|  | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | 
|  | * All rights reserved. | 
|  | * | 
|  | * This package is an SSL implementation written | 
|  | * by Eric Young (eay@cryptsoft.com). | 
|  | * The implementation was written so as to conform with Netscapes SSL. | 
|  | * | 
|  | * This library is free for commercial and non-commercial use as long as | 
|  | * the following conditions are aheared to.  The following conditions | 
|  | * apply to all code found in this distribution, be it the RC4, RSA, | 
|  | * lhash, DES, etc., code; not just the SSL code.  The SSL documentation | 
|  | * included with this distribution is covered by the same copyright terms | 
|  | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 
|  | * | 
|  | * Copyright remains Eric Young's, and as such any Copyright notices in | 
|  | * the code are not to be removed. | 
|  | * If this package is used in a product, Eric Young should be given attribution | 
|  | * as the author of the parts of the library used. | 
|  | * This can be in the form of a textual message at program startup or | 
|  | * in documentation (online or textual) provided with the package. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * 3. All advertising materials mentioning features or use of this software | 
|  | *    must display the following acknowledgement: | 
|  | *    "This product includes cryptographic software written by | 
|  | *     Eric Young (eay@cryptsoft.com)" | 
|  | *    The word 'cryptographic' can be left out if the rouines from the library | 
|  | *    being used are not cryptographic related :-). | 
|  | * 4. If you include any Windows specific code (or a derivative thereof) from | 
|  | *    the apps directory (application code) you must include an acknowledgement: | 
|  | *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 
|  | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | 
|  | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
|  | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
|  | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
|  | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
|  | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
|  | * SUCH DAMAGE. | 
|  | * | 
|  | * The licence and distribution terms for any publically available version or | 
|  | * derivative of this code cannot be changed.  i.e. this code cannot simply be | 
|  | * copied and put under another distribution licence | 
|  | * [including the GNU Public Licence.] */ | 
|  |  | 
|  | #include <openssl/cipher.h> | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <limits.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/mem.h> | 
|  | #include <openssl/nid.h> | 
|  |  | 
|  | #include "internal.h" | 
|  | #include "../service_indicator/internal.h" | 
|  | #include "../../internal.h" | 
|  |  | 
|  |  | 
|  | void EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *ctx) { | 
|  | OPENSSL_memset(ctx, 0, sizeof(EVP_CIPHER_CTX)); | 
|  | } | 
|  |  | 
|  | EVP_CIPHER_CTX *EVP_CIPHER_CTX_new(void) { | 
|  | EVP_CIPHER_CTX *ctx = OPENSSL_malloc(sizeof(EVP_CIPHER_CTX)); | 
|  | if (ctx) { | 
|  | EVP_CIPHER_CTX_init(ctx); | 
|  | } | 
|  | return ctx; | 
|  | } | 
|  |  | 
|  | int EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *c) { | 
|  | if (c->cipher != NULL && c->cipher->cleanup) { | 
|  | c->cipher->cleanup(c); | 
|  | } | 
|  | OPENSSL_free(c->cipher_data); | 
|  |  | 
|  | OPENSSL_memset(c, 0, sizeof(EVP_CIPHER_CTX)); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *ctx) { | 
|  | if (ctx) { | 
|  | EVP_CIPHER_CTX_cleanup(ctx); | 
