groups(server_ctx_.get(), kServerPrefs, | 
 |                                   OPENSSL_ARRAY_SIZE(kServerPrefs))); | 
 |  | 
 |   ASSERT_TRUE(CreateClientAndServer()); | 
 |   ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
 |   ExpectHandshakeSuccess(); | 
 | } | 
 |  | 
 | // Test that the client does not send a legacy_session_id in the ClientHello. | 
 | TEST_F(QUICMethodTest, NoLegacySessionId) { | 
 |   const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
 |  | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
 |   // Check that the session ID length is 0 in an early callback. | 
 |   SSL_CTX_set_select_certificate_cb( | 
 |       server_ctx_.get(), | 
 |       [](const SSL_CLIENT_HELLO *client_hello) -> ssl_select_cert_result_t { | 
 |         EXPECT_EQ(client_hello->session_id_len, 0u); | 
 |         return ssl_select_cert_success; | 
 |       }); | 
 |  | 
 |   ASSERT_TRUE(CreateClientAndServer()); | 
 |   ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
 |  | 
 |   ExpectHandshakeSuccess(); | 
 | } | 
 |  | 
 | // Test that, even in a 1-RTT handshake, the server installs keys at the right | 
 | // time. Half-RTT keys are available early, but 1-RTT read keys are deferred. | 
 | TEST_F(QUICMethodTest, HalfRTTKeys) { | 
 |   const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
 |  | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
 |   ASSERT_TRUE(CreateClientAndServer()); | 
 |  | 
 |   // The client sends ClientHello. | 
 |   ASSERT_EQ(SSL_do_handshake(client_.get()), -1); | 
 |   ASSERT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(client_.get(), -1)); | 
 |  | 
 |   // The server reads ClientHello and sends ServerHello..Finished. | 
 |   ASSERT_TRUE(ProvideHandshakeData(server_.get())); | 
 |   ASSERT_EQ(SSL_do_handshake(server_.get()), -1); | 
 |   ASSERT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(server_.get(), -1)); | 
 |  | 
 |   // At this point, the server has half-RTT write keys, but it cannot access | 
 |   // 1-RTT read keys until client Finished. | 
 |   EXPECT_TRUE(transport_->server()->HasWriteSecret(ssl_encryption_application)); | 
 |   EXPECT_FALSE(transport_->server()->HasReadSecret(ssl_encryption_application)); | 
 |  | 
 |   // Finish up the client and server handshakes. | 
 |   ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
 |  | 
 |   // Both sides can now exchange 1-RTT data. | 
 |   ExpectHandshakeSuccess(); | 
 | } | 
 |  | 
 | TEST_F(QUICMethodTest, ZeroRTTAccept) { | 
 |   const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
 |  | 
 |   SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |   SSL_CTX_set_early_data_enabled(client_ctx_.get(), 1); | 
 |   SSL_CTX_set_early_data_enabled(server_ctx_.get(), 1); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
 |  | 
 |   bssl::UniquePtr<SSL_SESSION> session = CreateClientSessionForQUIC(); | 
 |   ASSERT_TRUE(session); | 
 |  | 
 |   ASSERT_TRUE(CreateClientAndServer()); | 
 |   SSL_set_session(client_.get(), session.get()); | 
 |  | 
 |   // The client handshake should return immediately into the early data state. | 
 |   ASSERT_EQ(SSL_do_handshake(client_.get()), 1); | 
 |   EXPECT_TRUE(SSL_in_early_data(client_.get())); | 
 |   // The transport should have keys for sending 0-RTT data. | 
 |   EXPECT_TRUE(transport_->client()->HasWriteSecret(ssl_encryption_early_data)); | 
 |  | 
 |   // The server will consume the ClientHello and also enter the early data | 
 |   // state. | 
 |   ASSERT_TRUE(ProvideHandshakeData(server_.get())); | 
 |   ASSERT_EQ(SSL_do_handshake(server_.get()), 1); | 
 |   EXPECT_TRUE(SSL_in_early_data(server_.get())); | 
 |   EXPECT_TRUE(transport_->SecretsMatch(ssl_encryption_early_data)); | 
 |   // At this point, the server has half-RTT write keys, but it cannot access | 
 |   // 1-RTT read keys until client Finished. | 
 |   EXPECT_TRUE(transport_->server()->HasWriteSecret(ssl_encryption_application)); | 
 |   EXPECT_FALSE(transport_->server()->HasReadSecret(ssl_encryption_application)); | 
 |  | 
 |   // Finish up the client and server handshakes. | 
 |   ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
 |  | 
 |   // Both sides can now exchange 1-RTT data. | 
 |   ExpectHandshakeSuccess(); | 
 |   EXPECT_TRUE(SSL_session_reused(client_.get())); | 
 |   EXPECT_TRUE(SSL_session_reused(server_.get())); | 
 |   EXPECT_FALSE(SSL_in_early_data(client_.get())); | 
 |   EXPECT_FALSE(SSL_in_early_data(server_.get())); | 
 |   EXPECT_TRUE(SSL_early_data_accepted(client_.get())); | 
 |   EXPECT_TRUE(SSL_early_data_accepted(server_.get())); | 
 |  | 
 |   // Finish handling post-handshake messages after the first 0-RTT resumption. | 
 |   EXPECT_TRUE(ProvideHandshakeData(client_.get())); | 
 |   EXPECT_TRUE(SSL_process_quic_post_handshake(client_.get())); | 
 |  | 
 |   // Perform a second 0-RTT resumption attempt, and confirm that 0-RTT is | 
 |   // accepted again. | 
 |   ASSERT_TRUE(CreateClientAndServer()); | 
 |   SSL_set_session(client_.get(), g_last_session.get()); | 
 |  | 
 |   // The client handshake should return immediately into the early data state. | 
 |   ASSERT_EQ(SSL_do_handshake(client_.get()), 1); | 
 |   EXPECT_TRUE(SSL_in_early_data(client_.get())); | 
 |   // The transport should have keys for sending 0-RTT data. | 
 |   EXPECT_TRUE(transport_->client()->HasWriteSecret(ssl_encryption_early_data)); | 
 |  | 
 |   // The server will consume the ClientHello and also enter the early data | 
 |   // state. | 
 |   ASSERT_TRUE(ProvideHandshakeData(server_.get())); | 
 |   ASSERT_EQ(SSL_do_handshake(server_.get()), 1); | 
 |   EXPECT_TRUE(SSL_in_early_data(server_.get())); | 
 |   EXPECT_TRUE(transport_->SecretsMatch(ssl_encryption_early_data)); | 
 |   // At this point, the server has half-RTT write keys, but it cannot access | 
 |   // 1-RTT read keys until client Finished. | 
 |   EXPECT_TRUE(transport_->server()->HasWriteSecret(ssl_encryption_application)); | 
 |   EXPECT_FALSE(transport_->server()->HasReadSecret(ssl_encryption_application)); | 
 |  | 
 |   // Finish up the client and server handshakes. | 
 |   ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
 |  | 
 |   // Both sides can now exchange 1-RTT data. | 
 |   ExpectHandshakeSuccess(); | 
 |   EXPECT_TRUE(SSL_session_reused(client_.get())); | 
 |   EXPECT_TRUE(SSL_session_reused(server_.get())); | 
 |   EXPECT_FALSE(SSL_in_early_data(client_.get())); | 
 |   EXPECT_FALSE(SSL_in_early_data(server_.get())); | 
 |   EXPECT_TRUE(SSL_early_data_accepted(client_.get())); | 
 |   EXPECT_TRUE(SSL_early_data_accepted(server_.get())); | 
 |   EXPECT_EQ(SSL_get_early_data_reason(client_.get()), ssl_early_data_accepted); | 
 |   EXPECT_EQ(SSL_get_early_data_reason(server_.get()), ssl_early_data_accepted); | 
 | } | 
 |  | 
 | TEST_F(QUICMethodTest, ZeroRTTRejectMismatchedParameters) { | 
 |   const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
 |  | 
 |   SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |   SSL_CTX_set_early_data_enabled(client_ctx_.get(), 1); | 
 |   SSL_CTX_set_early_data_enabled(server_ctx_.get(), 1); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
 |  | 
 |  | 
 |   bssl::UniquePtr<SSL_SESSION> session = CreateClientSessionForQUIC(); | 
 |   ASSERT_TRUE(session); | 
 |  | 
 |   ASSERT_TRUE(CreateClientAndServer()); | 
 |   static const uint8_t new_context[] = {4}; | 
 |   ASSERT_TRUE(SSL_set_quic_early_data_context(server_.get(), new_context, | 
 |                                               sizeof(new_context))); | 
 |   SSL_set_session(client_.get(), session.get()); | 
 |  | 
 |   // The client handshake should return immediately into the early data | 
 |   // state. | 
 |   ASSERT_EQ(SSL_do_handshake(client_.get()), 1); | 
 |   EXPECT_TRUE(SSL_in_early_data(client_.get())); | 
 |   // The transport should have keys for sending 0-RTT data. | 
 |   EXPECT_TRUE(transport_->client()->HasWriteSecret(ssl_encryption_early_data)); | 
 |  | 
 |   // The server will consume the ClientHello, but it will not accept 0-RTT. | 
 |   ASSERT_TRUE(ProvideHandshakeData(server_.get())); | 
 |   ASSERT_EQ(SSL_do_handshake(server_.get()), -1); | 
 |   ASSERT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(server_.get(), -1)); | 
 |   EXPECT_FALSE(SSL_in_early_data(server_.get())); | 
 |   EXPECT_FALSE(transport_->server()->HasReadSecret(ssl_encryption_early_data)); | 
 |  | 
 |   // The client consumes the server response and signals 0-RTT rejection. | 
 |   for (;;) { | 
 |     ASSERT_TRUE(ProvideHandshakeData(client_.get())); | 
 |     ASSERT_EQ(-1, SSL_do_handshake(client_.get())); | 
 |     int err = SSL_get_error(client_.get(), -1); | 
 |     if (err == SSL_ERROR_EARLY_DATA_REJECTED) { | 
 |       break; | 
 |     } | 
 |     ASSERT_EQ(SSL_ERROR_WANT_READ, err); | 
 |   } | 
 |  | 
 |   // As in TLS over TCP, 0-RTT rejection is sticky. | 
 |   ASSERT_EQ(-1, SSL_do_handshake(client_.get())); | 
 |   ASSERT_EQ(SSL_ERROR_EARLY_DATA_REJECTED, SSL_get_error(client_.get(), -1)); | 
 |  | 
 |   // Finish up the client and server handshakes. | 
 |   SSL_reset_early_data_reject(client_.get()); | 
 |   ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
 |  | 
 |   // Both sides can now exchange 1-RTT data. | 
 |   ExpectHandshakeSuccess(); | 
 |   EXPECT_TRUE(SSL_session_reused(client_.get())); | 
 |   EXPECT_TRUE(SSL_session_reused(server_.get())); | 
 |   EXPECT_FALSE(SSL_in_early_data(client_.get())); | 
 |   EXPECT_FALSE(SSL_in_early_data(server_.get())); | 
 |   EXPECT_FALSE(SSL_early_data_accepted(client_.get())); | 
 |   EXPECT_FALSE(SSL_early_data_accepted(server_.get())); | 
 | } | 
 |  | 
 | TEST_F(QUICMethodTest, NoZeroRTTTicketWithoutEarlyDataContext) { | 
 |   server_quic_early_data_context_ = {}; | 
 |   const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
 |  | 
 |   SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |   SSL_CTX_set_early_data_enabled(client_ctx_.get(), 1); | 
 |   SSL_CTX_set_early_data_enabled(server_ctx_.get(), 1); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
 |  | 
 |   bssl::UniquePtr<SSL_SESSION> session = CreateClientSessionForQUIC(); | 
 |   ASSERT_TRUE(session); | 
 |   EXPECT_FALSE(SSL_SESSION_early_data_capable(session.get())); | 
 | } | 
 |  | 
 | TEST_F(QUICMethodTest, ZeroRTTReject) { | 
 |   const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
 |  | 
 |   SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |   SSL_CTX_set_early_data_enabled(client_ctx_.get(), 1); | 
 |   SSL_CTX_set_early_data_enabled(server_ctx_.get(), 1); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
 |  | 
 |   bssl::UniquePtr<SSL_SESSION> session = CreateClientSessionForQUIC(); | 
 |   ASSERT_TRUE(session); | 
 |  | 
 |   for (bool reject_hrr : {false, true}) { | 
 |     SCOPED_TRACE(reject_hrr); | 
 |  | 
 |     ASSERT_TRUE(CreateClientAndServer()); | 
 |     if (reject_hrr) { | 
 |       // Configure the server to prefer P-256, which will reject 0-RTT via | 
 |       // HelloRetryRequest. | 
 |       int p256 = NID_X9_62_prime256v1; | 
 |       ASSERT_TRUE(SSL_set1_groups(server_.get(), &p256, 1)); | 
 |     } else { | 
 |       // Disable 0-RTT on the server, so it will reject it. | 
 |       SSL_set_early_data_enabled(server_.get(), 0); | 
 |     } | 
 |     SSL_set_session(client_.get(), session.get()); | 
 |  | 
 |     // The client handshake should return immediately into the early data state. | 
 |     ASSERT_EQ(SSL_do_handshake(client_.get()), 1); | 
 |     EXPECT_TRUE(SSL_in_early_data(client_.get())); | 
 |     // The transport should have keys for sending 0-RTT data. | 
 |     EXPECT_TRUE( | 
 |         transport_->client()->HasWriteSecret(ssl_encryption_early_data)); | 
 |  | 
 |     // The server will consume the ClientHello, but it will not accept 0-RTT. | 
 |     ASSERT_TRUE(ProvideHandshakeData(server_.get())); | 
 |     ASSERT_EQ(SSL_do_handshake(server_.get()), -1); | 
 |     ASSERT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(server_.get(), -1)); | 
 |     EXPECT_FALSE(SSL_in_early_data(server_.get())); | 
 |     EXPECT_FALSE( | 
 |         transport_->server()->HasReadSecret(ssl_encryption_early_data)); | 
 |  | 
 |     // The client consumes the server response and signals 0-RTT rejection. | 
 |     for (;;) { | 
 |       ASSERT_TRUE(ProvideHandshakeData(client_.get())); | 
 |       ASSERT_EQ(-1, SSL_do_handshake(client_.get())); | 
 |       int err = SSL_get_error(client_.get(), -1); | 
 |       if (err == SSL_ERROR_EARLY_DATA_REJECTED) { | 
 |         break; | 
 |       } | 
 |       ASSERT_EQ(SSL_ERROR_WANT_READ, err); | 
 |     } | 
 |  | 
 |     // As in TLS over TCP, 0-RTT rejection is sticky. | 
 |     ASSERT_EQ(-1, SSL_do_handshake(client_.get())); | 
 |     ASSERT_EQ(SSL_ERROR_EARLY_DATA_REJECTED, SSL_get_error(client_.get(), -1)); | 
 |  | 
 |     // Finish up the client and server handshakes. | 
 |     SSL_reset_early_data_reject(client_.get()); | 
