| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] */ |
| |
| #include <ctype.h> |
| #include <string.h> |
| |
| #include <openssl/asn1.h> |
| #include <openssl/asn1t.h> |
| #include <openssl/buf.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| #include <openssl/obj.h> |
| #include <openssl/stack.h> |
| #include <openssl/x509.h> |
| |
| #include "../asn1/internal.h" |
| #include "../internal.h" |
| #include "internal.h" |
| |
| |
| typedef STACK_OF(X509_NAME_ENTRY) STACK_OF_X509_NAME_ENTRY; |
| DEFINE_STACK_OF(STACK_OF_X509_NAME_ENTRY) |
| |
| // Maximum length of X509_NAME: much larger than anything we should |
| // ever see in practice. |
| |
| #define X509_NAME_MAX (1024 * 1024) |
| |
| static int x509_name_ex_d2i(ASN1_VALUE **val, const unsigned char **in, |
| long len, const ASN1_ITEM *it, int opt, |
| ASN1_TLC *ctx); |
| |
| static int x509_name_ex_i2d(ASN1_VALUE **val, unsigned char **out, |
| const ASN1_ITEM *it); |
| static int x509_name_ex_new(ASN1_VALUE **val, const ASN1_ITEM *it); |
| static void x509_name_ex_free(ASN1_VALUE **val, const ASN1_ITEM *it); |
| |
| static int x509_name_encode(X509_NAME *a); |
| static int x509_name_canon(X509_NAME *a); |
| static int asn1_string_canon(ASN1_STRING *out, ASN1_STRING *in); |
| static int i2d_name_canon(STACK_OF(STACK_OF_X509_NAME_ENTRY) *intname, |
| unsigned char **in); |
| |
| ASN1_SEQUENCE(X509_NAME_ENTRY) = { |
| ASN1_SIMPLE(X509_NAME_ENTRY, object, ASN1_OBJECT), |
| ASN1_SIMPLE(X509_NAME_ENTRY, value, ASN1_PRINTABLE), |
| } ASN1_SEQUENCE_END(X509_NAME_ENTRY) |
| |
| IMPLEMENT_ASN1_FUNCTIONS_const(X509_NAME_ENTRY) |
| IMPLEMENT_ASN1_DUP_FUNCTION_const(X509_NAME_ENTRY) |
| |
| // For the "Name" type we need a SEQUENCE OF { SET OF X509_NAME_ENTRY } so |
| // declare two template wrappers for this |
| |
| ASN1_ITEM_TEMPLATE(X509_NAME_ENTRIES) = ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SET_OF, |
| 0, RDNS, |
| X509_NAME_ENTRY) |
| ASN1_ITEM_TEMPLATE_END(X509_NAME_ENTRIES) |
| |
| ASN1_ITEM_TEMPLATE(X509_NAME_INTERNAL) = |
| ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, Name, X509_NAME_ENTRIES) |
| ASN1_ITEM_TEMPLATE_END(X509_NAME_INTERNAL) |
| |
| // Normally that's where it would end: we'd have two nested STACK structures |
| // representing the ASN1. Unfortunately X509_NAME uses a completely different |
| // form and caches encodings so we have to process the internal form and |
| // convert to the external form. |
| |
| static const ASN1_EXTERN_FUNCS x509_name_ff = { |
| x509_name_ex_new, |
| x509_name_ex_free, |
| 0, // Default clear behaviour is OK |
| x509_name_ex_d2i, |
| x509_name_ex_i2d, |
| }; |
| |
| IMPLEMENT_EXTERN_ASN1(X509_NAME, V_ASN1_SEQUENCE, x509_name_ff) |
| |
| IMPLEMENT_ASN1_FUNCTIONS(X509_NAME) |
| |
| IMPLEMENT_ASN1_DUP_FUNCTION(X509_NAME) |
| |
| static int x509_name_ex_new(ASN1_VALUE **val, const ASN1_ITEM *it) { |
| X509_NAME *ret = NULL; |
| ret = OPENSSL_malloc(sizeof(X509_NAME)); |
| if (!ret) { |
| goto memerr; |
| } |
| if ((ret->entries = sk_X509_NAME_ENTRY_new_null()) == NULL) { |
| goto memerr; |
| } |
| if ((ret->bytes = BUF_MEM_new()) == NULL) { |
| goto memerr; |
| } |
| ret->canon_enc = NULL; |
| ret->canon_enclen = 0; |
| ret->modified = 1; |
| *val = (ASN1_VALUE *)ret; |
| return 1; |
| |
| memerr: |