|  | OPENSSL_free(ctx); | 
|  | } | 
|  | } | 
|  |  | 
|  | int EVP_CIPHER_CTX_copy(EVP_CIPHER_CTX *out, const EVP_CIPHER_CTX *in) { | 
|  | if (in == NULL || in->cipher == NULL) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INPUT_NOT_INITIALIZED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (in->poisoned) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EVP_CIPHER_CTX_cleanup(out); | 
|  | OPENSSL_memcpy(out, in, sizeof(EVP_CIPHER_CTX)); | 
|  |  | 
|  | if (in->cipher_data && in->cipher->ctx_size) { | 
|  | out->cipher_data = OPENSSL_memdup(in->cipher_data, in->cipher->ctx_size); | 
|  | if (!out->cipher_data) { | 
|  | out->cipher = NULL; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (in->cipher->flags & EVP_CIPH_CUSTOM_COPY) { | 
|  | if (!in->cipher->ctrl((EVP_CIPHER_CTX *)in, EVP_CTRL_COPY, 0, out)) { | 
|  | out->cipher = NULL; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int EVP_CIPHER_CTX_reset(EVP_CIPHER_CTX *ctx) { | 
|  | EVP_CIPHER_CTX_cleanup(ctx); | 
|  | EVP_CIPHER_CTX_init(ctx); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, | 
|  | ENGINE *engine, const uint8_t *key, const uint8_t *iv, | 
|  | int enc) { | 
|  | if (enc == -1) { | 
|  | enc = ctx->encrypt; | 
|  | } else { | 
|  | if (enc) { | 
|  | enc = 1; | 
|  | } | 
|  | ctx->encrypt = enc; | 
|  | } | 
|  |  | 
|  | if (cipher) { | 
|  | // Ensure a context left from last time is cleared (the previous check | 
|  | // attempted to avoid this if the same ENGINE and EVP_CIPHER could be | 
|  | // used). | 
|  | if (ctx->cipher) { | 
|  | EVP_CIPHER_CTX_cleanup(ctx); | 
|  | // Restore encrypt and flags | 
|  | ctx->encrypt = enc; | 
|  | } | 
|  |  | 
|  | ctx->cipher = cipher; | 
|  | if (ctx->cipher->ctx_size) { | 
|  | ctx->cipher_data = OPENSSL_malloc(ctx->cipher->ctx_size); | 
|  | if (!ctx->cipher_data) { | 
|  | ctx->cipher = NULL; | 
|  | return 0; | 
|  | } | 
|  | } else { | 
|  | ctx->cipher_data = NULL; | 
|  | } | 
|  |  | 
|  | ctx->key_len = cipher->key_len; | 
|  | ctx->flags = 0; | 
|  |  | 
|  | if (ctx->cipher->flags & EVP_CIPH_CTRL_INIT) { | 
|  | if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_INIT, 0, NULL)) { | 
|  | ctx->cipher = NULL; | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INITIALIZATION_ERROR); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } else if (!ctx->cipher) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_NO_CIPHER_SET); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // we assume block size is a power of 2 in *cryptUpdate | 
|  | assert(ctx->cipher->block_size == 1 || ctx->cipher->block_size == 8 || | 
|  | ctx->cipher->block_size == 16); | 
|  |  | 
|  | if (!(EVP_CIPHER_CTX_flags(ctx) & EVP_CIPH_CUSTOM_IV)) { | 
|  | switch (EVP_CIPHER_CTX_mode(ctx)) { | 
|  | case EVP_CIPH_STREAM_CIPHER: | 
|  | case EVP_CIPH_ECB_MODE: | 
|  | break; | 
|  |  | 
|  | case EVP_CIPH_CFB_MODE: | 
|  | ctx->num = 0; | 
|  | OPENSSL_FALLTHROUGH; | 
|  |  | 
|  | case EVP_CIPH_CBC_MODE: | 
|  | assert(EVP_CIPHER_CTX_iv_length(ctx) <= sizeof(ctx->iv)); | 
|  | if (iv) { | 
|  | OPENSSL_memcpy(ctx->oiv, iv, EVP_CIPHER_CTX_iv_length(ctx)); | 
|  | } | 
|  | OPENSSL_memcpy(ctx->iv, ctx->oiv, EVP_CIPHER_CTX_iv_length(ctx)); | 
|  | break; | 
|  |  | 
|  | case EVP_CIPH_CTR_MODE: | 
|  | case EVP_CIPH_OFB_MODE: | 
|  | ctx->num = 0; | 
|  | // Don't reuse IV for CTR mode | 
|  | if (iv) { | 
|  | OPENSSL_memcpy(ctx->iv, iv, EVP_CIPHER_CTX_iv_length(ctx)); | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (key || (ctx->cipher->flags & EVP_CIPH_ALWAYS_CALL_INIT)) { | 