 |     ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
 |  | 
 |     // Both sides can now exchange 1-RTT data. | 
 |     ExpectHandshakeSuccess(); | 
 |     EXPECT_TRUE(SSL_session_reused(client_.get())); | 
 |     EXPECT_TRUE(SSL_session_reused(server_.get())); | 
 |     EXPECT_FALSE(SSL_in_early_data(client_.get())); | 
 |     EXPECT_FALSE(SSL_in_early_data(server_.get())); | 
 |     EXPECT_FALSE(SSL_early_data_accepted(client_.get())); | 
 |     EXPECT_FALSE(SSL_early_data_accepted(server_.get())); | 
 |   } | 
 | } | 
 |  | 
 | TEST_F(QUICMethodTest, NoZeroRTTKeysBeforeReverify) { | 
 |   const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
 |  | 
 |   SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |   SSL_CTX_set_early_data_enabled(client_ctx_.get(), 1); | 
 |   SSL_CTX_set_reverify_on_resume(client_ctx_.get(), 1); | 
 |   SSL_CTX_set_early_data_enabled(server_ctx_.get(), 1); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
 |  | 
 |   bssl::UniquePtr<SSL_SESSION> session = CreateClientSessionForQUIC(); | 
 |   ASSERT_TRUE(session); | 
 |  | 
 |   ASSERT_TRUE(CreateClientAndServer()); | 
 |   SSL_set_session(client_.get(), session.get()); | 
 |  | 
 |   // Configure the certificate (re)verification to never complete. The client | 
 |   // handshake should pause. | 
 |   SSL_set_custom_verify( | 
 |       client_.get(), SSL_VERIFY_PEER, | 
 |       [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { | 
 |         return ssl_verify_retry; | 
 |       }); | 
 |   ASSERT_EQ(SSL_do_handshake(client_.get()), -1); | 
 |   ASSERT_EQ(SSL_get_error(client_.get(), -1), | 
 |             SSL_ERROR_WANT_CERTIFICATE_VERIFY); | 
 |  | 
 |   // The early data keys have not yet been released. | 
 |   EXPECT_FALSE(transport_->client()->HasWriteSecret(ssl_encryption_early_data)); | 
 |  | 
 |   // After the verification completes, the handshake progresses to the 0-RTT | 
 |   // point and releases keys. | 
 |   SSL_set_custom_verify( | 
 |       client_.get(), SSL_VERIFY_PEER, | 
 |       [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { | 
 |         return ssl_verify_ok; | 
 |       }); | 
 |   ASSERT_EQ(SSL_do_handshake(client_.get()), 1); | 
 |   EXPECT_TRUE(SSL_in_early_data(client_.get())); | 
 |   EXPECT_TRUE(transport_->client()->HasWriteSecret(ssl_encryption_early_data)); | 
 | } | 
 |  | 
 | // Test only releasing data to QUIC one byte at a time on request, to maximize | 
 | // state machine pauses. Additionally, test that existing asynchronous callbacks | 
 | // still work. | 
 | TEST_F(QUICMethodTest, Async) { | 
 |   const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
 |  | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
 |   ASSERT_TRUE(CreateClientAndServer()); | 
 |  | 
 |   // Install an asynchronous certificate callback. | 
 |   bool cert_cb_ok = false; | 
 |   SSL_set_cert_cb(server_.get(), | 
 |                   [](SSL *, void *arg) -> int { | 
 |                     return *static_cast<bool *>(arg) ? 1 : -1; | 
 |                   }, | 
 |                   &cert_cb_ok); | 
 |  | 
 |   for (;;) { | 
 |     int client_ret = SSL_do_handshake(client_.get()); | 
 |     if (client_ret != 1) { | 
 |       ASSERT_EQ(client_ret, -1); | 
 |       ASSERT_EQ(SSL_get_error(client_.get(), client_ret), SSL_ERROR_WANT_READ); | 
 |       ASSERT_TRUE(ProvideHandshakeData(client_.get(), 1)); | 
 |     } | 
 |  | 
 |     int server_ret = SSL_do_handshake(server_.get()); | 
 |     if (server_ret != 1) { | 
 |       ASSERT_EQ(server_ret, -1); | 
 |       int ssl_err = SSL_get_error(server_.get(), server_ret); | 
 |       switch (ssl_err) { | 
 |         case SSL_ERROR_WANT_READ: | 
 |           ASSERT_TRUE(ProvideHandshakeData(server_.get(), 1)); | 
 |           break; | 
 |         case SSL_ERROR_WANT_X509_LOOKUP: | 
 |           ASSERT_FALSE(cert_cb_ok); | 
 |           cert_cb_ok = true; | 
 |           break; | 
 |         default: | 
 |           FAIL() << "Unexpected SSL_get_error result: " << ssl_err; | 
 |       } | 
 |     } | 
 |  | 
 |     if (client_ret == 1 && server_ret == 1) { | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   ExpectHandshakeSuccess(); | 
 | } | 
 |  | 
 | // Test buffering write data until explicit flushes. | 
 | TEST_F(QUICMethodTest, Buffered) { | 
 |   AllowOutOfOrderWrites(); | 
 |  | 
 |   struct BufferedFlight { | 
 |     std::vector<uint8_t> data[kNumQUICLevels]; | 
 |   }; | 
 |   static UnownedSSLExData<BufferedFlight> buffered_flights; | 
 |  | 
 |   auto add_handshake_data = [](SSL *ssl, enum ssl_encryption_level_t level, | 
 |                                const uint8_t *data, size_t len) -> int { | 
 |     BufferedFlight *flight = buffered_flights.Get(ssl); | 
 |     flight->data[level].insert(flight->data[level].end(), data, data + len); | 
 |     return 1; | 
 |   }; | 
 |  | 
 |   auto flush_flight = [](SSL *ssl) -> int { | 
 |     BufferedFlight *flight = buffered_flights.Get(ssl); | 
 |     for (size_t level = 0; level < kNumQUICLevels; level++) { | 
 |       if (!flight->data[level].empty()) { | 
 |         if (!TransportFromSSL(ssl)->WriteHandshakeData( | 
 |                 static_cast<ssl_encryption_level_t>(level), | 
 |                 flight->data[level])) { | 
 |           return 0; | 
 |         } | 
 |         flight->data[level].clear(); | 
 |       } | 
 |     } | 
 |     return 1; | 
 |   }; | 
 |  | 
 |   SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
 |   quic_method.add_handshake_data = add_handshake_data; | 
 |   quic_method.flush_flight = flush_flight; | 
 |  | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
 |   ASSERT_TRUE(CreateClientAndServer()); | 
 |  | 
 |   BufferedFlight client_flight, server_flight; | 
 |   ASSERT_TRUE(buffered_flights.Set(client_.get(), &client_flight)); | 
 |   ASSERT_TRUE(buffered_flights.Set(server_.get(), &server_flight)); | 
 |  | 
 |   ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
 |  | 
 |   ExpectHandshakeSuccess(); | 
 | } | 
 |  | 
 | // Test that excess data at one level is rejected. That is, if a single | 
 | // |SSL_provide_quic_data| call included both ServerHello and | 
 | // EncryptedExtensions in a single chunk, BoringSSL notices and rejects this on | 
 | // key change. | 
 | TEST_F(QUICMethodTest, ExcessProvidedData) { | 
 |   AllowOutOfOrderWrites(); | 
 |  | 
 |   auto add_handshake_data = [](SSL *ssl, enum ssl_encryption_level_t level, | 
 |                                const uint8_t *data, size_t len) -> int { | 
 |     // Switch everything to the initial level. | 
 |     return TransportFromSSL(ssl)->WriteHandshakeData(ssl_encryption_initial, | 
 |                                                      MakeConstSpan(data, len)); | 
 |   }; | 
 |  | 
 |   SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
 |   quic_method.add_handshake_data = add_handshake_data; | 
 |  | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
 |   ASSERT_TRUE(CreateClientAndServer()); | 
 |  | 
 |   // Send the ClientHello and ServerHello through Finished. | 
 |   ASSERT_EQ(SSL_do_handshake(client_.get()), -1); | 
 |   ASSERT_EQ(SSL_get_error(client_.get(), -1), SSL_ERROR_WANT_READ); | 
 |   ASSERT_TRUE(ProvideHandshakeData(server_.get())); | 
 |   ASSERT_EQ(SSL_do_handshake(server_.get()), -1); | 
 |   ASSERT_EQ(SSL_get_error(server_.get(), -1), SSL_ERROR_WANT_READ); | 
 |  | 
 |   // The client is still waiting for the ServerHello at initial | 
 |   // encryption. | 
 |   ASSERT_EQ(ssl_encryption_initial, SSL_quic_read_level(client_.get())); | 
 |  | 
 |   // |add_handshake_data| incorrectly wrote everything at the initial level, so | 
 |   // this queues up ServerHello through Finished in one chunk. | 
 |   ASSERT_TRUE(ProvideHandshakeData(client_.get())); | 
 |  | 
 |   // The client reads ServerHello successfully, but then rejects the buffered | 
 |   // EncryptedExtensions on key change. | 
 |   ASSERT_EQ(SSL_do_handshake(client_.get()), -1); | 
 |   ASSERT_EQ(SSL_get_error(client_.get(), -1), SSL_ERROR_SSL); | 
 |   uint32_t err = ERR_get_error(); | 
 |   EXPECT_EQ(ERR_GET_LIB(err), ERR_LIB_SSL); | 
 |   EXPECT_EQ(ERR_GET_REASON(err), SSL_R_EXCESS_HANDSHAKE_DATA); | 
 |  | 
 |   // The client sends an alert in response to this. The alert is sent at | 
 |   // handshake level because we install write secrets before read secrets and | 
 |   // the error is discovered when installing the read secret. (How to send | 
 |   // alerts on protocol syntax errors near key changes is ambiguous in general.) | 
 |   ASSERT_TRUE(transport_->client()->has_alert()); | 
 |   EXPECT_EQ(transport_->client()->alert_level(), ssl_encryption_handshake); | 
 |   EXPECT_EQ(transport_->client()->alert(), SSL_AD_UNEXPECTED_MESSAGE); | 
 |  | 
 |   // Sanity-check handshake secrets. The error is discovered while setting the | 
 |   // read secret, so only the write secret has been installed. | 
 |   EXPECT_TRUE(transport_->client()->HasWriteSecret(ssl_encryption_handshake)); | 
 |   EXPECT_FALSE(transport_->client()->HasReadSecret(ssl_encryption_handshake)); | 
 | } | 
 |  | 
 | // Test that |SSL_provide_quic_data| will reject data at the wrong level. | 
 | TEST_F(QUICMethodTest, ProvideWrongLevel) { | 
 |   const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
 |  | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
 |   ASSERT_TRUE(CreateClientAndServer()); | 
 |  | 
 |   // Send the ClientHello and ServerHello through Finished. | 
 |   ASSERT_EQ(SSL_do_handshake(client_.get()), -1); | 
 |   ASSERT_EQ(SSL_get_error(client_.get(), -1), SSL_ERROR_WANT_READ); | 
 |   ASSERT_TRUE(ProvideHandshakeData(server_.get())); | 
 |   ASSERT_EQ(SSL_do_handshake(server_.get()), -1); | 
 |   ASSERT_EQ(SSL_get_error(server_.get(), -1), SSL_ERROR_WANT_READ); | 
 |  | 
 |   // The client is still waiting for the ServerHello at initial | 
 |   // encryption. | 
 |   ASSERT_EQ(ssl_encryption_initial, SSL_quic_read_level(client_.get())); | 
 |  | 
 |   // Data cannot be provided at the next level. | 
 |   std::vector<uint8_t> data; | 
 |   ASSERT_TRUE( | 
 |       transport_->client()->ReadHandshakeData(&data, ssl_encryption_initial)); | 
 |   ASSERT_FALSE(SSL_provide_quic_data(client_.get(), ssl_encryption_handshake, | 
 |                                      data.data(), data.size())); | 
 |   ERR_clear_error(); | 
 |  | 
 |   // Progress to EncryptedExtensions. | 
 |   ASSERT_TRUE(SSL_provide_quic_data(client_.get(), ssl_encryption_initial, | 
 |                                     data.data(), data.size())); | 
 |   ASSERT_EQ(SSL_do_handshake(client_.get()), -1); | 
 |   ASSERT_EQ(SSL_get_error(client_.get(), -1), SSL_ERROR_WANT_READ); | 
 |   ASSERT_EQ(ssl_encryption_handshake, SSL_quic_read_level(client_.get())); | 
 |  | 
 |   // Data cannot be provided at the previous level. | 
 |   ASSERT_TRUE( | 
 |       transport_->client()->ReadHandshakeData(&data, ssl_encryption_handshake)); | 
 |   ASSERT_FALSE(SSL_provide_quic_data(client_.get(), ssl_encryption_initial, | 
 |                                      data.data(), data.size())); | 
 | } | 
 |  | 
 | TEST_F(QUICMethodTest, TooMuchData) { | 
 |   const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
 |  | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
 |   ASSERT_TRUE(CreateClientAndServer()); | 
 |  | 
 |   size_t limit = | 
 |       SSL_quic_max_handshake_flight_len(client_.get(), ssl_encryption_initial); | 
 |   uint8_t b = 0; | 
 |   for (size_t i = 0; i < limit; i++) { | 
 |     ASSERT_TRUE( | 
 |         SSL_provide_quic_data(client_.get(), ssl_encryption_initial, &b, 1)); | 
 |   } | 
 |  | 
 |   EXPECT_FALSE( | 
 |       SSL_provide_quic_data(client_.get(), ssl_encryption_initial, &b, 1)); | 
 | } | 
 |  | 
 | // Provide invalid post-handshake data. | 
 | TEST_F(QUICMethodTest, BadPostHandshake) { | 
 |   const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
 |  | 
 |   g_last_session = nullptr; | 
 |  | 
 |   SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |   SSL_CTX_sess_set_new_cb(client_ctx_.get(), SaveLastSession); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
 |   ASSERT_TRUE(CreateClientAndServer()); | 
 |   ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
 |  | 
 |   EXPECT_EQ(SSL_do_handshake(client_.get()), 1); | 
 |   EXPECT_EQ(SSL_do_handshake(server_.get()), 1); | 
 |   EXPECT_TRUE(transport_->SecretsMatch(ssl_encryption_application)); | 
 |   EXPECT_FALSE(transport_->client()->has_alert()); | 
 |   EXPECT_FALSE(transport_->server()->has_alert()); | 
 |  | 
 |   // Junk sent as part of post-handshake data should cause an error. | 
 |   uint8_t kJunk[] = {0x17, 0x0, 0x0, 0x4, 0xB, 0xE, 0xE, 0xF}; | 
 |   ASSERT_TRUE(SSL_provide_quic_data(client_.get(), ssl_encryption_application, | 
 |                                     kJunk, sizeof(kJunk))); | 
 |   EXPECT_EQ(SSL_process_quic_post_handshake(client_.get()), 0); | 
 | } | 
 |  | 
 | static void ExpectReceivedTransportParamsEqual(const SSL *ssl, | 
