blob: 4cf78e71abaa14f53572b066b5861747ea54b5ad [file] [log] [blame]
// Copyright 2005, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// This file implements death tests.
#include "gtest/gtest-death-test.h"
#include <functional>
#include <memory>
#include <sstream>
#include <string>
#include <utility>
#include <vector>
#include "gtest/internal/custom/gtest.h"
#include "gtest/internal/gtest-port.h"
#ifdef GTEST_HAS_DEATH_TEST
#ifdef GTEST_OS_MAC
#include <crt_externs.h>
#endif // GTEST_OS_MAC
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#ifdef GTEST_OS_LINUX
#include <signal.h>
#endif // GTEST_OS_LINUX
#include <stdarg.h>
#ifdef GTEST_OS_WINDOWS
#include <windows.h>
#else
#include <sys/mman.h>
#include <sys/wait.h>
#endif // GTEST_OS_WINDOWS
#ifdef GTEST_OS_QNX
#include <spawn.h>
#endif // GTEST_OS_QNX
#ifdef GTEST_OS_FUCHSIA
#include <lib/fdio/fd.h>
#include <lib/fdio/io.h>
#include <lib/fdio/spawn.h>
#include <lib/zx/channel.h>
#include <lib/zx/port.h>
#include <lib/zx/process.h>
#include <lib/zx/socket.h>
#include <zircon/processargs.h>
#include <zircon/syscalls.h>
#include <zircon/syscalls/policy.h>
#include <zircon/syscalls/port.h>
#endif // GTEST_OS_FUCHSIA
#endif // GTEST_HAS_DEATH_TEST
#include "gtest/gtest-message.h"
#include "gtest/internal/gtest-string.h"
#include "src/gtest-internal-inl.h"
namespace testing {
// Constants.
// The default death test style.
//
// This is defined in internal/gtest-port.h as "fast", but can be overridden by
// a definition in internal/custom/gtest-port.h. The recommended value, which is
// used internally at Google, is "threadsafe".
static const char kDefaultDeathTestStyle[] = GTEST_DEFAULT_DEATH_TEST_STYLE;
} // namespace testing
GTEST_DEFINE_string_(
death_test_style,
testing::internal::StringFromGTestEnv("death_test_style",
testing::kDefaultDeathTestStyle),
"Indicates how to run a death test in a forked child process: "
"\"threadsafe\" (child process re-executes the test binary "
"from the beginning, running only the specific death test) or "
"\"fast\" (child process runs the death test immediately "
"after forking).");
GTEST_DEFINE_bool_(
death_test_use_fork,
testing::internal::BoolFromGTestEnv("death_test_use_fork", false),
"Instructs to use fork()/_exit() instead of clone() in death tests. "
"Ignored and always uses fork() on POSIX systems where clone() is not "
"implemented. Useful when running under valgrind or similar tools if "
"those do not support clone(). Valgrind 3.3.1 will just fail if "
"it sees an unsupported combination of clone() flags. "
"It is not recommended to use this flag w/o valgrind though it will "
"work in 99% of the cases. Once valgrind is fixed, this flag will "
"most likely be removed.");
GTEST_DEFINE_string_(
internal_run_death_test, "",
"Indicates the file, line number, temporal index of "
"the single death test to run, and a file descriptor to "
"which a success code may be sent, all separated by "
"the '|' characters. This flag is specified if and only if the "
"current process is a sub-process launched for running a thread-safe "
"death test. FOR INTERNAL USE ONLY.");
namespace testing {
#ifdef GTEST_HAS_DEATH_TEST
namespace internal {
// Valid only for fast death tests. Indicates the code is running in the
// child process of a fast style death test.
#if !defined(GTEST_OS_WINDOWS) && !defined(GTEST_OS_FUCHSIA)
static bool g_in_fast_death_test_child = false;
#endif
// Returns a Boolean value indicating whether the caller is currently
// executing in the context of the death test child process. Tools such as
// Valgrind heap checkers may need this to modify their behavior in death
// tests. IMPORTANT: This is an internal utility. Using it may break the
// implementation of death tests. User code MUST NOT use it.
bool InDeathTestChild() {
#if defined(GTEST_OS_WINDOWS) || defined(GTEST_OS_FUCHSIA)
// On Windows and Fuchsia, death tests are thread-safe regardless of the value
// of the death_test_style flag.
return !GTEST_FLAG_GET(internal_run_death_test).empty();
#else
if (GTEST_FLAG_GET(death_test_style) == "threadsafe")
return !GTEST_FLAG_GET(internal_run_death_test).empty();
else
return g_in_fast_death_test_child;
#endif
}
} // namespace internal
// ExitedWithCode constructor.