|  | if (!ctx->cipher->init(ctx, key, iv, enc)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | ctx->buf_len = 0; | 
|  | ctx->final_used = 0; | 
|  | // Clear the poisoned flag to permit re-use of a CTX that previously had a | 
|  | // failed operation. | 
|  | ctx->poisoned = 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, | 
|  | ENGINE *impl, const uint8_t *key, const uint8_t *iv) { | 
|  | return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 1); | 
|  | } | 
|  |  | 
|  | int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, | 
|  | ENGINE *impl, const uint8_t *key, const uint8_t *iv) { | 
|  | return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 0); | 
|  | } | 
|  |  | 
|  | // block_remainder returns the number of bytes to remove from |len| to get a | 
|  | // multiple of |ctx|'s block size. | 
|  | static int block_remainder(const EVP_CIPHER_CTX *ctx, int len) { | 
|  | // |block_size| must be a power of two. | 
|  | assert(ctx->cipher->block_size != 0); | 
|  | assert((ctx->cipher->block_size & (ctx->cipher->block_size - 1)) == 0); | 
|  | return len & (ctx->cipher->block_size - 1); | 
|  | } | 
|  |  | 
|  | int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len, | 
|  | const uint8_t *in, int in_len) { | 
|  | if (ctx->poisoned) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
|  | return 0; | 
|  | } | 
|  | // If the first call to |cipher| succeeds and the second fails, |ctx| may be | 
|  | // left in an indeterminate state. We set a poison flag on failure to ensure | 
|  | // callers do not continue to use the object in that case. | 
|  | ctx->poisoned = 1; | 
|  |  | 
|  | // Ciphers that use blocks may write up to |bl| extra bytes. Ensure the output | 
|  | // does not overflow |*out_len|. | 
|  | int bl = ctx->cipher->block_size; | 
|  | if (bl > 1 && in_len > INT_MAX - bl) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, ERR_R_OVERFLOW); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) { | 
|  | int ret = ctx->cipher->cipher(ctx, out, in, in_len); | 
|  | if (ret < 0) { | 
|  | return 0; | 
|  | } else { | 
|  | *out_len = ret; | 
|  | } | 
|  | ctx->poisoned = 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (in_len <= 0) { | 
|  | *out_len = 0; | 
|  | if (in_len == 0) { | 
|  | ctx->poisoned = 0; | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (ctx->buf_len == 0 && block_remainder(ctx, in_len) == 0) { | 
|  | if (ctx->cipher->cipher(ctx, out, in, in_len)) { | 
|  | *out_len = in_len; | 
|  | ctx->poisoned = 0; | 
|  | return 1; | 
|  | } else { | 
|  | *out_len = 0; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | int i = ctx->buf_len; | 
|  | assert(bl <= (int)sizeof(ctx->buf)); | 
|  | if (i != 0) { | 
|  | if (bl - i > in_len) { | 
|  | OPENSSL_memcpy(&ctx->buf[i], in, in_len); | 
|  | ctx->buf_len += in_len; | 
|  | *out_len = 0; | 
|  | ctx->poisoned = 0; | 
|  | return 1; | 
|  | } else { | 
|  | int j = bl - i; | 
|  | OPENSSL_memcpy(&ctx->buf[i], in, j); | 
|  | if (!ctx->cipher->cipher(ctx, out, ctx->buf, bl)) { | 
|  | return 0; | 
|  | } | 
|  | in_len -= j; | 
|  | in += j; | 
|  | out += bl; | 
|  | *out_len = bl; | 
|  | } | 
|  | } else { | 
|  | *out_len = 0; | 
|  | } | 
|  |  | 
|  | i = block_remainder(ctx, in_len); | 
|  | in_len -= i; | 
|  | if (in_len > 0) { | 
|  | if (!ctx->cipher->cipher(ctx, out, in, in_len)) { | 
|  | return 0; | 
|  | } | 
|  | *out_len += in_len; | 
|  | } | 
|  |  | 
|  | if (i != 0) { | 
|  | OPENSSL_memcpy(ctx->buf, &in[in_len], i); | 
|  | } | 
|  | ctx->buf_len = i; | 