 |                                                Span<const uint8_t> expected) { | 
 |   const uint8_t *received; | 
 |   size_t received_len; | 
 |   SSL_get_peer_quic_transport_params(ssl, &received, &received_len); | 
 |   ASSERT_EQ(received_len, expected.size()); | 
 |   EXPECT_EQ(Bytes(received, received_len), Bytes(expected)); | 
 | } | 
 |  | 
 | TEST_F(QUICMethodTest, SetTransportParameters) { | 
 |   const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
 |  | 
 |   ASSERT_TRUE(CreateClientAndServer()); | 
 |   uint8_t kClientParams[] = {1, 2, 3, 4}; | 
 |   uint8_t kServerParams[] = {5, 6, 7}; | 
 |   ASSERT_TRUE(SSL_set_quic_transport_params(client_.get(), kClientParams, | 
 |                                             sizeof(kClientParams))); | 
 |   ASSERT_TRUE(SSL_set_quic_transport_params(server_.get(), kServerParams, | 
 |                                             sizeof(kServerParams))); | 
 |  | 
 |   ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
 |   ExpectReceivedTransportParamsEqual(client_.get(), kServerParams); | 
 |   ExpectReceivedTransportParamsEqual(server_.get(), kClientParams); | 
 | } | 
 |  | 
 | TEST_F(QUICMethodTest, SetTransportParamsInCallback) { | 
 |   const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
 |  | 
 |   ASSERT_TRUE(CreateClientAndServer()); | 
 |   uint8_t kClientParams[] = {1, 2, 3, 4}; | 
 |   static uint8_t kServerParams[] = {5, 6, 7}; | 
 |   ASSERT_TRUE(SSL_set_quic_transport_params(client_.get(), kClientParams, | 
 |                                             sizeof(kClientParams))); | 
 |   SSL_CTX_set_tlsext_servername_callback( | 
 |       server_ctx_.get(), [](SSL *ssl, int *out_alert, void *arg) -> int { | 
 |         EXPECT_TRUE(SSL_set_quic_transport_params(ssl, kServerParams, | 
 |                                                   sizeof(kServerParams))); | 
 |         return SSL_TLSEXT_ERR_OK; | 
 |       }); | 
 |  | 
 |   ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
 |   ExpectReceivedTransportParamsEqual(client_.get(), kServerParams); | 
 |   ExpectReceivedTransportParamsEqual(server_.get(), kClientParams); | 
 | } | 
 |  | 
 | TEST_F(QUICMethodTest, ForbidCrossProtocolResumptionClient) { | 
 |   const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
 |  | 
 |   g_last_session = nullptr; | 
 |  | 
 |   SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |   SSL_CTX_sess_set_new_cb(client_ctx_.get(), SaveLastSession); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
 |  | 
 |   ASSERT_TRUE(CreateClientAndServer()); | 
 |   ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
 |  | 
 |   ExpectHandshakeSuccess(); | 
 |   EXPECT_FALSE(SSL_session_reused(client_.get())); | 
 |   EXPECT_FALSE(SSL_session_reused(server_.get())); | 
 |  | 
 |   // The server sent NewSessionTicket messages in the handshake. | 
 |   EXPECT_FALSE(g_last_session); | 
 |   ASSERT_TRUE(ProvideHandshakeData(client_.get())); | 
 |   EXPECT_EQ(SSL_process_quic_post_handshake(client_.get()), 1); | 
 |   ASSERT_TRUE(g_last_session); | 
 |  | 
 |   // Pretend that g_last_session came from a TLS-over-TCP connection. | 
 |   g_last_session->is_quic = false; | 
 |  | 
 |   // Create a second connection and verify that resumption does not occur with | 
 |   // a session from a non-QUIC connection. This tests that the client does not | 
 |   // offer over QUIC a session believed to be received over TCP. The server | 
 |   // believes this is a QUIC session, so if the client offered the session, the | 
 |   // server would have resumed it. | 
 |   ASSERT_TRUE(CreateClientAndServer()); | 
 |   bssl::UniquePtr<SSL_SESSION> session = std::move(g_last_session); | 
 |   SSL_set_session(client_.get(), session.get()); | 
 |  | 
 |   ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
 |   ExpectHandshakeSuccess(); | 
 |   EXPECT_FALSE(SSL_session_reused(client_.get())); | 
 |   EXPECT_FALSE(SSL_session_reused(server_.get())); | 
 | } | 
 |  | 
 | TEST_F(QUICMethodTest, ForbidCrossProtocolResumptionServer) { | 
 |   const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
 |  | 
 |   g_last_session = nullptr; | 
 |  | 
 |   SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |   SSL_CTX_sess_set_new_cb(client_ctx_.get(), SaveLastSession); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
 |  | 
 |   ASSERT_TRUE(CreateClientAndServer()); | 
 |   ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
 |  | 
 |   ExpectHandshakeSuccess(); | 
 |   EXPECT_FALSE(SSL_session_reused(client_.get())); | 
 |   EXPECT_FALSE(SSL_session_reused(server_.get())); | 
 |  | 
 |   // The server sent NewSessionTicket messages in the handshake. | 
 |   EXPECT_FALSE(g_last_session); | 
 |   ASSERT_TRUE(ProvideHandshakeData(client_.get())); | 
 |   EXPECT_EQ(SSL_process_quic_post_handshake(client_.get()), 1); | 
 |   ASSERT_TRUE(g_last_session); | 
 |  | 
 |   // Attempt a resumption with g_last_session using TLS_method. | 
 |   bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
 |   ASSERT_TRUE(client_ctx); | 
 |  | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), nullptr)); | 
 |  | 
 |   bssl::UniquePtr<SSL> client(SSL_new(client_ctx.get())), | 
 |       server(SSL_new(server_ctx_.get())); | 
 |   ASSERT_TRUE(client); | 
 |   ASSERT_TRUE(server); | 
 |   SSL_set_connect_state(client.get()); | 
 |   SSL_set_accept_state(server.get()); | 
 |  | 
 |   // The TLS-over-TCP client will refuse to resume with a quic session, so | 
 |   // mark is_quic = false to bypass the client check to test the server check. | 
 |   g_last_session->is_quic = false; | 
 |   SSL_set_session(client.get(), g_last_session.get()); | 
 |  | 
 |   BIO *bio1, *bio2; | 
 |   ASSERT_TRUE(BIO_new_bio_pair(&bio1, 0, &bio2, 0)); | 
 |  | 
 |   // SSL_set_bio takes ownership. | 
 |   SSL_set_bio(client.get(), bio1, bio1); | 
 |   SSL_set_bio(server.get(), bio2, bio2); | 
 |   ASSERT_TRUE(CompleteHandshakes(client.get(), server.get())); | 
 |  | 
 |   EXPECT_FALSE(SSL_session_reused(client.get())); | 
 |   EXPECT_FALSE(SSL_session_reused(server.get())); | 
 | } | 
 |  | 
 | TEST_F(QUICMethodTest, ClientRejectsMissingTransportParams) { | 
 |   const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
 |  | 
 |   ASSERT_TRUE(CreateClientAndServer()); | 
 |   ASSERT_TRUE(SSL_set_quic_transport_params(server_.get(), nullptr, 0)); | 
 |   ASSERT_TRUE(RunQUICHandshakesAndExpectError(ExpectedError::kServerError)); | 
 | } | 
 |  | 
 | TEST_F(QUICMethodTest, ServerRejectsMissingTransportParams) { | 
 |   const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
 |  | 
 |   ASSERT_TRUE(CreateClientAndServer()); | 
 |   ASSERT_TRUE(SSL_set_quic_transport_params(client_.get(), nullptr, 0)); | 
 |   ASSERT_TRUE(RunQUICHandshakesAndExpectError(ExpectedError::kClientError)); | 
 | } | 
 |  | 
 | TEST_F(QUICMethodTest, QuicLegacyCodepointEnabled) { | 
 |   const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
 |  | 
 |   ASSERT_TRUE(CreateClientAndServer()); | 
 |   uint8_t kClientParams[] = {1, 2, 3, 4}; | 
 |   uint8_t kServerParams[] = {5, 6, 7}; | 
 |   SSL_set_quic_use_legacy_codepoint(client_.get(), 1); | 
 |   SSL_set_quic_use_legacy_codepoint(server_.get(), 1); | 
 |   ASSERT_TRUE(SSL_set_quic_transport_params(client_.get(), kClientParams, | 
 |                                             sizeof(kClientParams))); | 
 |   ASSERT_TRUE(SSL_set_quic_transport_params(server_.get(), kServerParams, | 
 |                                             sizeof(kServerParams))); | 
 |  | 
 |   ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
 |   ExpectReceivedTransportParamsEqual(client_.get(), kServerParams); | 
 |   ExpectReceivedTransportParamsEqual(server_.get(), kClientParams); | 
 | } | 
 |  | 
 | TEST_F(QUICMethodTest, QuicLegacyCodepointDisabled) { | 
 |   const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
 |  | 
 |   ASSERT_TRUE(CreateClientAndServer()); | 
 |   uint8_t kClientParams[] = {1, 2, 3, 4}; | 
 |   uint8_t kServerParams[] = {5, 6, 7}; | 
 |   SSL_set_quic_use_legacy_codepoint(client_.get(), 0); | 
 |   SSL_set_quic_use_legacy_codepoint(server_.get(), 0); | 
 |   ASSERT_TRUE(SSL_set_quic_transport_params(client_.get(), kClientParams, | 
 |                                             sizeof(kClientParams))); | 
 |   ASSERT_TRUE(SSL_set_quic_transport_params(server_.get(), kServerParams, | 
 |                                             sizeof(kServerParams))); | 
 |  | 
 |   ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
 |   ExpectReceivedTransportParamsEqual(client_.get(), kServerParams); | 
 |   ExpectReceivedTransportParamsEqual(server_.get(), kClientParams); | 
 | } | 
 |  | 
 | TEST_F(QUICMethodTest, QuicLegacyCodepointClientOnly) { | 
 |   const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
 |  | 
 |   ASSERT_TRUE(CreateClientAndServer()); | 
 |   uint8_t kClientParams[] = {1, 2, 3, 4}; | 
 |   uint8_t kServerParams[] = {5, 6, 7}; | 
 |   SSL_set_quic_use_legacy_codepoint(client_.get(), 1); | 
 |   SSL_set_quic_use_legacy_codepoint(server_.get(), 0); | 
 |   ASSERT_TRUE(SSL_set_quic_transport_params(client_.get(), kClientParams, | 
 |                                             sizeof(kClientParams))); | 
 |   ASSERT_TRUE(SSL_set_quic_transport_params(server_.get(), kServerParams, | 
 |                                             sizeof(kServerParams))); | 
 |  | 
 |   ASSERT_TRUE(RunQUICHandshakesAndExpectError(ExpectedError::kServerError)); | 
 | } | 
 |  | 
 | TEST_F(QUICMethodTest, QuicLegacyCodepointServerOnly) { | 
 |   const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
 |  | 
 |   ASSERT_TRUE(CreateClientAndServer()); | 
 |   uint8_t kClientParams[] = {1, 2, 3, 4}; | 
 |   uint8_t kServerParams[] = {5, 6, 7}; | 
 |   SSL_set_quic_use_legacy_codepoint(client_.get(), 0); | 
 |   SSL_set_quic_use_legacy_codepoint(server_.get(), 1); | 
 |   ASSERT_TRUE(SSL_set_quic_transport_params(client_.get(), kClientParams, | 
 |                                             sizeof(kClientParams))); | 
 |   ASSERT_TRUE(SSL_set_quic_transport_params(server_.get(), kServerParams, | 
 |                                             sizeof(kServerParams))); | 
 |  | 
 |   ASSERT_TRUE(RunQUICHandshakesAndExpectError(ExpectedError::kServerError)); | 
 | } | 
 |  | 
 | // Test that the default QUIC code point is consistent with | 
 | // |TLSEXT_TYPE_quic_transport_parameters|. This test ensures we remember to | 
 | // update the two values together. | 
 | TEST_F(QUICMethodTest, QuicCodePointDefault) { | 
 |   const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
 |   ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
 |   SSL_CTX_set_select_certificate_cb( | 
 |       server_ctx_.get(), | 
 |       [](const SSL_CLIENT_HELLO *client_hello) -> ssl_select_cert_result_t { | 
 |         const uint8_t *data; | 
 |         size_t len; | 
 |         if (!SSL_early_callback_ctx_extension_get( | 
 |                 client_hello, TLSEXT_TYPE_quic_transport_parameters, &data, | 
 |                 &len)) { | 
 |           ADD_FAILURE() << "Could not find quic_transport_parameters extension"; | 
 |           return ssl_select_cert_error; | 
 |         } | 
 |         return ssl_select_cert_success; | 
 |       }); | 
 |  | 
 |   ASSERT_TRUE(CreateClientAndServer()); | 
 |   ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
 | } | 
 |  | 
 | extern "C" { | 
 | int BORINGSSL_enum_c_type_test(void); | 
 | } | 
 |  | 
 | TEST(SSLTest, EnumTypes) { | 
 |   EXPECT_EQ(sizeof(int), sizeof(ssl_private_key_result_t)); | 
 |   EXPECT_EQ(1, BORINGSSL_enum_c_type_test()); | 
 | } | 
 |  | 
 | TEST_P(SSLVersionTest, DoubleSSLError) { | 
 |   // Connect the inner SSL connections. | 
 |   ASSERT_TRUE(Connect()); | 
 |  | 
 |   // Make a pair of |BIO|s which wrap |client_| and |server_|. | 
 |   UniquePtr<BIO_METHOD> bio_method(BIO_meth_new(0, nullptr)); | 
 |   ASSERT_TRUE(bio_method); | 
 |   ASSERT_TRUE(BIO_meth_set_read( | 
 |       bio_method.get(), [](BIO *bio, char *out, int len) -> int { | 
 |         SSL *ssl = static_cast<SSL *>(BIO_get_data(bio)); | 
 |         int ret = SSL_read(ssl, out, len); | 
 |         int ssl_ret = SSL_get_error(ssl, ret); | 
 |         if (ssl_ret == SSL_ERROR_WANT_READ) { | 
 |           BIO_set_retry_read(bio); | 
 |         } | 
 |         return ret; | 
 |       })); | 
 |   ASSERT_TRUE(BIO_meth_set_write( | 
 |       bio_method.get(), [](BIO *bio, const char *in, int len) -> int { | 
 |         SSL *ssl = static_cast<SSL *>(BIO_get_data(bio)); | 
 |         int ret = SSL_write(ssl, in, len); | 
 |         int ssl_ret = SSL_get_error(ssl, ret); | 
 |         if (ssl_ret == SSL_ERROR_WANT_WRITE) { | 
 |           BIO_set_retry_write(bio); | 
 |         } | 
 |         return ret; | 
 |       })); | 
 |   ASSERT_TRUE(BIO_meth_set_ctrl( | 
 |       bio_method.get(), [](BIO *bio, int cmd, long larg, void *parg) -> long { | 