| if (ret) { |
| if (ret->entries) { |
| sk_X509_NAME_ENTRY_free(ret->entries); |
| } |
| OPENSSL_free(ret); |
| } |
| return 0; |
| } |
| |
| static void x509_name_ex_free(ASN1_VALUE **pval, const ASN1_ITEM *it) { |
| X509_NAME *a; |
| if (!pval || !*pval) { |
| return; |
| } |
| a = (X509_NAME *)*pval; |
| |
| BUF_MEM_free(a->bytes); |
| sk_X509_NAME_ENTRY_pop_free(a->entries, X509_NAME_ENTRY_free); |
| if (a->canon_enc) { |
| OPENSSL_free(a->canon_enc); |
| } |
| OPENSSL_free(a); |
| *pval = NULL; |
| } |
| |
| static void local_sk_X509_NAME_ENTRY_free(STACK_OF(X509_NAME_ENTRY) *ne) { |
| sk_X509_NAME_ENTRY_free(ne); |
| } |
| |
| static void local_sk_X509_NAME_ENTRY_pop_free(STACK_OF(X509_NAME_ENTRY) *ne) { |
| sk_X509_NAME_ENTRY_pop_free(ne, X509_NAME_ENTRY_free); |
| } |
| |
| static int x509_name_ex_d2i(ASN1_VALUE **val, const unsigned char **in, |
| long len, const ASN1_ITEM *it, int opt, |
| ASN1_TLC *ctx) { |
| const unsigned char *p = *in, *q; |
| STACK_OF(STACK_OF_X509_NAME_ENTRY) *intname = NULL; |
| X509_NAME *nm = NULL; |
| size_t i, j; |
| int ret; |
| STACK_OF(X509_NAME_ENTRY) *entries; |
| X509_NAME_ENTRY *entry; |
| // Bound the size of an X509_NAME we are willing to parse. |
| if (len > X509_NAME_MAX) { |
| len = X509_NAME_MAX; |
| } |
| q = p; |
| |
| // Get internal representation of Name |
| ASN1_VALUE *intname_val = NULL; |
| ret = ASN1_item_ex_d2i(&intname_val, &p, len, |
| ASN1_ITEM_rptr(X509_NAME_INTERNAL), /*tag=*/-1, |
| /*aclass=*/0, opt, /*buf=*/NULL); |
| if (ret <= 0) { |
| return ret; |
| } |
| intname = (STACK_OF(STACK_OF_X509_NAME_ENTRY) *)intname_val; |
| |
| if (*val) { |
| x509_name_ex_free(val, NULL); |
| } |
| ASN1_VALUE *nm_val = NULL; |
| if (!x509_name_ex_new(&nm_val, NULL)) { |
| goto err; |
| } |
| nm = (X509_NAME *)nm_val; |
| // We've decoded it: now cache encoding |
| if (!BUF_MEM_grow(nm->bytes, p - q)) { |
| goto err; |
| } |
| OPENSSL_memcpy(nm->bytes->data, q, p - q); |
| |
| // Convert internal representation to X509_NAME structure |
| for (i = 0; i < sk_STACK_OF_X509_NAME_ENTRY_num(intname); i++) { |
| entries = sk_STACK_OF_X509_NAME_ENTRY_value(intname, i); |
| for (j = 0; j < sk_X509_NAME_ENTRY_num(entries); j++) { |
| entry = sk_X509_NAME_ENTRY_value(entries, j); |
| entry->set = i; |
| if (!sk_X509_NAME_ENTRY_push(nm->entries, entry)) { |
| goto err; |
| } |
| (void)sk_X509_NAME_ENTRY_set(entries, j, NULL); |
| } |
| } |
| ret = x509_name_canon(nm); |
| if (!ret) { |
| goto err; |
| } |
| sk_STACK_OF_X509_NAME_ENTRY_pop_free(intname, local_sk_X509_NAME_ENTRY_free); |
| nm->modified = 0; |
| *val = (ASN1_VALUE *)nm; |
| *in = p; |
| return ret; |
| err: |
| X509_NAME_free(nm); |
| sk_STACK_OF_X509_NAME_ENTRY_pop_free(intname, |
| local_sk_X509_NAME_ENTRY_pop_free); |
| OPENSSL_PUT_ERROR(X509, ERR_R_ASN1_LIB); |
| return 0; |
| } |
| |
| static int x509_name_ex_i2d(ASN1_VALUE **val, unsigned char **out, |
| const ASN1_ITEM *it) { |
| X509_NAME *a = (X509_NAME *)*val; |
| if (a->modified && (!x509_name_encode(a) || !x509_name_canon(a))) { |
| return -1; |
| } |
| int ret = a->bytes->length; |
| if (out != NULL) { |
| OPENSSL_memcpy(*out, a->bytes->data, ret); |
| *out += ret; |
| } |
| return ret; |
| } |
| |
| static int x509_name_encode(X509_NAME *a) { |
| int len; |