|  | ctx->poisoned = 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) { | 
|  | int n; | 
|  | unsigned int i, b, bl; | 
|  |  | 
|  | if (ctx->poisoned) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) { | 
|  | // When EVP_CIPH_FLAG_CUSTOM_CIPHER is set, the return value of |cipher| is | 
|  | // the number of bytes written, or -1 on error. Otherwise the return value | 
|  | // is one on success and zero on error. | 
|  | const int num_bytes = ctx->cipher->cipher(ctx, out, NULL, 0); | 
|  | if (num_bytes < 0) { | 
|  | return 0; | 
|  | } | 
|  | *out_len = num_bytes; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | b = ctx->cipher->block_size; | 
|  | assert(b <= sizeof(ctx->buf)); | 
|  | if (b == 1) { | 
|  | *out_len = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | bl = ctx->buf_len; | 
|  | if (ctx->flags & EVP_CIPH_NO_PADDING) { | 
|  | if (bl) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH); | 
|  | return 0; | 
|  | } | 
|  | *out_len = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | n = b - bl; | 
|  | for (i = bl; i < b; i++) { | 
|  | ctx->buf[i] = n; | 
|  | } | 
|  | if (!ctx->cipher->cipher(ctx, out, ctx->buf, b)) { | 
|  | return 0; | 
|  | } | 
|  | *out_len = b; | 
|  |  | 
|  | out: | 
|  | EVP_Cipher_verify_service_indicator(ctx); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len, | 
|  | const uint8_t *in, int in_len) { | 
|  | if (ctx->poisoned) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Ciphers that use blocks may write up to |bl| extra bytes. Ensure the output | 
|  | // does not overflow |*out_len|. | 
|  | unsigned int b = ctx->cipher->block_size; | 
|  | if (b > 1 && in_len > INT_MAX - (int)b) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, ERR_R_OVERFLOW); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) { | 
|  | int r = ctx->cipher->cipher(ctx, out, in, in_len); | 
|  | if (r < 0) { | 
|  | *out_len = 0; | 
|  | return 0; | 
|  | } else { | 
|  | *out_len = r; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (in_len <= 0) { | 
|  | *out_len = 0; | 
|  | return in_len == 0; | 
|  | } | 
|  |  | 
|  | if (ctx->flags & EVP_CIPH_NO_PADDING) { | 
|  | return EVP_EncryptUpdate(ctx, out, out_len, in, in_len); | 
|  | } | 
|  |  | 
|  | assert(b <= sizeof(ctx->final)); | 
|  | int fix_len = 0; | 
|  | if (ctx->final_used) { | 
|  | OPENSSL_memcpy(out, ctx->final, b); | 
|  | out += b; | 
|  | fix_len = 1; | 
|  | } | 
|  |  | 
|  | if (!EVP_EncryptUpdate(ctx, out, out_len, in, in_len)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // if we have 'decrypted' a multiple of block size, make sure | 
|  | // we have a copy of this last block | 
|  | if (b > 1 && !ctx->buf_len) { | 
|  | *out_len -= b; | 
|  | ctx->final_used = 1; | 
|  | OPENSSL_memcpy(ctx->final, &out[*out_len], b); | 
|  | } else { | 
|  | ctx->final_used = 0; | 
|  | } | 
|  |  | 
|  | if (fix_len) { | 
|  | *out_len += b; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *out_len) { | 
|  | int i, n; | 
|  | unsigned int b; | 
|  | *out_len = 0; | 
|  |  | 
|  | if (ctx->poisoned) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) { | 
|  | i = ctx->cipher->cipher(ctx, out, NULL, 0); | 
|  | if (i < 0) { | 
|  | return 0; | 
|  | } else { | 
|  | *out_len = i; | 
|  | } | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | b = ctx->cipher->block_size; | 
|  | if (ctx->flags & EVP_CIPH_NO_PADDING) { | 
|  | if (ctx->buf_len) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH); | 
|  | return 0; | 
|  | } | 
|  | *out_len = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (b > 1) { | 