 |         // |SSL| objects require |BIO_flush| support. | 
 |         if (cmd == BIO_CTRL_FLUSH) { | 
 |           return 1; | 
 |         } | 
 |         return 0; | 
 |       })); | 
 |  | 
 |   UniquePtr<BIO> client_bio(BIO_new(bio_method.get())); | 
 |   ASSERT_TRUE(client_bio); | 
 |   BIO_set_data(client_bio.get(), client_.get()); | 
 |   BIO_set_init(client_bio.get(), 1); | 
 |  | 
 |   UniquePtr<BIO> server_bio(BIO_new(bio_method.get())); | 
 |   ASSERT_TRUE(server_bio); | 
 |   BIO_set_data(server_bio.get(), server_.get()); | 
 |   BIO_set_init(server_bio.get(), 1); | 
 |  | 
 |   // Wrap the inner connections in another layer of SSL. | 
 |   UniquePtr<SSL> client_outer(SSL_new(client_ctx_.get())); | 
 |   ASSERT_TRUE(client_outer); | 
 |   SSL_set_connect_state(client_outer.get()); | 
 |   SSL_set_bio(client_outer.get(), client_bio.get(), client_bio.get()); | 
 |   client_bio.release();  // |SSL_set_bio| takes ownership. | 
 |  | 
 |   UniquePtr<SSL> server_outer(SSL_new(server_ctx_.get())); | 
 |   ASSERT_TRUE(server_outer); | 
 |   SSL_set_accept_state(server_outer.get()); | 
 |   SSL_set_bio(server_outer.get(), server_bio.get(), server_bio.get()); | 
 |   server_bio.release();  // |SSL_set_bio| takes ownership. | 
 |  | 
 |   // Configure |client_outer| to reject the server certificate. | 
 |   SSL_set_custom_verify( | 
 |       client_outer.get(), SSL_VERIFY_PEER, | 
 |       [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { | 
 |         return ssl_verify_invalid; | 
 |       }); | 
 |  | 
 |   for (;;) { | 
 |     int client_ret = SSL_do_handshake(client_outer.get()); | 
 |     int client_err = SSL_get_error(client_outer.get(), client_ret); | 
 |     if (client_err != SSL_ERROR_WANT_READ && | 
 |         client_err != SSL_ERROR_WANT_WRITE) { | 
 |       // The client handshake should terminate on a certificate verification | 
 |       // error. | 
 |       EXPECT_EQ(SSL_ERROR_SSL, client_err); | 
 |       uint32_t err = ERR_peek_error(); | 
 |       EXPECT_EQ(ERR_LIB_SSL, ERR_GET_LIB(err)); | 
 |       EXPECT_EQ(SSL_R_CERTIFICATE_VERIFY_FAILED, ERR_GET_REASON(err)); | 
 |       break; | 
 |     } | 
 |  | 
 |     // Run the server handshake and continue. | 
 |     int server_ret = SSL_do_handshake(server_outer.get()); | 
 |     int server_err = SSL_get_error(server_outer.get(), server_ret); | 
 |     ASSERT_TRUE(server_err == SSL_ERROR_NONE || | 
 |                 server_err == SSL_ERROR_WANT_READ || | 
 |                 server_err == SSL_ERROR_WANT_WRITE); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(SSLVersionTest, SameKeyResume) { | 
 |   uint8_t key[48]; | 
 |   RAND_bytes(key, sizeof(key)); | 
 |  | 
 |   bssl::UniquePtr<SSL_CTX> server_ctx2 = CreateContext(); | 
 |   ASSERT_TRUE(server_ctx2); | 
 |   ASSERT_TRUE(UseCertAndKey(server_ctx2.get())); | 
 |   ASSERT_TRUE( | 
 |       SSL_CTX_set_tlsext_ticket_keys(server_ctx_.get(), key, sizeof(key))); | 
 |   ASSERT_TRUE( | 
 |       SSL_CTX_set_tlsext_ticket_keys(server_ctx2.get(), key, sizeof(key))); | 
 |  | 
 |   SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |   SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |   SSL_CTX_set_session_cache_mode(server_ctx2.get(), SSL_SESS_CACHE_BOTH); | 
 |  | 
 |   // Establish a session for |server_ctx_|. | 
 |   bssl::UniquePtr<SSL_SESSION> session = | 
 |       CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
 |   ASSERT_TRUE(session); | 
 |   ClientConfig config; | 
 |   config.session = session.get(); | 
 |  | 
 |   // Resuming with |server_ctx_| again works. | 
 |   bssl::UniquePtr<SSL> client, server; | 
 |   ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(), | 
 |                                      server_ctx_.get(), config)); | 
 |   EXPECT_TRUE(SSL_session_reused(client.get())); | 
 |   EXPECT_TRUE(SSL_session_reused(server.get())); | 
 |  | 
 |   // Resuming with |server_ctx2| also works. | 
 |   ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(), | 
 |                                      server_ctx2.get(), config)); | 
 |   EXPECT_TRUE(SSL_session_reused(client.get())); | 
 |   EXPECT_TRUE(SSL_session_reused(server.get())); | 
 | } | 
 |  | 
 | TEST_P(SSLVersionTest, DifferentKeyNoResume) { | 
 |   uint8_t key1[48], key2[48]; | 
 |   RAND_bytes(key1, sizeof(key1)); | 
 |   RAND_bytes(key2, sizeof(key2)); | 
 |  | 
 |   bssl::UniquePtr<SSL_CTX> server_ctx2 = CreateContext(); | 
 |   ASSERT_TRUE(server_ctx2); | 
 |   ASSERT_TRUE(UseCertAndKey(server_ctx2.get())); | 
 |   ASSERT_TRUE( | 
 |       SSL_CTX_set_tlsext_ticket_keys(server_ctx_.get(), key1, sizeof(key1))); | 
 |   ASSERT_TRUE( | 
 |       SSL_CTX_set_tlsext_ticket_keys(server_ctx2.get(), key2, sizeof(key2))); | 
 |  | 
 |   SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |   SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |   SSL_CTX_set_session_cache_mode(server_ctx2.get(), SSL_SESS_CACHE_BOTH); | 
 |  | 
 |   // Establish a session for |server_ctx_|. | 
 |   bssl::UniquePtr<SSL_SESSION> session = | 
 |       CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
 |   ASSERT_TRUE(session); | 
 |   ClientConfig config; | 
 |   config.session = session.get(); | 
 |  | 
 |   // Resuming with |server_ctx_| again works. | 
 |   bssl::UniquePtr<SSL> client, server; | 
 |   ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(), | 
 |                                      server_ctx_.get(), config)); | 
 |   EXPECT_TRUE(SSL_session_reused(client.get())); | 
 |   EXPECT_TRUE(SSL_session_reused(server.get())); | 
 |  | 
 |   // Resuming with |server_ctx2| does not work. | 
 |   ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(), | 
 |                                      server_ctx2.get(), config)); | 
 |   EXPECT_FALSE(SSL_session_reused(client.get())); | 
 |   EXPECT_FALSE(SSL_session_reused(server.get())); | 
 | } | 
 |  | 
 | TEST_P(SSLVersionTest, UnrelatedServerNoResume) { | 
 |   bssl::UniquePtr<SSL_CTX> server_ctx2 = CreateContext(); | 
 |   ASSERT_TRUE(server_ctx2); | 
 |   ASSERT_TRUE(UseCertAndKey(server_ctx2.get())); | 
 |  | 
 |   SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |   SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |   SSL_CTX_set_session_cache_mode(server_ctx2.get(), SSL_SESS_CACHE_BOTH); | 
 |  | 
 |   // Establish a session for |server_ctx_|. | 
 |   bssl::UniquePtr<SSL_SESSION> session = | 
 |       CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
 |   ASSERT_TRUE(session); | 
 |   ClientConfig config; | 
 |   config.session = session.get(); | 
 |  | 
 |   // Resuming with |server_ctx_| again works. | 
 |   bssl::UniquePtr<SSL> client, server; | 
 |   ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(), | 
 |                                      server_ctx_.get(), config)); | 
 |   EXPECT_TRUE(SSL_session_reused(client.get())); | 
 |   EXPECT_TRUE(SSL_session_reused(server.get())); | 
 |  | 
 |   // Resuming with |server_ctx2| does not work. | 
 |   ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(), | 
 |                                      server_ctx2.get(), config)); | 
 |   EXPECT_FALSE(SSL_session_reused(client.get())); | 
 |   EXPECT_FALSE(SSL_session_reused(server.get())); | 
 | } | 
 |  | 
 | Span<const uint8_t> SessionIDOf(const SSL* ssl) { | 
 |   const SSL_SESSION *session = SSL_get_session(ssl); | 
 |   unsigned len; | 
 |   const uint8_t *data = SSL_SESSION_get_id(session, &len); | 
 |   return MakeConstSpan(data, len); | 
 | } | 
 |  | 
 | TEST_P(SSLVersionTest, TicketSessionIDsMatch) { | 
 |   // This checks that the session IDs at client and server match after a ticket | 
 |   // resumption. It's unclear whether this should be true, but Envoy depends | 
 |   // on it in their tests so this will give an early signal if we break it. | 
 |   SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |   SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
 |  | 
 |   bssl::UniquePtr<SSL_SESSION> session = | 
 |       CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
 |  | 
 |   bssl::UniquePtr<SSL> client, server; | 
 |   ClientConfig config; | 
 |   config.session = session.get(); | 
 |   ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(), | 
 |                                      server_ctx_.get(), config)); | 
 |   EXPECT_TRUE(SSL_session_reused(client.get())); | 
 |   EXPECT_TRUE(SSL_session_reused(server.get())); | 
 |  | 
 |   EXPECT_EQ(Bytes(SessionIDOf(client.get())), Bytes(SessionIDOf(server.get()))); | 
 | } | 
 |  | 
 | static void WriteHelloRequest(SSL *server) { | 
 |   // This function assumes TLS 1.2 with ChaCha20-Poly1305. | 
 |   ASSERT_EQ(SSL_version(server), TLS1_2_VERSION); | 
 |   ASSERT_EQ(SSL_CIPHER_get_cipher_nid(SSL_get_current_cipher(server)), | 
 |             NID_chacha20_poly1305); | 
 |  | 
 |   // Encrypt a HelloRequest. | 
 |   uint8_t in[] = {SSL3_MT_HELLO_REQUEST, 0, 0, 0}; | 
 | #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) | 
 |   // Fuzzer-mode records are unencrypted. | 
 |   uint8_t record[5 + sizeof(in)]; | 
 |   record[0] = SSL3_RT_HANDSHAKE; | 
 |   record[1] = 3; | 
 |   record[2] = 3;  // TLS 1.2 | 
 |   record[3] = 0; | 
 |   record[4] = sizeof(record) - 5; | 
 |   memcpy(record + 5, in, sizeof(in)); | 
 | #else | 
 |   // Extract key material from |server|. | 
 |   static const size_t kKeyLen = 32; | 
 |   static const size_t kNonceLen = 12; | 
 |   ASSERT_EQ(2u * (kKeyLen + kNonceLen), SSL_get_key_block_len(server)); | 
 |   uint8_t key_block[2u * (kKeyLen + kNonceLen)]; | 
 |   ASSERT_TRUE(SSL_generate_key_block(server, key_block, sizeof(key_block))); | 
 |   Span<uint8_t> key = MakeSpan(key_block + kKeyLen, kKeyLen); | 
 |   Span<uint8_t> nonce = | 
 |       MakeSpan(key_block + kKeyLen + kKeyLen + kNonceLen, kNonceLen); | 
 |  | 
 |   uint8_t ad[13]; | 
 |   uint64_t seq = SSL_get_write_sequence(server); | 
 |   for (size_t i = 0; i < 8; i++) { | 
 |     // The nonce is XORed with the sequence number. | 
 |     nonce[11 - i] ^= uint8_t(seq); | 
 |     ad[7 - i] = uint8_t(seq); | 
 |     seq >>= 8; | 
 |   } | 
 |  | 
 |   ad[8] = SSL3_RT_HANDSHAKE; | 
 |   ad[9] = 3; | 
 |   ad[10] = 3;  // TLS 1.2 | 
 |   ad[11] = 0; | 
 |   ad[12] = sizeof(in); | 
 |  | 
 |   uint8_t record[5 + sizeof(in) + 16]; | 
 |   record[0] = SSL3_RT_HANDSHAKE; | 
 |   record[1] = 3; | 
 |   record[2] = 3;  // TLS 1.2 | 
 |   record[3] = 0; | 
 |   record[4] = sizeof(record) - 5; | 
 |  | 
 |   ScopedEVP_AEAD_CTX aead; | 
 |   ASSERT_TRUE(EVP_AEAD_CTX_init(aead.get(), EVP_aead_chacha20_poly1305(), | 
 |                                 key.data(), key.size(), | 
 |                                 EVP_AEAD_DEFAULT_TAG_LENGTH, nullptr)); | 
 |   size_t len; | 
 |   ASSERT_TRUE(EVP_AEAD_CTX_seal(aead.get(), record + 5, &len, | 
 |                                 sizeof(record) - 5, nonce.data(), nonce.size(), | 
 |                                 in, sizeof(in), ad, sizeof(ad))); | 
 |   ASSERT_EQ(sizeof(record) - 5, len); | 
 | #endif  // BORINGSSL_UNSAFE_FUZZER_MODE | 
 |  | 
 |   ASSERT_EQ(int(sizeof(record)), | 
 |             BIO_write(SSL_get_wbio(server), record, sizeof(record))); | 
 | } | 
 |  | 
 | TEST(SSLTest, WriteWhileExplicitRenegotiate) { | 
 |   bssl::UniquePtr<SSL_CTX> ctx(CreateContextWithTestCertificate(TLS_method())); | 
 |   ASSERT_TRUE(ctx); | 
 |  | 
 |   ASSERT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_2_VERSION)); | 
 |   ASSERT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_2_VERSION)); | 
 |   ASSERT_TRUE(SSL_CTX_set_strict_cipher_list( | 
 |       ctx.get(), "TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256")); | 
 |  | 
 |   bssl::UniquePtr<SSL> client, server; | 
 |   ASSERT_TRUE(CreateClientAndServer(&client, &server, ctx.get(), ctx.get())); | 
 |   SSL_set_renegotiate_mode(client.get(), ssl_renegotiate_explicit); | 
 |   ASSERT_TRUE(CompleteHandshakes(client.get(), server.get())); | 
 |  | 
 |   static const uint8_t kInput[] = {'h', 'e', 'l', 'l', 'o'}; | 
 |  | 
 |   // Write "hello" until the buffer is full, so |client| has a pending write. | 
 |   size_t num_writes = 0; | 
 |   for (;;) { | 
 |     int ret = SSL_write(client.get(), kInput, sizeof(kInput)); | 
 |     if (ret != int(sizeof(kInput))) { | 
 |       ASSERT_EQ(-1, ret); | 
 |       ASSERT_EQ(SSL_ERROR_WANT_WRITE, SSL_get_error(client.get(), ret)); | 
 |       break; | 
 |     } | 
 |     num_writes++; | 
 |   } | 
 |  | 
 |   ASSERT_NO_FATAL_FAILURE(WriteHelloRequest(server.get())); | 
 |  | 
 |   // |SSL_read| should pick up the HelloRequest. | 
 |   uint8_t byte; | 
 |   ASSERT_EQ(-1, SSL_read(client.get(), &byte, 1)); | 
 |   ASSERT_EQ(SSL_ERROR_WANT_RENEGOTIATE, SSL_get_error(client.get(), -1)); | 
 |  | 
 |   // Drain the data from the |client|. | 
 |   uint8_t buf[sizeof(kInput)]; | 
 |   for (size_t i = 0; i < num_writes; i++) { | 
 |     ASSERT_EQ(int(sizeof(buf)), SSL_read(server.get(), buf, sizeof(buf))); | 
 |     EXPECT_EQ(Bytes(buf), Bytes(kInput)); | 