ExitedWithCode::ExitedWithCode(int exit_code) : exit_code_(exit_code) {}
// ExitedWithCode function-call operator.
bool ExitedWithCode::operator()(int exit_status) const {
#if defined(GTEST_OS_WINDOWS) || defined(GTEST_OS_FUCHSIA)
return exit_status == exit_code_;
#else
return WIFEXITED(exit_status) && WEXITSTATUS(exit_status) == exit_code_;
#endif // GTEST_OS_WINDOWS || GTEST_OS_FUCHSIA
}
#if !defined(GTEST_OS_WINDOWS) && !defined(GTEST_OS_FUCHSIA)
// KilledBySignal constructor.
KilledBySignal::KilledBySignal(int signum) : signum_(signum) {}
// KilledBySignal function-call operator.
bool KilledBySignal::operator()(int exit_status) const {
#if defined(GTEST_KILLED_BY_SIGNAL_OVERRIDE_)
{
bool result;
if (GTEST_KILLED_BY_SIGNAL_OVERRIDE_(signum_, exit_status, &result)) {
return result;
}
}
#endif // defined(GTEST_KILLED_BY_SIGNAL_OVERRIDE_)
return WIFSIGNALED(exit_status) && WTERMSIG(exit_status) == signum_;
}
#endif // !GTEST_OS_WINDOWS && !GTEST_OS_FUCHSIA
namespace internal {
// Utilities needed for death tests.
// Generates a textual description of a given exit code, in the format
// specified by wait(2).
static std::string ExitSummary(int exit_code) {
Message m;
#if defined(GTEST_OS_WINDOWS) || defined(GTEST_OS_FUCHSIA)
m << "Exited with exit status " << exit_code;
#else
if (WIFEXITED(exit_code)) {
m << "Exited with exit status " << WEXITSTATUS(exit_code);
} else if (WIFSIGNALED(exit_code)) {
m << "Terminated by signal " << WTERMSIG(exit_code);
}
#ifdef WCOREDUMP
if (WCOREDUMP(exit_code)) {
m << " (core dumped)";
}
#endif
#endif // GTEST_OS_WINDOWS || GTEST_OS_FUCHSIA
return m.GetString();
}
// Returns true if exit_status describes a process that was terminated
// by a signal, or exited normally with a nonzero exit code.
bool ExitedUnsuccessfully(int exit_status) {
return !ExitedWithCode(0)(exit_status);
}
#if !defined(GTEST_OS_WINDOWS) && !defined(GTEST_OS_FUCHSIA)
// Generates a textual failure message when a death test finds more than
// one thread running, or cannot determine the number of threads, prior
// to executing the given statement. It is the responsibility of the
// caller not to pass a thread_count of 1.
static std::string DeathTestThreadWarning(size_t thread_count) {
Message msg;
msg << "Death tests use fork(), which is unsafe particularly"
<< " in a threaded context. For this test, " << GTEST_NAME_ << " ";
if (thread_count == 0) {
msg << "couldn't detect the number of threads.";
} else {
msg << "detected " << thread_count << " threads.";
}
msg << " See "
"https://github.com/google/googletest/blob/main/docs/"
"advanced.md#death-tests-and-threads"
<< " for more explanation and suggested solutions, especially if"
<< " this is the last message you see before your test times out.";
return msg.GetString();
}
#endif // !GTEST_OS_WINDOWS && !GTEST_OS_FUCHSIA
// Flag characters for reporting a death test that did not die.
static const char kDeathTestLived = 'L';
static const char kDeathTestReturned = 'R';
static const char kDeathTestThrew = 'T';
static const char kDeathTestInternalError = 'I';
#ifdef GTEST_OS_FUCHSIA
// File descriptor used for the pipe in the child process.
static const int kFuchsiaReadPipeFd = 3;
#endif
// An enumeration describing all of the possible ways that a death test can
// conclude. DIED means that the process died while executing the test
// code; LIVED means that process lived beyond the end of the test code;
// RETURNED means that the test statement attempted to execute a return
// statement, which is not allowed; THREW means that the test statement
// returned control by throwing an exception. IN_PROGRESS means the test
// has not yet concluded.
enum DeathTestOutcome { IN_PROGRESS, DIED, LIVED, RETURNED, THREW };
// Routine for aborting the program which is safe to call from an
// exec-style death test child process, in which case the error
// message is propagated back to the parent process. Otherwise, the
// message is simply printed to stderr. In either case, the program
// then exits with status 1.