|  | if (ctx->buf_len || !ctx->final_used) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_WRONG_FINAL_BLOCK_LENGTH); | 
|  | return 0; | 
|  | } | 
|  | assert(b <= sizeof(ctx->final)); | 
|  |  | 
|  | // The following assumes that the ciphertext has been authenticated. | 
|  | // Otherwise it provides a padding oracle. | 
|  | n = ctx->final[b - 1]; | 
|  | if (n == 0 || n > (int)b) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < n; i++) { | 
|  | if (ctx->final[--b] != n) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | n = ctx->cipher->block_size - n; | 
|  | for (i = 0; i < n; i++) { | 
|  | out[i] = ctx->final[i]; | 
|  | } | 
|  | *out_len = n; | 
|  | } else { | 
|  | *out_len = 0; | 
|  | } | 
|  |  | 
|  | out: | 
|  | EVP_Cipher_verify_service_indicator(ctx); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int EVP_Cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, | 
|  | size_t in_len) { | 
|  | const int ret = ctx->cipher->cipher(ctx, out, in, in_len); | 
|  |  | 
|  | // |EVP_CIPH_FLAG_CUSTOM_CIPHER| never sets the FIPS indicator via | 
|  | // |EVP_Cipher| because it's complicated whether the operation has completed | 
|  | // or not. E.g. AES-GCM with a non-NULL |in| argument hasn't completed an | 
|  | // operation. Callers should use the |EVP_AEAD| API or, at least, | 
|  | // |EVP_CipherUpdate| etc. | 
|  | // | 
|  | // This call can't be pushed into |EVP_Cipher_verify_service_indicator| | 
|  | // because whether |ret| indicates success or not depends on whether | 
|  | // |EVP_CIPH_FLAG_CUSTOM_CIPHER| is set. (This unreasonable, but matches | 
|  | // OpenSSL.) | 
|  | if (!(ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) && ret) { | 
|  | EVP_Cipher_verify_service_indicator(ctx); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len, | 
|  | const uint8_t *in, int in_len) { | 
|  | if (ctx->encrypt) { | 
|  | return EVP_EncryptUpdate(ctx, out, out_len, in, in_len); | 
|  | } else { | 
|  | return EVP_DecryptUpdate(ctx, out, out_len, in, in_len); | 
|  | } | 
|  | } | 
|  |  | 
|  | int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) { | 
|  | if (ctx->encrypt) { | 
|  | return EVP_EncryptFinal_ex(ctx, out, out_len); | 
|  | } else { | 
|  | return EVP_DecryptFinal_ex(ctx, out, out_len); | 
|  | } | 
|  | } | 
|  |  | 
|  | const EVP_CIPHER *EVP_CIPHER_CTX_cipher(const EVP_CIPHER_CTX *ctx) { | 
|  | return ctx->cipher; | 
|  | } | 
|  |  | 
|  | int EVP_CIPHER_CTX_nid(const EVP_CIPHER_CTX *ctx) { | 
|  | return ctx->cipher->nid; | 
|  | } | 
|  |  | 
|  | int EVP_CIPHER_CTX_encrypting(const EVP_CIPHER_CTX *ctx) { | 
|  | return ctx->encrypt; | 
|  | } | 
|  |  | 
|  | unsigned EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX *ctx) { | 
|  | return ctx->cipher->block_size; | 
|  | } | 
|  |  | 
|  | unsigned EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX *ctx) { | 
|  | return ctx->key_len; | 
|  | } | 
|  |  | 
|  | unsigned EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX *ctx) { | 
|  | if (EVP_CIPHER_mode(ctx->cipher) == EVP_CIPH_GCM_MODE) { | 
|  | int length; | 
|  | int res = EVP_CIPHER_CTX_ctrl((EVP_CIPHER_CTX *)ctx, EVP_CTRL_GET_IVLEN, 0, | 
|  | &length); | 
|  | // EVP_CIPHER_CTX_ctrl returning an error should be impossible under this | 
|  | // circumstance. If it somehow did, fallback to the static cipher iv_len. | 
|  | if (res == 1) { | 
|  | return length; | 
|  | } | 
|  | } | 
|  | return ctx->cipher->iv_len; | 
|  | } | 
|  |  | 
|  | void *EVP_CIPHER_CTX_get_app_data(const EVP_CIPHER_CTX *ctx) { | 
|  | return ctx->app_data; | 
|  | } | 
|  |  | 