 |   } | 
 |  | 
 |   // |client| should be able to finish the pending write and continue to write, | 
 |   // despite the paused HelloRequest. | 
 |   ASSERT_EQ(int(sizeof(kInput)), | 
 |             SSL_write(client.get(), kInput, sizeof(kInput))); | 
 |   ASSERT_EQ(int(sizeof(buf)), SSL_read(server.get(), buf, sizeof(buf))); | 
 |   EXPECT_EQ(Bytes(buf), Bytes(kInput)); | 
 |  | 
 |   ASSERT_EQ(int(sizeof(kInput)), | 
 |             SSL_write(client.get(), kInput, sizeof(kInput))); | 
 |   ASSERT_EQ(int(sizeof(buf)), SSL_read(server.get(), buf, sizeof(buf))); | 
 |   EXPECT_EQ(Bytes(buf), Bytes(kInput)); | 
 |  | 
 |   // |SSL_read| is stuck until we acknowledge the HelloRequest. | 
 |   ASSERT_EQ(-1, SSL_read(client.get(), &byte, 1)); | 
 |   ASSERT_EQ(SSL_ERROR_WANT_RENEGOTIATE, SSL_get_error(client.get(), -1)); | 
 |  | 
 |   ASSERT_TRUE(SSL_renegotiate(client.get())); | 
 |   ASSERT_EQ(-1, SSL_read(client.get(), &byte, 1)); | 
 |   ASSERT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(client.get(), -1)); | 
 |  | 
 |   // We never renegotiate as a server. | 
 |   ASSERT_EQ(-1, SSL_read(server.get(), buf, sizeof(buf))); | 
 |   ASSERT_EQ(SSL_ERROR_SSL, SSL_get_error(server.get(), -1)); | 
 |   uint32_t err = ERR_get_error(); | 
 |   EXPECT_EQ(ERR_LIB_SSL, ERR_GET_LIB(err)); | 
 |   EXPECT_EQ(SSL_R_NO_RENEGOTIATION, ERR_GET_REASON(err)); | 
 | } | 
 |  | 
 | TEST(SSLTest, ConnectionPropertiesDuringRenegotiate) { | 
 |   // Configure known connection properties, so we can check against them. | 
 |   bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
 |   ASSERT_TRUE(ctx); | 
 |   bssl::UniquePtr<X509> cert = GetTestCertificate(); | 
 |   ASSERT_TRUE(cert); | 
 |   bssl::UniquePtr<EVP_PKEY> key = GetTestKey(); | 
 |   ASSERT_TRUE(key); | 
 |   ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), cert.get())); | 
 |   ASSERT_TRUE(SSL_CTX_use_PrivateKey(ctx.get(), key.get())); | 
 |   ASSERT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_2_VERSION)); | 
 |   ASSERT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_2_VERSION)); | 
 |   ASSERT_TRUE(SSL_CTX_set_strict_cipher_list( | 
 |       ctx.get(), "TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256")); | 
 |   ASSERT_TRUE(SSL_CTX_set1_groups_list(ctx.get(), "X25519")); | 
 |   ASSERT_TRUE(SSL_CTX_set1_sigalgs_list(ctx.get(), "rsa_pkcs1_sha256")); | 
 |  | 
 |   // Connect a client and server that accept renegotiation. | 
 |   bssl::UniquePtr<SSL> client, server; | 
 |   ASSERT_TRUE(CreateClientAndServer(&client, &server, ctx.get(), ctx.get())); | 
 |   SSL_set_renegotiate_mode(client.get(), ssl_renegotiate_freely); | 
 |   ASSERT_TRUE(CompleteHandshakes(client.get(), server.get())); | 
 |  | 
 |   auto check_properties = [&] { | 
 |     EXPECT_EQ(SSL_version(client.get()), TLS1_2_VERSION); | 
 |     const SSL_CIPHER *cipher = SSL_get_current_cipher(client.get()); | 
 |     ASSERT_TRUE(cipher); | 
 |     EXPECT_EQ(SSL_CIPHER_get_id(cipher), | 
 |               uint32_t{TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256}); | 
 |     EXPECT_EQ(SSL_get_group_id(client.get()), SSL_GROUP_X25519); | 
 |     EXPECT_EQ(SSL_get_negotiated_group(client.get()), NID_X25519); | 
 |     EXPECT_EQ(SSL_get_peer_signature_algorithm(client.get()), | 
 |               SSL_SIGN_RSA_PKCS1_SHA256); | 
 |     bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(client.get())); | 
 |     ASSERT_TRUE(peer); | 
 |     EXPECT_EQ(X509_cmp(cert.get(), peer.get()), 0); | 
 |   }; | 
 |   check_properties(); | 
 |  | 
 |   // The server sends a HelloRequest. | 
 |   ASSERT_NO_FATAL_FAILURE(WriteHelloRequest(server.get())); | 
 |  | 
 |   // Reading from the client will consume the HelloRequest, start a | 
 |   // renegotiation, and then block on a ServerHello from the server. | 
 |   uint8_t byte; | 
 |   ASSERT_EQ(-1, SSL_read(client.get(), &byte, 1)); | 
 |   ASSERT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(client.get(), -1)); | 
 |  | 
 |   // Connection properties should continue to report values from the original | 
 |   // handshake. | 
 |   check_properties(); | 
 | } | 
 |  | 
 | TEST(SSLTest, CopyWithoutEarlyData) { | 
 |   bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
 |   bssl::UniquePtr<SSL_CTX> server_ctx( | 
 |       CreateContextWithTestCertificate(TLS_method())); | 
 |   ASSERT_TRUE(client_ctx); | 
 |   ASSERT_TRUE(server_ctx); | 
 |  | 
 |   SSL_CTX_set_session_cache_mode(client_ctx.get(), SSL_SESS_CACHE_BOTH); | 
 |   SSL_CTX_set_session_cache_mode(server_ctx.get(), SSL_SESS_CACHE_BOTH); | 
 |   SSL_CTX_set_early_data_enabled(client_ctx.get(), 1); | 
 |   SSL_CTX_set_early_data_enabled(server_ctx.get(), 1); | 
 |  | 
 |   bssl::UniquePtr<SSL_SESSION> session = | 
 |       CreateClientSession(client_ctx.get(), server_ctx.get()); | 
 |   ASSERT_TRUE(session); | 
 |  | 
 |   // The client should attempt early data with |session|. | 
 |   bssl::UniquePtr<SSL> client, server; | 
 |   ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), | 
 |                                      server_ctx.get())); | 
 |   SSL_set_session(client.get(), session.get()); | 
 |   SSL_set_early_data_enabled(client.get(), 1); | 
 |   ASSERT_EQ(1, SSL_do_handshake(client.get())); | 
 |   EXPECT_TRUE(SSL_in_early_data(client.get())); | 
 |  | 
 |   // |SSL_SESSION_copy_without_early_data| should disable early data but | 
 |   // still resume the session. | 
 |   bssl::UniquePtr<SSL_SESSION> session2( | 
 |       SSL_SESSION_copy_without_early_data(session.get())); | 
 |   ASSERT_TRUE(session2); | 
 |   EXPECT_NE(session.get(), session2.get()); | 
 |   ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), | 
 |                                     server_ctx.get())); | 
 |   SSL_set_session(client.get(), session2.get()); | 
 |   SSL_set_early_data_enabled(client.get(), 1); | 
 |   EXPECT_TRUE(CompleteHandshakes(client.get(), server.get())); | 
 |   EXPECT_TRUE(SSL_session_reused(client.get())); | 
 |   EXPECT_EQ(ssl_early_data_unsupported_for_session, | 
 |             SSL_get_early_data_reason(client.get())); | 
 |  | 
 |   // |SSL_SESSION_copy_without_early_data| should be a reference count increase | 
 |   // when passed an early-data-incapable session. | 
 |   bssl::UniquePtr<SSL_SESSION> session3( | 
 |       SSL_SESSION_copy_without_early_data(session2.get())); | 
 |   EXPECT_EQ(session2.get(), session3.get()); | 
 | } | 
 |  | 
 | TEST(SSLTest, ProcessTLS13NewSessionTicket) { | 
 |   // Configure client and server to negotiate TLS 1.3 only. | 
 |   bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
 |   bssl::UniquePtr<SSL_CTX> server_ctx( | 
 |       CreateContextWithTestCertificate(TLS_method())); | 
 |   ASSERT_TRUE(client_ctx); | 
 |   ASSERT_TRUE(server_ctx); | 
 |   ASSERT_TRUE(SSL_CTX_set_min_proto_version(client_ctx.get(), TLS1_3_VERSION)); | 
 |   ASSERT_TRUE(SSL_CTX_set_min_proto_version(server_ctx.get(), TLS1_3_VERSION)); | 
 |   ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), TLS1_3_VERSION)); | 
 |   ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_3_VERSION)); | 
 |  | 
 |   bssl::UniquePtr<SSL> client, server; | 
 |   ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
 |                                      server_ctx.get())); | 
 |   EXPECT_EQ(TLS1_3_VERSION, SSL_version(client.get())); | 
 |  | 
 |   // Process a TLS 1.3 NewSessionTicket. | 
 |   static const uint8_t kTicket[] = { | 
 |       0x04, 0x00, 0x00, 0xb2, 0x00, 0x02, 0xa3, 0x00, 0x04, 0x03, 0x02, 0x01, | 
 |       0x01, 0x00, 0x00, 0xa0, 0x01, 0x06, 0x09, 0x11, 0x16, 0x19, 0x21, 0x26, | 
 |       0x29, 0x31, 0x36, 0x39, 0x41, 0x46, 0x49, 0x51, 0x03, 0x06, 0x09, 0x13, | 
 |       0x16, 0x19, 0x23, 0x26, 0x29, 0x33, 0x36, 0x39, 0x43, 0x46, 0x49, 0x53, | 
 |       0xf7, 0x00, 0x29, 0xec, 0xf2, 0xc4, 0xa4, 0x41, 0xfc, 0x30, 0x17, 0x2e, | 
 |       0x9f, 0x7c, 0xa8, 0xaf, 0x75, 0x70, 0xf0, 0x1f, 0xc7, 0x98, 0xf7, 0xcf, | 
 |       0x5a, 0x5a, 0x6b, 0x5b, 0xfe, 0xf1, 0xe7, 0x3a, 0xe8, 0xf7, 0x6c, 0xd2, | 
 |       0xa8, 0xa6, 0x92, 0x5b, 0x96, 0x8d, 0xde, 0xdb, 0xd3, 0x20, 0x6a, 0xcb, | 
 |       0x69, 0x06, 0xf4, 0x91, 0x85, 0x2e, 0xe6, 0x5e, 0x0c, 0x59, 0xf2, 0x9e, | 
 |       0x9b, 0x79, 0x91, 0x24, 0x7e, 0x4a, 0x32, 0x3d, 0xbe, 0x4b, 0x80, 0x70, | 
 |       0xaf, 0xd0, 0x1d, 0xe2, 0xca, 0x05, 0x35, 0x09, 0x09, 0x05, 0x0f, 0xbb, | 
 |       0xc4, 0xae, 0xd7, 0xc4, 0xed, 0xd7, 0xae, 0x35, 0xc8, 0x73, 0x63, 0x78, | 
 |       0x64, 0xc9, 0x7a, 0x1f, 0xed, 0x7a, 0x9a, 0x47, 0x44, 0xfd, 0x50, 0xf7, | 
 |       0xb7, 0xe0, 0x64, 0xa9, 0x02, 0xc1, 0x5c, 0x23, 0x18, 0x3f, 0xc4, 0xcf, | 
 |       0x72, 0x02, 0x59, 0x2d, 0xe1, 0xaa, 0x61, 0x72, 0x00, 0x04, 0x5a, 0x5a, | 
 |       0x00, 0x00, | 
 |   }; | 
 |   bssl::UniquePtr<SSL_SESSION> session(SSL_process_tls13_new_session_ticket( | 
 |       client.get(), kTicket, sizeof(kTicket))); | 
 |   ASSERT_TRUE(session); | 
 |   ASSERT_TRUE(SSL_SESSION_has_ticket(session.get())); | 
 |  | 
 |   uint8_t *session_buf = nullptr; | 
 |   size_t session_length = 0; | 
 |   ASSERT_TRUE( | 
 |       SSL_SESSION_to_bytes(session.get(), &session_buf, &session_length)); | 
 |   bssl::UniquePtr<uint8_t> session_buf_free(session_buf); | 
 |   ASSERT_TRUE(session_buf); | 
 |   ASSERT_GT(session_length, 0u); | 
 |  | 
 |   // Servers cannot call |SSL_process_tls13_new_session_ticket|. | 
 |   ASSERT_FALSE(SSL_process_tls13_new_session_ticket(server.get(), kTicket, | 
 |                                                     sizeof(kTicket))); | 
 |  | 
 |   // Clients cannot call |SSL_process_tls13_new_session_ticket| before the | 
 |   // handshake completes. | 
 |   bssl::UniquePtr<SSL> client2(SSL_new(client_ctx.get())); | 
 |   ASSERT_TRUE(client2); | 
 |   SSL_set_connect_state(client2.get()); | 
 |   ASSERT_FALSE(SSL_process_tls13_new_session_ticket(client2.get(), kTicket, | 
 |                                                     sizeof(kTicket))); | 
 | } | 
 |  | 
 | TEST(SSLTest, BIO) { | 
 |   bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
 |   bssl::UniquePtr<SSL_CTX> server_ctx( | 
 |       CreateContextWithTestCertificate(TLS_method())); | 
 |   ASSERT_TRUE(client_ctx); | 
 |   ASSERT_TRUE(server_ctx); | 
 |  | 
 |   for (bool take_ownership : {true, false}) { | 
 |     // For simplicity, get the handshake out of the way first. | 
 |     bssl::UniquePtr<SSL> client, server; | 
 |     ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
 |                                        server_ctx.get())); | 
 |  | 
 |     // Wrap |client| in an SSL BIO. | 
 |     bssl::UniquePtr<BIO> client_bio(BIO_new(BIO_f_ssl())); | 
 |     ASSERT_TRUE(client_bio); | 
 |     ASSERT_EQ(1, BIO_set_ssl(client_bio.get(), client.get(), take_ownership)); | 
 |     if (take_ownership) { | 
 |       client.release(); | 
 |     } | 
 |  | 
 |     // Flushing the BIO should not crash. | 
 |     EXPECT_EQ(1, BIO_flush(client_bio.get())); | 
 |  | 
 |     // Exchange some data. | 
 |     EXPECT_EQ(5, BIO_write(client_bio.get(), "hello", 5)); | 
 |     uint8_t buf[5]; | 
 |     ASSERT_EQ(5, SSL_read(server.get(), buf, sizeof(buf))); | 
 |     EXPECT_EQ(Bytes("hello"), Bytes(buf)); | 
 |  | 
 |     EXPECT_EQ(5, SSL_write(server.get(), "world", 5)); | 
 |     ASSERT_EQ(5, BIO_read(client_bio.get(), buf, sizeof(buf))); | 
 |     EXPECT_EQ(Bytes("world"), Bytes(buf)); | 
 |  | 
 |     // |BIO_should_read| should work. | 
 |     EXPECT_EQ(-1, BIO_read(client_bio.get(), buf, sizeof(buf))); | 
 |     EXPECT_TRUE(BIO_should_read(client_bio.get())); | 
 |  | 
 |     // Writing data should eventually exceed the buffer size and fail, reporting | 
 |     // |BIO_should_write|. | 
 |     int ret; | 
 |     for (int i = 0; i < 1024; i++) { | 
 |       const uint8_t kZeros[1024] = {0}; | 
 |       ret = BIO_write(client_bio.get(), kZeros, sizeof(kZeros)); | 
 |       if (ret <= 0) { | 
 |         break; | 
 |       } | 
 |     } | 
 |     EXPECT_EQ(-1, ret); | 
 |     EXPECT_TRUE(BIO_should_write(client_bio.get())); | 
 |   } | 
 | } | 
 |  | 
 | TEST(SSLTest, ALPNConfig) { | 
 |   bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
 |   ASSERT_TRUE(ctx); | 
 |   bssl::UniquePtr<X509> cert = GetTestCertificate(); | 
 |   bssl::UniquePtr<EVP_PKEY> key = GetTestKey(); | 
 |   ASSERT_TRUE(cert); | 
 |   ASSERT_TRUE(key); | 
 |   ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), cert.get())); | 
 |   ASSERT_TRUE(SSL_CTX_use_PrivateKey(ctx.get(), key.get())); | 
 |  | 
 |   // Set up some machinery to check the configured ALPN against what is actually | 
 |   // sent over the wire. Note that the ALPN callback is only called when the | 
 |   // client offers ALPN. | 
 |   std::vector<uint8_t> observed_alpn; | 
 |   SSL_CTX_set_alpn_select_cb( | 
 |       ctx.get(), | 
 |       [](SSL *ssl, const uint8_t **out, uint8_t *out_len, const uint8_t *in, | 
 |          unsigned in_len, void *arg) -> int { | 
 |         std::vector<uint8_t> *observed_alpn_ptr = | 