| unsigned char *p; |
| STACK_OF(X509_NAME_ENTRY) *entries = NULL; |
| X509_NAME_ENTRY *entry; |
| int set = -1; |
| size_t i; |
| STACK_OF(STACK_OF_X509_NAME_ENTRY) *intname = |
| sk_STACK_OF_X509_NAME_ENTRY_new_null(); |
| if (!intname) { |
| goto err; |
| } |
| for (i = 0; i < sk_X509_NAME_ENTRY_num(a->entries); i++) { |
| entry = sk_X509_NAME_ENTRY_value(a->entries, i); |
| if (entry->set != set) { |
| entries = sk_X509_NAME_ENTRY_new_null(); |
| if (!entries) { |
| goto err; |
| } |
| if (!sk_STACK_OF_X509_NAME_ENTRY_push(intname, entries)) { |
| sk_X509_NAME_ENTRY_free(entries); |
| goto err; |
| } |
| set = entry->set; |
| } |
| if (!sk_X509_NAME_ENTRY_push(entries, entry)) { |
| goto err; |
| } |
| } |
| ASN1_VALUE *intname_val = (ASN1_VALUE *)intname; |
| len = ASN1_item_ex_i2d(&intname_val, NULL, ASN1_ITEM_rptr(X509_NAME_INTERNAL), |
| /*tag=*/-1, /*aclass=*/0); |
| if (len <= 0) { |
| goto err; |
| } |
| if (!BUF_MEM_grow(a->bytes, len)) { |
| goto err; |
| } |
| p = (unsigned char *)a->bytes->data; |
| if (ASN1_item_ex_i2d(&intname_val, &p, ASN1_ITEM_rptr(X509_NAME_INTERNAL), |
| /*tag=*/-1, /*aclass=*/0) <= 0) { |
| goto err; |
| } |
| sk_STACK_OF_X509_NAME_ENTRY_pop_free(intname, local_sk_X509_NAME_ENTRY_free); |
| a->modified = 0; |
| return 1; |
| err: |
| sk_STACK_OF_X509_NAME_ENTRY_pop_free(intname, local_sk_X509_NAME_ENTRY_free); |
| return 0; |
| } |
| |
| // This function generates the canonical encoding of the Name structure. In |
| // it all strings are converted to UTF8, leading, trailing and multiple |
| // spaces collapsed, converted to lower case and the leading SEQUENCE header |
| // removed. In future we could also normalize the UTF8 too. By doing this |
| // comparison of Name structures can be rapidly perfomed by just using |
| // OPENSSL_memcmp() of the canonical encoding. By omitting the leading SEQUENCE |
| // name constraints of type dirName can also be checked with a simple |
| // OPENSSL_memcmp(). |
| |
| static int x509_name_canon(X509_NAME *a) { |
| unsigned char *p; |
| STACK_OF(STACK_OF_X509_NAME_ENTRY) *intname = NULL; |
| STACK_OF(X509_NAME_ENTRY) *entries = NULL; |
| X509_NAME_ENTRY *entry, *tmpentry = NULL; |
| int set = -1, ret = 0, len; |
| size_t i; |
| |
| if (a->canon_enc) { |
| OPENSSL_free(a->canon_enc); |
| a->canon_enc = NULL; |
| } |
| // Special case: empty X509_NAME => null encoding |
| if (sk_X509_NAME_ENTRY_num(a->entries) == 0) { |
| a->canon_enclen = 0; |
| return 1; |
| } |
| intname = sk_STACK_OF_X509_NAME_ENTRY_new_null(); |
| if (!intname) { |
| goto err; |
| } |
| for (i = 0; i < sk_X509_NAME_ENTRY_num(a->entries); i++) { |
| entry = sk_X509_NAME_ENTRY_value(a->entries, i); |
| if (entry->set != set) { |
| entries = sk_X509_NAME_ENTRY_new_null(); |
| if (!entries) { |
| goto err; |
| } |
| if (!sk_STACK_OF_X509_NAME_ENTRY_push(intname, entries)) { |
| sk_X509_NAME_ENTRY_free(entries); |
| goto err; |
| } |
| set = entry->set; |
| } |
| tmpentry = X509_NAME_ENTRY_new(); |
| if (tmpentry == NULL) { |
| goto err; |
| } |
| tmpentry->object = OBJ_dup(entry->object); |
| if (!asn1_string_canon(tmpentry->value, entry->value)) { |
| goto err; |
| } |
| if (!sk_X509_NAME_ENTRY_push(entries, tmpentry)) { |
| goto err; |
| } |
| tmpentry = NULL; |
| } |
| |
| // Finally generate encoding |