|  | void EVP_CIPHER_CTX_set_app_data(EVP_CIPHER_CTX *ctx, void *data) { | 
|  | ctx->app_data = data; | 
|  | } | 
|  |  | 
|  | uint32_t EVP_CIPHER_CTX_flags(const EVP_CIPHER_CTX *ctx) { | 
|  | return ctx->cipher->flags & ~EVP_CIPH_MODE_MASK; | 
|  | } | 
|  |  | 
|  | uint32_t EVP_CIPHER_CTX_mode(const EVP_CIPHER_CTX *ctx) { | 
|  | return ctx->cipher->flags & EVP_CIPH_MODE_MASK; | 
|  | } | 
|  |  | 
|  | int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int command, int arg, void *ptr) { | 
|  | int ret; | 
|  | if (!ctx->cipher) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_NO_CIPHER_SET); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!ctx->cipher->ctrl) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_CTRL_NOT_IMPLEMENTED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ret = ctx->cipher->ctrl(ctx, command, arg, ptr); | 
|  | if (ret == -1) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_CTRL_OPERATION_NOT_IMPLEMENTED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *ctx, int pad) { | 
|  | if (pad) { | 
|  | ctx->flags &= ~EVP_CIPH_NO_PADDING; | 
|  | } else { | 
|  | ctx->flags |= EVP_CIPH_NO_PADDING; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *c, unsigned key_len) { | 
|  | if (c->key_len == key_len) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (key_len == 0 || !(c->cipher->flags & EVP_CIPH_VARIABLE_LENGTH)) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_KEY_LENGTH); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | c->key_len = key_len; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int EVP_CIPHER_nid(const EVP_CIPHER *cipher) { return cipher->nid; } | 
|  |  | 
|  | unsigned EVP_CIPHER_block_size(const EVP_CIPHER *cipher) { | 
|  | return cipher->block_size; | 
|  | } | 
|  |  | 
|  | unsigned EVP_CIPHER_key_length(const EVP_CIPHER *cipher) { | 
|  | return cipher->key_len; | 
|  | } | 
|  |  | 
|  | unsigned EVP_CIPHER_iv_length(const EVP_CIPHER *cipher) { | 
|  | return cipher->iv_len; | 
|  | } | 
|  |  | 
|  | uint32_t EVP_CIPHER_flags(const EVP_CIPHER *cipher) { | 
|  | return cipher->flags & ~EVP_CIPH_MODE_MASK; | 
|  | } | 
|  |  | 
|  | uint32_t EVP_CIPHER_mode(const EVP_CIPHER *cipher) { | 
|  | return cipher->flags & EVP_CIPH_MODE_MASK; | 
|  | } | 
|  |  | 
|  | int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, | 
|  | const uint8_t *key, const uint8_t *iv, int enc) { | 
|  | if (cipher) { | 
|  | EVP_CIPHER_CTX_init(ctx); | 
|  | } | 
|  | return EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, enc); | 
|  | } | 
|  |  | 
|  | int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, | 
|  | const uint8_t *key, const uint8_t *iv) { | 
|  | return EVP_CipherInit(ctx, cipher, key, iv, 1); | 
|  | } | 
|  |  | 
|  | int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, | 
|  | const uint8_t *key, const uint8_t *iv) { | 
|  | return EVP_CipherInit(ctx, cipher, key, iv, 0); | 
|  | } | 
|  |  | 
|  | int EVP_CipherFinal(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) { | 
|  | return EVP_CipherFinal_ex(ctx, out, out_len); | 
|  | } | 
|  |  | 
|  | int EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) { | 
|  | return EVP_EncryptFinal_ex(ctx, out, out_len); | 
|  | } | 
|  |  | 
|  | int EVP_DecryptFinal(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) { | 
|  | return EVP_DecryptFinal_ex(ctx, out, out_len); | 
|  | } | 
|  |  | 
|  | int EVP_add_cipher_alias(const char *a, const char *b) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void EVP_CIPHER_CTX_set_flags(const EVP_CIPHER_CTX *ctx, uint32_t flags) {} |