 |             static_cast<std::vector<uint8_t> *>(arg); | 
 |         observed_alpn_ptr->assign(in, in + in_len); | 
 |         return SSL_TLSEXT_ERR_NOACK; | 
 |       }, | 
 |       &observed_alpn); | 
 |   auto check_alpn_proto = [&](Span<const uint8_t> expected) { | 
 |     observed_alpn.clear(); | 
 |     bssl::UniquePtr<SSL> client, server; | 
 |     ASSERT_TRUE(ConnectClientAndServer(&client, &server, ctx.get(), ctx.get())); | 
 |     EXPECT_EQ(Bytes(expected), Bytes(observed_alpn)); | 
 |   }; | 
 |  | 
 |   // Note that |SSL_CTX_set_alpn_protos|'s return value is reversed. | 
 |   static const uint8_t kValidList[] = {0x03, 'f', 'o', 'o', | 
 |                                        0x03, 'b', 'a', 'r'}; | 
 |   EXPECT_EQ(0, | 
 |             SSL_CTX_set_alpn_protos(ctx.get(), kValidList, sizeof(kValidList))); | 
 |   check_alpn_proto(kValidList); | 
 |  | 
 |   // Invalid lists are rejected. | 
 |   static const uint8_t kInvalidList[] = {0x04, 'f', 'o', 'o'}; | 
 |   EXPECT_EQ(1, SSL_CTX_set_alpn_protos(ctx.get(), kInvalidList, | 
 |                                        sizeof(kInvalidList))); | 
 |  | 
 |   // Empty lists are valid and are interpreted as disabling ALPN. | 
 |   EXPECT_EQ(0, SSL_CTX_set_alpn_protos(ctx.get(), nullptr, 0)); | 
 |   check_alpn_proto({}); | 
 | } | 
 |  | 
 | // Test that the key usage checker can correctly handle issuerUID and | 
 | // subjectUID. See https://crbug.com/1199744. | 
 | TEST(SSLTest, KeyUsageWithUIDs) { | 
 |   static const char kGoodKeyUsage[] = R"( | 
 | -----BEGIN CERTIFICATE----- | 
 | MIIB7DCCAZOgAwIBAgIJANlMBNpJfb/rMAoGCCqGSM49BAMCMEUxCzAJBgNVBAYT | 
 | AkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5ldCBXaWRn | 
 | aXRzIFB0eSBMdGQwHhcNMTQwNDIzMjMyMTU3WhcNMTQwNTIzMjMyMTU3WjBFMQsw | 
 | CQYDVQQGEwJBVTETMBEGA1UECAwKU29tZS1TdGF0ZTEhMB8GA1UECgwYSW50ZXJu | 
 | ZXQgV2lkZ2l0cyBQdHkgTHRkMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE5itp | 
 | 4r9ln5e+Lx4NlIpM1Zdrt6keDUb73ampHp3culoB59aXqAoY+cPEox5W4nyDSNsW | 
 | Ghz1HX7xlC1Lz3IiwYEEABI0VoIEABI0VqNgMF4wHQYDVR0OBBYEFKuE0qyrlfCC | 
 | ThZ4B1VXX+QmjYLRMB8GA1UdIwQYMBaAFKuE0qyrlfCCThZ4B1VXX+QmjYLRMA4G | 
 | A1UdDwEB/wQEAwIHgDAMBgNVHRMEBTADAQH/MAoGCCqGSM49BAMCA0cAMEQCIEWJ | 
 | 34EcqW5MHwLIA1hZ2Tj/jV2QjN02KLxis9mFsqDKAiAMlMTkzsM51vVs9Ohqa+Rc | 
 | 4Z7qDhjIhiF4dM0uEDYRVA== | 
 | -----END CERTIFICATE----- | 
 | )"; | 
 |   static const char kBadKeyUsage[] = R"( | 
 | -----BEGIN CERTIFICATE----- | 
 | MIIB7jCCAZOgAwIBAgIJANlMBNpJfb/rMAoGCCqGSM49BAMCMEUxCzAJBgNVBAYT | 
 | AkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5ldCBXaWRn | 
 | aXRzIFB0eSBMdGQwHhcNMTQwNDIzMjMyMTU3WhcNMTQwNTIzMjMyMTU3WjBFMQsw | 
 | CQYDVQQGEwJBVTETMBEGA1UECAwKU29tZS1TdGF0ZTEhMB8GA1UECgwYSW50ZXJu | 
 | ZXQgV2lkZ2l0cyBQdHkgTHRkMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE5itp | 
 | 4r9ln5e+Lx4NlIpM1Zdrt6keDUb73ampHp3culoB59aXqAoY+cPEox5W4nyDSNsW | 
 | Ghz1HX7xlC1Lz3IiwYEEABI0VoIEABI0VqNgMF4wHQYDVR0OBBYEFKuE0qyrlfCC | 
 | ThZ4B1VXX+QmjYLRMB8GA1UdIwQYMBaAFKuE0qyrlfCCThZ4B1VXX+QmjYLRMA4G | 
 | A1UdDwEB/wQEAwIDCDAMBgNVHRMEBTADAQH/MAoGCCqGSM49BAMCA0kAMEYCIQC6 | 
 | taYBUDu2gcZC6EMk79FBHArYI0ucF+kzvETegZCbBAIhANtObFec5gtso/47moPD | 
 | RHrQbWsFUakETXL9QMlegh5t | 
 | -----END CERTIFICATE----- | 
 | )"; | 
 |  | 
 |   bssl::UniquePtr<X509> good = CertFromPEM(kGoodKeyUsage); | 
 |   ASSERT_TRUE(good); | 
 |   bssl::UniquePtr<X509> bad = CertFromPEM(kBadKeyUsage); | 
 |   ASSERT_TRUE(bad); | 
 |  | 
 |   // We check key usage when configuring EC certificates to distinguish ECDSA | 
 |   // and ECDH. | 
 |   bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
 |   ASSERT_TRUE(ctx); | 
 |   EXPECT_TRUE(SSL_CTX_use_certificate(ctx.get(), good.get())); | 
 |   EXPECT_FALSE(SSL_CTX_use_certificate(ctx.get(), bad.get())); | 
 | } | 
 |  | 
 | // Test that |SSL_can_release_private_key| reports true as early as expected. | 
 | // The internal asserts in the library check we do not report true too early. | 
 | TEST(SSLTest, CanReleasePrivateKey) { | 
 |   bssl::UniquePtr<SSL_CTX> client_ctx = | 
 |       CreateContextWithTestCertificate(TLS_method()); | 
 |   ASSERT_TRUE(client_ctx); | 
 |   SSL_CTX_set_session_cache_mode(client_ctx.get(), SSL_SESS_CACHE_BOTH); | 
 |  | 
 |   // Note this assumes the transport buffer is large enough to fit the client | 
 |   // and server first flights. We check this with |SSL_ERROR_WANT_READ|. If the | 
 |   // transport buffer was too small it would return |SSL_ERROR_WANT_WRITE|. | 
 |   auto check_first_server_round_trip = [&](SSL *client, SSL *server) { | 
 |     // Write the ClientHello. | 
 |     ASSERT_EQ(-1, SSL_do_handshake(client)); | 
 |     ASSERT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(client, -1)); | 
 |  | 
 |     // Consume the ClientHello and write the server flight. | 
 |     ASSERT_EQ(-1, SSL_do_handshake(server)); | 
 |     ASSERT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(server, -1)); | 
 |  | 
 |     EXPECT_TRUE(SSL_can_release_private_key(server)); | 
 |   }; | 
 |  | 
 |   { | 
 |     SCOPED_TRACE("TLS 1.2 ECDHE"); | 
 |     bssl::UniquePtr<SSL_CTX> server_ctx( | 
 |         CreateContextWithTestCertificate(TLS_method())); | 
 |     ASSERT_TRUE(server_ctx); | 
 |     ASSERT_TRUE( | 
 |         SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_2_VERSION)); | 
 |     ASSERT_TRUE(SSL_CTX_set_strict_cipher_list( | 
 |         server_ctx.get(), "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256")); | 
 |     // Configure the server to request client certificates, so we can also test | 
 |     // the client half. | 
 |     SSL_CTX_set_custom_verify( | 
 |         server_ctx.get(), SSL_VERIFY_PEER, | 
 |         [](SSL *ssl, uint8_t *out_alert) { return ssl_verify_ok; }); | 
 |     bssl::UniquePtr<SSL> client, server; | 
 |     ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), | 
 |                                       server_ctx.get())); | 
 |     check_first_server_round_trip(client.get(), server.get()); | 
 |  | 
 |     // Consume the server flight and write the client response. The client still | 
 |     // has a Finished message to consume but can also release its key early. | 
 |     ASSERT_EQ(-1, SSL_do_handshake(client.get())); | 
 |     ASSERT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(client.get(), -1)); | 
 |     EXPECT_TRUE(SSL_can_release_private_key(client.get())); | 
 |  | 
 |     // However, a client that has not disabled renegotiation can never release | 
 |     // the key. | 
 |     ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), | 
 |                                       server_ctx.get())); | 
 |     SSL_set_renegotiate_mode(client.get(), ssl_renegotiate_freely); | 
 |     check_first_server_round_trip(client.get(), server.get()); | 
 |     ASSERT_EQ(-1, SSL_do_handshake(client.get())); | 
 |     ASSERT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(client.get(), -1)); | 
 |     EXPECT_FALSE(SSL_can_release_private_key(client.get())); | 
 |   } | 
 |  | 
 |   { | 
 |     SCOPED_TRACE("TLS 1.2 resumption"); | 
 |     bssl::UniquePtr<SSL_CTX> server_ctx( | 
 |         CreateContextWithTestCertificate(TLS_method())); | 
 |     ASSERT_TRUE(server_ctx); | 
 |     ASSERT_TRUE( | 
 |         SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_2_VERSION)); | 
 |     bssl::UniquePtr<SSL_SESSION> session = | 
 |         CreateClientSession(client_ctx.get(), server_ctx.get()); | 
 |     ASSERT_TRUE(session); | 
 |     bssl::UniquePtr<SSL> client, server; | 
 |     ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), | 
 |                                       server_ctx.get())); | 
 |     SSL_set_session(client.get(), session.get()); | 
 |     check_first_server_round_trip(client.get(), server.get()); | 
 |   } | 
 |  | 
 |   { | 
 |     SCOPED_TRACE("TLS 1.3 1-RTT"); | 
 |     bssl::UniquePtr<SSL_CTX> server_ctx( | 
 |         CreateContextWithTestCertificate(TLS_method())); | 
 |     ASSERT_TRUE(server_ctx); | 
 |     ASSERT_TRUE( | 
 |         SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_3_VERSION)); | 
 |     bssl::UniquePtr<SSL> client, server; | 
 |     ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), | 
 |                                       server_ctx.get())); | 
 |     check_first_server_round_trip(client.get(), server.get()); | 
 |   } | 
 |  | 
 |   { | 
 |     SCOPED_TRACE("TLS 1.3 resumption"); | 
 |     bssl::UniquePtr<SSL_CTX> server_ctx( | 
 |         CreateContextWithTestCertificate(TLS_method())); | 
 |     ASSERT_TRUE(server_ctx); | 
 |     ASSERT_TRUE( | 
 |         SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_3_VERSION)); | 
 |     bssl::UniquePtr<SSL_SESSION> session = | 
 |         CreateClientSession(client_ctx.get(), server_ctx.get()); | 
 |     ASSERT_TRUE(session); | 
 |     bssl::UniquePtr<SSL> client, server; | 
 |     ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), | 
 |                                       server_ctx.get())); | 
 |     SSL_set_session(client.get(), session.get()); | 
 |     check_first_server_round_trip(client.get(), server.get()); | 
 |   } | 
 | } | 
 |  | 
 | // GetExtensionOrder sets |*out| to the list of extensions a client attached to | 
 | // |ctx| will send in the ClientHello. If |ech_keys| is non-null, the client | 
 | // will offer ECH with the public component. If |decrypt_ech| is true, |*out| | 
 | // will be set to the ClientHelloInner's extensions, rather than | 
 | // ClientHelloOuter. | 
 | static bool GetExtensionOrder(SSL_CTX *client_ctx, std::vector<uint16_t> *out, | 
 |                               SSL_ECH_KEYS *ech_keys, bool decrypt_ech) { | 
 |   struct AppData { | 
 |     std::vector<uint16_t> *out; | 
 |     bool decrypt_ech; | 
 |     bool callback_done = false; | 
 |   }; | 
 |   AppData app_data; | 
 |   app_data.out = out; | 
 |   app_data.decrypt_ech = decrypt_ech; | 
 |  | 
 |   bssl::UniquePtr<SSL_CTX> server_ctx = | 
 |       CreateContextWithTestCertificate(TLS_method()); | 
 |   if (!server_ctx ||  // | 
 |       !SSL_CTX_set_app_data(server_ctx.get(), &app_data) || | 
 |       (decrypt_ech && !SSL_CTX_set1_ech_keys(server_ctx.get(), ech_keys))) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Configure the server to record the ClientHello extension order. We use a | 
 |   // server rather than |GetClientHello| so it can decrypt ClientHelloInner. | 
 |   SSL_CTX_set_select_certificate_cb( | 
 |       server_ctx.get(), | 
 |       [](const SSL_CLIENT_HELLO *client_hello) -> ssl_select_cert_result_t { | 
 |         AppData *app_data_ptr = static_cast<AppData *>( | 
 |             SSL_CTX_get_app_data(SSL_get_SSL_CTX(client_hello->ssl))); | 
 |         EXPECT_EQ(app_data_ptr->decrypt_ech ? 1 : 0, | 
 |                   SSL_ech_accepted(client_hello->ssl)); | 
 |  | 
 |         app_data_ptr->out->clear(); | 
 |         CBS extensions; | 
 |         CBS_init(&extensions, client_hello->extensions, | 
 |                  client_hello->extensions_len); | 
 |         while (CBS_len(&extensions)) { | 
 |           uint16_t type; | 
 |           CBS body; | 
 |           if (!CBS_get_u16(&extensions, &type) || | 
 |               !CBS_get_u16_length_prefixed(&extensions, &body)) { | 
 |             return ssl_select_cert_error; | 
 |           } | 
 |           app_data_ptr->out->push_back(type); | 
 |         } | 
 |  | 
 |         // Don't bother completing the handshake. | 
 |         app_data_ptr->callback_done = true; | 
 |         return ssl_select_cert_error; | 
 |       }); | 
 |  | 
 |   bssl::UniquePtr<SSL> client, server; | 
 |   if (!CreateClientAndServer(&client, &server, client_ctx, server_ctx.get()) || | 
 |       (ech_keys != nullptr && !InstallECHConfigList(client.get(), ech_keys))) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Run the handshake far enough to process the ClientHello. | 
 |   SSL_do_handshake(client.get()); | 
 |   SSL_do_handshake(server.get()); | 
 |   return app_data.callback_done; | 
 | } | 
 |  | 
 | // Test that, when extension permutation is enabled, the ClientHello extension | 
 | // order changes, both with and without ECH, and in both ClientHelloInner and | 
 | // ClientHelloOuter. | 
 | TEST(SSLTest, PermuteExtensions) { | 
 |   bssl::UniquePtr<SSL_ECH_KEYS> keys = MakeTestECHKeys(); | 
 |   ASSERT_TRUE(keys); | 
 |   for (bool offer_ech : {false, true}) { | 
 |     SCOPED_TRACE(offer_ech); | 
 |     SSL_ECH_KEYS *maybe_keys = offer_ech ? keys.get() : nullptr; | 
 |     for (bool decrypt_ech : {false, true}) { | 
 |       SCOPED_TRACE(decrypt_ech); | 
 |       if (!offer_ech && decrypt_ech) { | 
 |         continue; | 
 |       } | 
 |  | 
 |       // When extension permutation is disabled, the order should be consistent. | 
 |       bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
 |       ASSERT_TRUE(ctx); | 
 |       std::vector<uint16_t> order1, order2; | 
 |       ASSERT_TRUE( | 
 |           GetExtensionOrder(ctx.get(), &order1, maybe_keys, decrypt_ech)); | 