| |
| len = i2d_name_canon(intname, NULL); |
| if (len < 0) { |
| goto err; |
| } |
| a->canon_enclen = len; |
| |
| p = OPENSSL_malloc(a->canon_enclen); |
| |
| if (!p) { |
| goto err; |
| } |
| |
| a->canon_enc = p; |
| |
| i2d_name_canon(intname, &p); |
| |
| ret = 1; |
| |
| err: |
| |
| if (tmpentry) { |
| X509_NAME_ENTRY_free(tmpentry); |
| } |
| if (intname) { |
| sk_STACK_OF_X509_NAME_ENTRY_pop_free(intname, |
| local_sk_X509_NAME_ENTRY_pop_free); |
| } |
| return ret; |
| } |
| |
| // Bitmap of all the types of string that will be canonicalized. |
| |
| #define ASN1_MASK_CANON \ |
| (B_ASN1_UTF8STRING | B_ASN1_BMPSTRING | B_ASN1_UNIVERSALSTRING | \ |
| B_ASN1_PRINTABLESTRING | B_ASN1_T61STRING | B_ASN1_IA5STRING | \ |
| B_ASN1_VISIBLESTRING) |
| |
| static int asn1_string_canon(ASN1_STRING *out, ASN1_STRING *in) { |
| unsigned char *to, *from; |
| int len, i; |
| |
| // If type not in bitmask just copy string across |
| if (!(ASN1_tag2bit(in->type) & ASN1_MASK_CANON)) { |
| if (!ASN1_STRING_copy(out, in)) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| out->type = V_ASN1_UTF8STRING; |
| out->length = ASN1_STRING_to_UTF8(&out->data, in); |
| if (out->length == -1) { |
| return 0; |
| } |
| |
| to = out->data; |
| from = to; |
| |
| len = out->length; |
| |
| // Convert string in place to canonical form. |
| |
| // Ignore leading spaces |
| while ((len > 0) && OPENSSL_isspace(*from)) { |
| from++; |
| len--; |
| } |
| |
| to = from + len; |
| |
| // Ignore trailing spaces |
| while ((len > 0) && OPENSSL_isspace(to[-1])) { |
| to--; |
| len--; |
| } |
| |
| to = out->data; |
| |
| i = 0; |
| while (i < len) { |
| // Collapse multiple spaces |
| if (OPENSSL_isspace(*from)) { |
| // Copy one space across |
| *to++ = ' '; |
| // Ignore subsequent spaces. Note: don't need to check len here |
| // because we know the last character is a non-space so we can't |
| // overflow. |
| do { |
| from++; |
| i++; |
| } while (OPENSSL_isspace(*from)); |
| } else { |
| *to++ = OPENSSL_tolower(*from); |
| from++; |
| i++; |
| } |
| } |
| |
| out->length = to - out->data; |
| |
| return 1; |
| } |
| |
| static int i2d_name_canon(STACK_OF(STACK_OF_X509_NAME_ENTRY) *_intname, |
| unsigned char **in) { |
| int len, ltmp; |
| size_t i; |
| ASN1_VALUE *v; |
| STACK_OF(ASN1_VALUE) *intname = (STACK_OF(ASN1_VALUE) *)_intname; |
| |
| len = 0; |
| for (i = 0; i < sk_ASN1_VALUE_num(intname); i++) { |
| v = sk_ASN1_VALUE_value(intname, i); |
| ltmp = ASN1_item_ex_i2d(&v, in, ASN1_ITEM_rptr(X509_NAME_ENTRIES), |
| /*tag=*/-1, /*aclass=*/0); |
| if (ltmp < 0) { |
| return ltmp; |
| } |
| len += ltmp; |
| } |
| return len; |
| } |
| |
| int X509_NAME_set(X509_NAME **xn, X509_NAME *name) { |
| if ((name = X509_NAME_dup(name)) == NULL) { |
| return 0; |
| } |
| X509_NAME_free(*xn); |
| *xn = name; |
| return 1; |
| } |
| |
| int X509_NAME_ENTRY_set(const X509_NAME_ENTRY *ne) { return ne->set; } |
| |
| int X509_NAME_get0_der(X509_NAME *nm, const unsigned char **pder, |
| size_t *pderlen) { |
| // Make sure encoding is valid |
| if (i2d_X509_NAME(nm, NULL) <= 0) { |
| return 0; |
| } |
| if (pder != NULL) { |
| *pder = (unsigned char *)nm->bytes->data; |
| } |
| if (pderlen != NULL) { |
| *pderlen = nm->bytes->length; |
| } |
| return 1; |
| } |