 |       ASSERT_TRUE( | 
 |           GetExtensionOrder(ctx.get(), &order2, maybe_keys, decrypt_ech)); | 
 |       EXPECT_EQ(order1, order2); | 
 |  | 
 |       ctx.reset(SSL_CTX_new(TLS_method())); | 
 |       ASSERT_TRUE(ctx); | 
 |       SSL_CTX_set_permute_extensions(ctx.get(), 1); | 
 |  | 
 |       // When extension permutation is enabled, each ClientHello should have a | 
 |       // different order. | 
 |       // | 
 |       // This test is inherently flaky, so we run it multiple times. We send at | 
 |       // least five extensions by default from TLS 1.3: supported_versions, | 
 |       // key_share, supported_groups, psk_key_exchange_modes, and | 
 |       // signature_algorithms. That means the probability of a false negative is | 
 |       // at most 1/120. Repeating the test 14 times lowers false negative rate | 
 |       // to under 2^-96. | 
 |       ASSERT_TRUE( | 
 |           GetExtensionOrder(ctx.get(), &order1, maybe_keys, decrypt_ech)); | 
 |       EXPECT_GE(order1.size(), 5u); | 
 |       static const int kNumIterations = 14; | 
 |       bool passed = false; | 
 |       for (int i = 0; i < kNumIterations; i++) { | 
 |         ASSERT_TRUE( | 
 |             GetExtensionOrder(ctx.get(), &order2, maybe_keys, decrypt_ech)); | 
 |         if (order1 != order2) { | 
 |           passed = true; | 
 |           break; | 
 |         } | 
 |       } | 
 |       EXPECT_TRUE(passed) << "Extensions were not permuted"; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | TEST(SSLTest, HostMatching) { | 
 |   static const char kCertPEM[] = R"( | 
 | -----BEGIN CERTIFICATE----- | 
 | MIIB9jCCAZ2gAwIBAgIQeudG9R61BOxUvWkeVhU5DTAKBggqhkjOPQQDAjApMRAw | 
 | DgYDVQQKEwdBY21lIENvMRUwEwYDVQQDEwxleGFtcGxlMy5jb20wHhcNMjExMjA2 | 
 | MjA1NjU2WhcNMjIxMjA2MjA1NjU2WjApMRAwDgYDVQQKEwdBY21lIENvMRUwEwYD | 
 | VQQDEwxleGFtcGxlMy5jb20wWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAAS7l2VO | 
 | Bl2TjVm9WfGk24+hMbVFUNB+RVHWbCvFvNZAoWiIJ2z34RLGInyZvCZ8xLAvsuaW | 
 | ULDDaoeDl1M0t4Hmo4GmMIGjMA4GA1UdDwEB/wQEAwIChDATBgNVHSUEDDAKBggr | 
 | BgEFBQcDATAPBgNVHRMBAf8EBTADAQH/MB0GA1UdDgQWBBTTJWurcc1t+VPQBko3 | 
 | Gsw6cbcWSTBMBgNVHREERTBDggxleGFtcGxlMS5jb22CDGV4YW1wbGUyLmNvbYIP | 
 | YSouZXhhbXBsZTQuY29tgg4qLmV4YW1wbGU1LmNvbYcEAQIDBDAKBggqhkjOPQQD | 
 | AgNHADBEAiAAv0ljHJGrgyzZDkG6XvNZ5ewxRfnXcZuD0Y7E4giCZgIgNK1qjilu | 
 | 5DyVbfKeeJhOCtGxqE1dWLXyJBnoRomSYBY= | 
 | -----END CERTIFICATE----- | 
 | )"; | 
 |   bssl::UniquePtr<X509> cert(CertFromPEM(kCertPEM)); | 
 |   ASSERT_TRUE(cert); | 
 |   static const char kCertNoSANsPEM[] = R"( | 
 | -----BEGIN CERTIFICATE----- | 
 | MIIBqzCCAVGgAwIBAgIQeudG9R61BOxUvWkeVhU5DTAKBggqhkjOPQQDAjArMRIw | 
 | EAYDVQQKEwlBY21lIENvIDIxFTATBgNVBAMTDGV4YW1wbGUzLmNvbTAeFw0yMTEy | 
 | MDYyMDU2NTZaFw0yMjEyMDYyMDU2NTZaMCsxEjAQBgNVBAoTCUFjbWUgQ28gMjEV | 
 | MBMGA1UEAxMMZXhhbXBsZTMuY29tMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE | 
 | u5dlTgZdk41ZvVnxpNuPoTG1RVDQfkVR1mwrxbzWQKFoiCds9+ESxiJ8mbwmfMSw | 
 | L7LmllCww2qHg5dTNLeB5qNXMFUwDgYDVR0PAQH/BAQDAgKEMBMGA1UdJQQMMAoG | 
 | CCsGAQUFBwMBMA8GA1UdEwEB/wQFMAMBAf8wHQYDVR0OBBYEFNMla6txzW35U9AG | 
 | SjcazDpxtxZJMAoGCCqGSM49BAMCA0gAMEUCIG3YWGWtpVhbcGV7wFKQwTfmvwHW | 
 | pw4qCFZlool4hCwsAiEA+2fc6NfSbNpFEtQkDOMJW2ANiScAVEmImNqPfb2klz4= | 
 | -----END CERTIFICATE----- | 
 | )"; | 
 |   bssl::UniquePtr<X509> cert_no_sans(CertFromPEM(kCertNoSANsPEM)); | 
 |   ASSERT_TRUE(cert_no_sans); | 
 |  | 
 |   static const char kKeyPEM[] = R"( | 
 | -----BEGIN PRIVATE KEY----- | 
 | MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQghsaSZhUzZAcQlLyJ | 
 | MDuy7WPdyqNsAX9rmEP650LF/q2hRANCAAS7l2VOBl2TjVm9WfGk24+hMbVFUNB+ | 
 | RVHWbCvFvNZAoWiIJ2z34RLGInyZvCZ8xLAvsuaWULDDaoeDl1M0t4Hm | 
 | -----END PRIVATE KEY----- | 
 | )"; | 
 |   bssl::UniquePtr<EVP_PKEY> key(KeyFromPEM(kKeyPEM)); | 
 |   ASSERT_TRUE(key); | 
 |  | 
 |   bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
 |   ASSERT_TRUE(client_ctx); | 
 |   ASSERT_TRUE(X509_STORE_add_cert(SSL_CTX_get_cert_store(client_ctx.get()), | 
 |                                   cert.get())); | 
 |   ASSERT_TRUE(X509_STORE_add_cert(SSL_CTX_get_cert_store(client_ctx.get()), | 
 |                                   cert_no_sans.get())); | 
 |   SSL_CTX_set_verify(client_ctx.get(), | 
 |                      SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, | 
 |                      nullptr); | 
 |   X509_VERIFY_PARAM_set_flags(SSL_CTX_get0_param(client_ctx.get()), | 
 |                               X509_V_FLAG_NO_CHECK_TIME); | 
 |  | 
 |   struct TestCase { | 
 |     X509 *cert; | 
 |     std::string hostname; | 
 |     unsigned flags; | 
 |     bool should_match; | 
 |   }; | 
 |   std::vector<TestCase> kTests = { | 
 |       // These two names are present as SANs in the certificate. | 
 |       {cert.get(), "example1.com", 0, true}, | 
 |       {cert.get(), "example2.com", 0, true}, | 
 |       // This is the CN of the certificate, but that shouldn't matter if a SAN | 
 |       // extension is present. | 
 |       {cert.get(), "example3.com", 0, false}, | 
 |       // If the SAN is not present, we, for now, look for DNS names in the CN. | 
 |       {cert_no_sans.get(), "example3.com", 0, true}, | 
 |       // ... but this can be turned off. | 
 |       {cert_no_sans.get(), "example3.com", X509_CHECK_FLAG_NEVER_CHECK_SUBJECT, | 
 |        false}, | 
 |       // a*.example4.com is a SAN, but is invalid. | 
 |       {cert.get(), "abc.example4.com", 0, false}, | 
 |       // *.example5.com is a SAN in the certificate, which is a normal and valid | 
 |       // wildcard. | 
 |       {cert.get(), "abc.example5.com", 0, true}, | 
 |       // This name is not present. | 
 |       {cert.get(), "notexample1.com", 0, false}, | 
 |       // The IPv4 address 1.2.3.4 is a SAN, but that shouldn't match against a | 
 |       // hostname that happens to be its textual representation. | 
 |       {cert.get(), "1.2.3.4", 0, false}, | 
 |   }; | 
 |  | 
 |   for (const TestCase &test : kTests) { | 
 |     SCOPED_TRACE(test.hostname); | 
 |  | 
 |     bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method())); | 
 |     ASSERT_TRUE(server_ctx); | 
 |     ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), test.cert)); | 
 |     ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get())); | 
 |  | 
 |     ClientConfig config; | 
 |     bssl::UniquePtr<SSL> client, server; | 
 |     config.verify_hostname = test.hostname; | 
 |     config.hostflags = test.flags; | 
 |     EXPECT_EQ(test.should_match, | 
 |               ConnectClientAndServer(&client, &server, client_ctx.get(), | 
 |                                      server_ctx.get(), config)); | 
 |   } | 
 | } | 
 |  | 
 | TEST(SSLTest, NumTickets) { | 
 |   bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method())); | 
 |   ASSERT_TRUE(server_ctx); | 
 |   bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
 |   ASSERT_TRUE(client_ctx); | 
 |   bssl::UniquePtr<X509> cert = GetTestCertificate(); | 
 |   ASSERT_TRUE(cert); | 
 |   bssl::UniquePtr<EVP_PKEY> key = GetTestKey(); | 
 |   ASSERT_TRUE(key); | 
 |   ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get())); | 
 |   ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get())); | 
 |   SSL_CTX_set_session_cache_mode(server_ctx.get(), SSL_SESS_CACHE_BOTH); | 
 |  | 
 |   SSL_CTX_set_session_cache_mode(client_ctx.get(), SSL_SESS_CACHE_BOTH); | 
 |   static size_t ticket_count; | 
 |   SSL_CTX_sess_set_new_cb(client_ctx.get(), [](SSL *, SSL_SESSION *) -> int { | 
 |     ticket_count++; | 
 |     return 0; | 
 |   }); | 
 |  | 
 |   auto count_tickets = [&]() -> size_t { | 
 |     ticket_count = 0; | 
 |     bssl::UniquePtr<SSL> client, server; | 
 |     if (!ConnectClientAndServer(&client, &server, client_ctx.get(), | 
 |                                 server_ctx.get()) || | 
 |         !FlushNewSessionTickets(client.get(), server.get())) { | 
 |       ADD_FAILURE() << "Could not run handshake"; | 
 |       return 0; | 
 |     } | 
 |     return ticket_count; | 
 |   }; | 
 |  | 
 |   // By default, we should send two tickets. | 
 |   EXPECT_EQ(count_tickets(), 2u); | 
 |  | 
 |   for (size_t num_tickets : {0, 1, 2, 3, 4, 5}) { | 
 |     SCOPED_TRACE(num_tickets); | 
 |     ASSERT_TRUE(SSL_CTX_set_num_tickets(server_ctx.get(), num_tickets)); | 
 |     EXPECT_EQ(SSL_CTX_get_num_tickets(server_ctx.get()), num_tickets); | 
 |     EXPECT_EQ(count_tickets(), num_tickets); | 
 |   } | 
 |  | 
 |   // Configuring too many tickets causes us to stop at some point. | 
 |   ASSERT_TRUE(SSL_CTX_set_num_tickets(server_ctx.get(), 100000)); | 
 |   EXPECT_EQ(SSL_CTX_get_num_tickets(server_ctx.get()), 16u); | 
 |   EXPECT_EQ(count_tickets(), 16u); | 
 | } | 
 |  | 
 | TEST(SSLTest, CertSubjectsToStack) { | 
 |   const std::string kCert1 = R"( | 
 | -----BEGIN CERTIFICATE----- | 
 | MIIBzzCCAXagAwIBAgIJANlMBNpJfb/rMAkGByqGSM49BAEwRTELMAkGA1UEBhMC | 
 | QVUxEzARBgNVBAgMClNvbWUtU3RhdGUxITAfBgNVBAoMGEludGVybmV0IFdpZGdp | 
 | dHMgUHR5IEx0ZDAeFw0xNDA0MjMyMzIxNTdaFw0xNDA1MjMyMzIxNTdaMEUxCzAJ | 
 | BgNVBAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5l | 
 | dCBXaWRnaXRzIFB0eSBMdGQwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAATmK2ni | 
 | v2Wfl74vHg2UikzVl2u3qR4NRvvdqakendy6WgHn1peoChj5w8SjHlbifINI2xYa | 
 | HPUdfvGULUvPciLBo1AwTjAdBgNVHQ4EFgQUq4TSrKuV8IJOFngHVVdf5CaNgtEw | 
 | HwYDVR0jBBgwFoAUq4TSrKuV8IJOFngHVVdf5CaNgtEwDAYDVR0TBAUwAwEB/zAJ | 
 | BgcqhkjOPQQBA0gAMEUCIQDyoDVeUTo2w4J5m+4nUIWOcAZ0lVfSKXQA9L4Vh13E | 
 | BwIgfB55FGohg/B6dGh5XxSZmmi08cueFV7mHzJSYV51yRQ= | 
 | -----END CERTIFICATE----- | 
 | )"; | 
 |   const std::vector<uint8_t> kName1 = { | 
 |       0x30, 0x45, 0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13, | 
 |       0x02, 0x41, 0x55, 0x31, 0x13, 0x30, 0x11, 0x06, 0x03, 0x55, 0x04, 0x08, | 
 |       0x0c, 0x0a, 0x53, 0x6f, 0x6d, 0x65, 0x2d, 0x53, 0x74, 0x61, 0x74, 0x65, | 
 |       0x31, 0x21, 0x30, 0x1f, 0x06, 0x03, 0x55, 0x04, 0x0a, 0x0c, 0x18, 0x49, | 
 |       0x6e, 0x74, 0x65, 0x72, 0x6e, 0x65, 0x74, 0x20, 0x57, 0x69, 0x64, 0x67, | 
 |       0x69, 0x74, 0x73, 0x20, 0x50, 0x74, 0x79, 0x20, 0x4c, 0x74, 0x64}; | 
 |   const std::string kCert2 = R"( | 
 | -----BEGIN CERTIFICATE----- | 
 | MIICXjCCAcegAwIBAgIIWjO48ufpunYwDQYJKoZIhvcNAQELBQAwNjEaMBgGA1UE | 
 | ChMRQm9yaW5nU1NMIFRFU1RJTkcxGDAWBgNVBAMTD0ludGVybWVkaWF0ZSBDQTAg | 
 | Fw0xNTAxMDEwMDAwMDBaGA8yMTAwMDEwMTAwMDAwMFowMjEaMBgGA1UEChMRQm9y | 
 | aW5nU1NMIFRFU1RJTkcxFDASBgNVBAMTC2V4YW1wbGUuY29tMIGfMA0GCSqGSIb3 | 
 | DQEBAQUAA4GNADCBiQKBgQDD0U0ZYgqShJ7oOjsyNKyVXEHqeafmk/bAoPqY/h1c | 
 | oPw2E8KmeqiUSoTPjG5IXSblOxcqpbAXgnjPzo8DI3GNMhAf8SYNYsoH7gc7Uy7j | 
 | 5x8bUrisGnuTHqkqH6d4/e7ETJ7i3CpR8bvK16DggEvQTudLipz8FBHtYhFakfdh | 
 | TwIDAQABo3cwdTAOBgNVHQ8BAf8EBAMCBaAwHQYDVR0lBBYwFAYIKwYBBQUHAwEG | 
 | CCsGAQUFBwMCMAwGA1UdEwEB/wQCMAAwGQYDVR0OBBIEEKN5pvbur7mlXjeMEYA0 | 
 | 4nUwGwYDVR0jBBQwEoAQjBpoqLV2211Xex+NFLIGozANBgkqhkiG9w0BAQsFAAOB | 
 | gQBj/p+JChp//LnXWC1k121LM/ii7hFzQzMrt70bny406SGz9jAjaPOX4S3gt38y | 
 | rhjpPukBlSzgQXFg66y6q5qp1nQTD1Cw6NkKBe9WuBlY3iYfmsf7WT8nhlT1CttU | 
 | xNCwyMX9mtdXdQicOfNjIGUCD5OLV5PgHFPRKiHHioBAhg== | 
 | -----END CERTIFICATE----- | 
 | )"; | 
 |   const std::vector<uint8_t> kName2 = { | 
 |       0x30, 0x32, 0x31, 0x1a, 0x30, 0x18, 0x06, 0x03, 0x55, 0x04, 0x0a, | 
 |       0x13, 0x11, 0x42, 0x6f, 0x72, 0x69, 0x6e, 0x67, 0x53, 0x53, 0x4c, | 
 |       0x20, 0x54, 0x45, 0x53, 0x54, 0x49, 0x4e, 0x47, 0x31, 0x14, 0x30, | 
 |       0x12, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x0b, 0x65, 0x78, 0x61, | 
 |       0x6d, 0x70, 0x6c, 0x65, 0x2e, 0x63, 0x6f, 0x6d}; | 
 |  | 
 |   const struct { | 
 |     std::vector<std::vector<uint8_t>> existing; | 
 |     std::string pem; | 
 |     std::vector<std::vector<uint8_t>> expected; | 
 |   } kTests[] = { | 
 |       // Do nothing. | 
 |       {{}, "", {}}, | 
 |       // Append to an empty list, skipping duplicates. | 
 |       {{}, kCert1 + kCert2 + kCert1, {kName1, kName2}}, | 
 |       // One of the names was already present. | 
 |       {{kName1}, kCert1 + kCert2, {kName1, kName2}}, | 
 |       // Both names were already present. | 
 |       {{kName1, kName2}, kCert1 + kCert2, {kName1, kName2}}, | 
 |       // Preserve existing duplicates. | 
 |       {{kName1, kName2, kName2}, kCert1 + kCert2, {kName1, kName2, kName2}}, | 
 |   }; | 
 |   for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kTests); i++) { | 
 |     SCOPED_TRACE(i); | 
 |     const auto &t = kTests[i]; | 
 |  | 
 |     bssl::UniquePtr<STACK_OF(X509_NAME)> stack(sk_X509_NAME_new_null()); | 
 |     ASSERT_TRUE(stack); | 
 |     for (const auto& name : t.existing) { | 
 |       const uint8_t *inp = name.data(); | 
 |       bssl::UniquePtr<X509_NAME> name_obj( | 
 |           d2i_X509_NAME(nullptr, &inp, name.size())); | 
 |       ASSERT_TRUE(name_obj); | 
 |       EXPECT_EQ(inp, name.data() + name.size()); | 
 |       ASSERT_TRUE(bssl::PushToStack(stack.get(), std::move(name_obj))); | 
 |     } | 
 |  | 
 |     bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(t.pem.data(), t.pem.size())); | 
 |     ASSERT_TRUE(bio); | 
 |     ASSERT_TRUE(SSL_add_bio_cert_subjects_to_stack(stack.get(), bio.get())); | 
 |  | 
 |     // The function should have left |stack|'s comparison function alone. | 
 |     EXPECT_EQ(nullptr, sk_X509_NAME_set_cmp_func(stack.get(), nullptr)); | 
 |  | 
 |     std::vector<std::vector<uint8_t>> expected = t.expected, result; | 
 |     for (X509_NAME *name : stack.get()) { | 
 |       uint8_t *der = nullptr; | 
 |       int der_len = i2d_X509_NAME(name, &der); | 
 |       ASSERT_GE(der_len, 0); | 
 |       result.push_back(std::vector<uint8_t>(der, der + der_len)); | 
 |       OPENSSL_free(der); | 
 |     } | 
 |  | 
 |     // |SSL_add_bio_cert_subjects_to_stack| does not return the output in a | 
 |     // well-defined order. | 
 |     std::sort(expected.begin(), expected.end()); | 
 |     std::sort(result.begin(), result.end()); | 
 |     EXPECT_EQ(result, expected); | 
 |   } | 
 | } | 
 |  | 
 | #if defined(OPENSSL_LINUX) || defined(OPENSSL_APPLE) | 
 | TEST(SSLTest, EmptyClientCAList) { | 
 |   // Use /dev/null on POSIX systems as an empty file. | 
 |   bssl::UniquePtr<STACK_OF(X509_NAME)> names( | 
 |       SSL_load_client_CA_file("/dev/null")); | 
 |   EXPECT_FALSE(names); | 
 | } | 
 | #endif  // OPENSSL_LINUX || OPENSSL_APPLE | 
 |  | 
 | TEST(SSLTest, EmptyWriteBlockedOnHandshakeData) { | 
 |   bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
 |   bssl::UniquePtr<SSL_CTX> server_ctx = | 
 |       CreateContextWithTestCertificate(TLS_method()); | 
 |   ASSERT_TRUE(client_ctx); | 
 |   ASSERT_TRUE(server_ctx); | 
 |   // Configure only TLS 1.3. This test requires post-handshake NewSessionTicket. | 
 |   ASSERT_TRUE(SSL_CTX_set_min_proto_version(client_ctx.get(), TLS1_3_VERSION)); | 
 |   ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), TLS1_3_VERSION)); | 
 |  | 
 |   // Connect a client and server with tiny buffer between the two. | 
 |   bssl::UniquePtr<SSL> client(SSL_new(client_ctx.get())), | 
 |       server(SSL_new(server_ctx.get())); | 
 |   ASSERT_TRUE(client); | 
 |   ASSERT_TRUE(server); | 
 |   SSL_set_connect_state(client.get()); | 
 |   SSL_set_accept_state(server.get()); | 
 |   BIO *bio1, *bio2; | 
 |   ASSERT_TRUE(BIO_new_bio_pair(&bio1, 1, &bio2, 1)); | 
 |   SSL_set_bio(client.get(), bio1, bio1); | 
 |   SSL_set_bio(server.get(), bio2, bio2); | 
 |   ASSERT_TRUE(CompleteHandshakes(client.get(), server.get())); | 
 |  | 
 |   // We defer NewSessionTicket to the first write, so the server has a pending | 
 |   // NewSessionTicket. See https://boringssl-review.googlesource.com/34948. This | 
 |   // means an empty write will flush the ticket. However, the transport only | 
 |   // allows one byte through, so this will fail with |SSL_ERROR_WANT_WRITE|. | 
 |   int ret = SSL_write(server.get(), nullptr, 0); | 
 |   ASSERT_EQ(ret, -1); | 
 |   ASSERT_EQ(SSL_get_error(server.get(), ret), SSL_ERROR_WANT_WRITE); | 
 |  | 
 |   // Attempting to write non-zero data should not trip |SSL_R_BAD_WRITE_RETRY|. | 
 |   const uint8_t kData[] = {'h', 'e', 'l', 'l', 'o'}; | 
 |   ret = SSL_write(server.get(), kData, sizeof(kData)); | 
 |   ASSERT_EQ(ret, -1); | 
 |   ASSERT_EQ(SSL_get_error(server.get(), ret), SSL_ERROR_WANT_WRITE); | 
 |  | 
 |   // Byte by byte, the data should eventually get through. | 
 |   uint8_t buf[sizeof(kData)]; | 
 |   for (;;) { | 
 |     ret = SSL_read(client.get(), buf, sizeof(buf)); | 
 |     ASSERT_EQ(ret, -1); | 
 |     ASSERT_EQ(SSL_get_error(client.get(), ret), SSL_ERROR_WANT_READ); | 
 |  | 
 |     ret = SSL_write(server.get(), kData, sizeof(kData)); | 
 |     if (ret > 0) { | 
 |       ASSERT_EQ(ret, 5); | 
 |       break; | 
 |     } | 
 |     ASSERT_EQ(ret, -1); | 
 |     ASSERT_EQ(SSL_get_error(server.get(), ret), SSL_ERROR_WANT_WRITE); | 
 |   } | 
 |  | 
 |   ret = SSL_read(client.get(), buf, sizeof(buf)); | 
 |   ASSERT_EQ(ret, static_cast<int>(sizeof(kData))); | 
 |   ASSERT_EQ(Bytes(buf, ret), Bytes(kData)); | 
 | } | 
 |  | 
 | // Test that |SSL_ERROR_SYSCALL| continues to work after a close_notify. | 
 | TEST(SSLTest, ErrorSyscallAfterCloseNotify) { | 
 |   // Make a custom |BIO| where writes fail, but without pushing to the error | 
 |   // queue. | 
 |   bssl::UniquePtr<BIO_METHOD> method(BIO_meth_new(0, nullptr)); | 
 |   ASSERT_TRUE(method); | 
 |   BIO_meth_set_create(method.get(), [](BIO *b) -> int { | 
 |     BIO_set_init(b, 1); | 
 |     return 1; | 
 |   }); | 
 |   static bool write_failed = false; | 
 |   BIO_meth_set_write(method.get(), [](BIO *, const char *, int) -> int { | 
 |     // Fail the operation and don't add to the error queue. | 
 |     write_failed = true; | 
 |     return -1; | 
 |   }); | 
 |   bssl::UniquePtr<BIO> wbio_silent_error(BIO_new(method.get())); | 
 |   ASSERT_TRUE(wbio_silent_error); | 
 |  | 
 |   bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
 |   bssl::UniquePtr<SSL_CTX> server_ctx = | 
 |       CreateContextWithTestCertificate(TLS_method()); | 
 |   ASSERT_TRUE(client_ctx); | 
 |   ASSERT_TRUE(server_ctx); | 
 |   bssl::UniquePtr<SSL> client, server; | 
 |   ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
 |                                      server_ctx.get())); | 
 |  | 
 |   // Replace the write |BIO| with |wbio_silent_error|. | 
 |   SSL_set0_wbio(client.get(), wbio_silent_error.release()); | 
 |  | 
 |   // Writes should fail. There is nothing in the error queue, so | 
 |   // |SSL_ERROR_SYSCALL| indicates the caller needs to check out-of-band. | 
 |   const uint8_t data[1] = {0}; | 
 |   int ret = SSL_write(client.get(), data, sizeof(data)); | 
 |   EXPECT_EQ(ret, -1); | 
 |   EXPECT_EQ(SSL_get_error(client.get(), ret), SSL_ERROR_SYSCALL); | 
 |   EXPECT_TRUE(write_failed); | 
 |   write_failed = false; | 
 |  | 
 |   // Send a close_notify from the server. It should return 0 because | 
 |   // close_notify was sent, but not received. Confusingly, this is a success | 
 |   // output for |SSL_shutdown|'s API. | 
 |   EXPECT_EQ(SSL_shutdown(server.get()), 0); | 
 |  | 
 |   // Read the close_notify on the client. | 
 |   uint8_t buf[1]; | 
 |   ret = SSL_read(client.get(), buf, sizeof(buf)); | 
 |   EXPECT_EQ(ret, 0); | 
 |   EXPECT_EQ(SSL_get_error(client.get(), ret), SSL_ERROR_ZERO_RETURN); | 
 |  | 
 |   // Further calls to |SSL_read| continue to report |SSL_ERROR_ZERO_RETURN|. | 
 |   ret = SSL_read(client.get(), buf, sizeof(buf)); | 
 |   EXPECT_EQ(ret, 0); | 
 |   EXPECT_EQ(SSL_get_error(client.get(), ret), SSL_ERROR_ZERO_RETURN); | 
 |  | 
 |   // Although the client has seen close_notify, it should continue to report | 
 |   // |SSL_ERROR_SYSCALL| when its writes fail. | 
 |   ret = SSL_write(client.get(), data, sizeof(data)); | 
 |   EXPECT_EQ(ret, -1); | 
 |   EXPECT_EQ(SSL_get_error(client.get(), ret), SSL_ERROR_SYSCALL); | 
 |   EXPECT_TRUE(write_failed); | 
 |   write_failed = false; | 
 |  | 
 |   // Cause |BIO_write| to fail with a return value of zero instead. | 
 |   // |SSL_get_error| should not misinterpret this as a close_notify. | 
 |   // | 
 |   // This is not actually a correct implementation of |BIO_write|, but the rest | 
 |   // of the code treats zero from |BIO_write| as an error, so ensure it does so | 
 |   // correctly. Fixing https://crbug.com/boringssl/503 will make this case moot. | 
 |   BIO_meth_set_write(method.get(), [](BIO *, const char *, int) -> int { | 
 |     write_failed = true; | 
 |     return 0; | 
 |   }); | 
 |   ret = SSL_write(client.get(), data, sizeof(data)); | 
 |   EXPECT_EQ(ret, 0); | 
 |   EXPECT_EQ(SSL_get_error(client.get(), ret), SSL_ERROR_SYSCALL); | 
 |   EXPECT_TRUE(write_failed); | 
 |   write_failed = false; | 
 | } | 
 |  | 
 | // Test that |SSL_shutdown|, when quiet shutdown is enabled, simulates receiving | 
 | // a close_notify, down to |SSL_read| reporting |SSL_ERROR_ZERO_RETURN|. | 
 | TEST(SSLTest, QuietShutdown) { | 
 |   bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
 |   bssl::UniquePtr<SSL_CTX> server_ctx = | 
 |       CreateContextWithTestCertificate(TLS_method()); | 
 |   ASSERT_TRUE(client_ctx); | 
 |   ASSERT_TRUE(server_ctx); | 
 |   SSL_CTX_set_quiet_shutdown(server_ctx.get(), 1); | 
 |   bssl::UniquePtr<SSL> client, server; | 
 |   ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
 |                                      server_ctx.get())); | 
 |  | 
 |   // Quiet shutdown is enabled, so |SSL_shutdown| on the server should | 
 |   // immediately return that bidirectional shutdown "completed". | 
 |   EXPECT_EQ(SSL_shutdown(server.get()), 1); | 
 |  | 
 |   // Shut down writes so the client gets an EOF. | 
 |   EXPECT_TRUE(BIO_shutdown_wr(SSL_get_wbio(server.get()))); | 
 |  | 
 |   // Confirm no close notify was actually sent. Client reads should report a | 
 |   // transport EOF, not a close_notify. (Both have zero return, but | 
 |   // |SSL_get_error| is different.) | 
 |   char buf[1]; | 
 |   int ret = SSL_read(client.get(), buf, sizeof(buf)); | 
 |   EXPECT_EQ(ret, 0); | 
 |   EXPECT_EQ(SSL_get_error(client.get(), ret), SSL_ERROR_SYSCALL); | 
 |  | 
 |   // The server believes bidirectional shutdown completed, so reads should | 
 |   // replay the (simulated) close_notify. | 
 |   ret = SSL_read(server.get(), buf, sizeof(buf)); | 
 |   EXPECT_EQ(ret, 0); | 
 |   EXPECT_EQ(SSL_get_error(server.get(), ret), SSL_ERROR_ZERO_RETURN); | 
 | } | 
 |  | 
 | TEST(SSLTest, InvalidSignatureAlgorithm) { | 
 |   bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
 |   ASSERT_TRUE(ctx); | 
 |  | 
 |   static const uint16_t kInvalidPrefs[] = {1234}; | 
 |   EXPECT_FALSE(SSL_CTX_set_signing_algorithm_prefs( | 
 |       ctx.get(), kInvalidPrefs, OPENSSL_ARRAY_SIZE(kInvalidPrefs))); | 
 |   EXPECT_FALSE(SSL_CTX_set_verify_algorithm_prefs( | 
 |       ctx.get(), kInvalidPrefs, OPENSSL_ARRAY_SIZE(kInvalidPrefs))); | 
 |  | 
 |   static const uint16_t kDuplicatePrefs[] = {SSL_SIGN_RSA_PKCS1_SHA256, | 
 |                                              SSL_SIGN_RSA_PKCS1_SHA256}; | 
 |   EXPECT_FALSE(SSL_CTX_set_signing_algorithm_prefs( | 
 |       ctx.get(), kDuplicatePrefs, OPENSSL_ARRAY_SIZE(kDuplicatePrefs))); | 
 |   EXPECT_FALSE(SSL_CTX_set_verify_algorithm_prefs( | 
 |       ctx.get(), kDuplicatePrefs, OPENSSL_ARRAY_SIZE(kDuplicatePrefs))); | 
 | } | 
 |  | 
 | TEST(SSLTest, InvalidGroups) { | 
 |   bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
 |   ASSERT_TRUE(ctx); | 
 |  | 
 |   static const uint16_t kInvalidIDs[] = {1234}; | 
 |   EXPECT_FALSE(SSL_CTX_set1_group_ids( | 
 |       ctx.get(), kInvalidIDs, OPENSSL_ARRAY_SIZE(kInvalidIDs))); | 
 |  | 
 |   // This is a valid NID, but it is not a valid group. | 
 |   static const int kInvalidNIDs[] = {NID_rsaEncryption}; | 
 |   EXPECT_FALSE(SSL_CTX_set1_groups( | 
 |       ctx.get(), kInvalidNIDs, OPENSSL_ARRAY_SIZE(kInvalidNIDs))); | 
 | } | 
 |  | 
 | TEST(SSLTest, NameLists) { | 
 |   struct { | 
 |     size_t (*func)(const char **, size_t); | 
 |     std::vector<std::string> expected; | 
 |   } kTests[] = { | 
 |       {SSL_get_all_version_names, {"TLSv1.3", "DTLSv1.2", "unknown"}}, | 
 |       {SSL_get_all_standard_cipher_names, | 
 |        {"TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256", "TLS_AES_128_GCM_SHA256"}}, | 
 |       {SSL_get_all_cipher_names, | 
 |        {"ECDHE-ECDSA-AES128-GCM-SHA256", "TLS_AES_128_GCM_SHA256", "(NONE)"}}, | 
 |       {SSL_get_all_group_names, {"P-256", "X25519"}}, | 
 |       {SSL_get_all_signature_algorithm_names, | 
 |        {"rsa_pkcs1_sha256", "ecdsa_secp256r1_sha256", "ecdsa_sha256"}}, | 
 |   }; | 
 |   for (const auto &t : kTests) { | 
 |     size_t num = t.func(nullptr, 0); | 
 |     EXPECT_GT(num, 0u); | 
 |  | 
 |     std::vector<const char*> list(num); | 
 |     EXPECT_EQ(num, t.func(list.data(), list.size())); | 
 |  | 
 |     // Check the expected values are in the list. | 
 |     for (const auto &s : t.expected) { | 
 |       EXPECT_NE(list.end(), std::find(list.begin(), list.end(), s)) | 
 |           << "Could not find " << s; | 
 |     } | 
 |  | 
 |     // Passing in a larger buffer should leave excess space alone. | 
 |     std::vector<const char *> list2(num + 1, "placeholder"); | 
 |     EXPECT_EQ(num, t.func(list2.data(), list2.size())); | 
 |     for (size_t i = 0; i < num; i++) { | 
 |       EXPECT_STREQ(list[i], list2[i]); | 
 |     } | 
 |     EXPECT_STREQ(list2.back(), "placeholder"); | 
 |  | 
 |     // Passing in a shorter buffer should truncate the list. | 
 |     for (size_t l = 0; l < num; l++) { | 
 |       SCOPED_TRACE(l); | 
 |       list2.resize(l); | 
 |       EXPECT_EQ(num, t.func(list2.data(), list2.size())); | 
 |       for (size_t i = 0; i < l; i++) { | 
 |         EXPECT_STREQ(list[i], list2[i]); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace | 
 | BSSL_NAMESPACE_END |