[[noreturn]] static void DeathTestAbort(const std::string& message) {
// On a POSIX system, this function may be called from a threadsafe-style
// death test child process, which operates on a very small stack. Use
// the heap for any additional non-minuscule memory requirements.
const InternalRunDeathTestFlag* const flag =
GetUnitTestImpl()->internal_run_death_test_flag();
if (flag != nullptr) {
FILE* parent = posix::FDOpen(flag->write_fd(), "w");
fputc(kDeathTestInternalError, parent);
fprintf(parent, "%s", message.c_str());
fflush(parent);
_exit(1);
} else {
fprintf(stderr, "%s", message.c_str());
fflush(stderr);
posix::Abort();
}
}
// A replacement for CHECK that calls DeathTestAbort if the assertion
// fails.
#define GTEST_DEATH_TEST_CHECK_(expression) \
do { \
if (!::testing::internal::IsTrue(expression)) { \
DeathTestAbort(::std::string("CHECK failed: File ") + __FILE__ + \
", line " + \
::testing::internal::StreamableToString(__LINE__) + \
": " + #expression); \
} \
} while (::testing::internal::AlwaysFalse())
// This macro is similar to GTEST_DEATH_TEST_CHECK_, but it is meant for
// evaluating any system call that fulfills two conditions: it must return
// -1 on failure, and set errno to EINTR when it is interrupted and
// should be tried again. The macro expands to a loop that repeatedly
// evaluates the expression as long as it evaluates to -1 and sets
// errno to EINTR. If the expression evaluates to -1 but errno is
// something other than EINTR, DeathTestAbort is called.
#define GTEST_DEATH_TEST_CHECK_SYSCALL_(expression) \
do { \
int gtest_retval; \
do { \
gtest_retval = (expression); \
} while (gtest_retval == -1 && errno == EINTR); \
if (gtest_retval == -1) { \
DeathTestAbort(::std::string("CHECK failed: File ") + __FILE__ + \
", line " + \
::testing::internal::StreamableToString(__LINE__) + \
": " + #expression + " != -1"); \
} \
} while (::testing::internal::AlwaysFalse())
// Returns the message describing the last system error in errno.
std::string GetLastErrnoDescription() {
return errno == 0 ? "" : posix::StrError(errno);
}
// This is called from a death test parent process to read a failure
// message from the death test child process and log it with the FATAL
// severity. On Windows, the message is read from a pipe handle. On other
// platforms, it is read from a file descriptor.
static void FailFromInternalError(int fd) {
Message error;
char buffer[256];
int num_read;
do {
while ((num_read = posix::Read(fd, buffer, 255)) > 0) {
buffer[num_read] = '\0';
error << buffer;
}
} while (num_read == -1 && errno == EINTR);
if (num_read == 0) {
GTEST_LOG_(FATAL) << error.GetString();
} else {
const int last_error = errno;
GTEST_LOG_(FATAL) << "Error while reading death test internal: "
<< GetLastErrnoDescription() << " [" << last_error << "]";
}
}
// Death test constructor. Increments the running death test count
// for the current test.
DeathTest::DeathTest() {
TestInfo* const info = GetUnitTestImpl()->current_test_info();
if (info == nullptr) {
DeathTestAbort(
"Cannot run a death test outside of a TEST or "
"TEST_F construct");
}
}
// Creates and returns a death test by dispatching to the current
// death test factory.
bool DeathTest::Create(const char* statement,
Matcher<const std::string&> matcher, const char* file,
int line, DeathTest** test) {
return GetUnitTestImpl()->death_test_factory()->Create(
statement, std::move(matcher), file, line, test);
}
const char* DeathTest::LastMessage() {
return last_death_test_message_.c_str();
}
void DeathTest::set_last_death_test_message(const std::string& message) {
last_death_test_message_ = message;
}
std::string DeathTest::last_death_test_message_;
// Provides cross platform implementation for some death functionality.
class DeathTestImpl : public DeathTest {
protected:
DeathTestImpl(const char* a_statement, Matcher<const std::string&> matcher)
: statement_(a_statement),
matcher_(std::move(matcher)),
spawned_(false),
status_(-1),
outcome_(IN_PROGRESS),
read_fd_(-1),
write_fd_(-1) {}
// read_fd_ is expected to be closed and cleared by a derived class.
~DeathTestImpl() override { GTEST_DEATH_TEST_CHECK_(read_fd_ == -1); }
void Abort(AbortReason reason) override;
bool Passed(bool status_ok) override;
const char* statement() const { return statement_; }
bool spawned() const { return spawned_; }
void set_spawned(bool is_spawned) { spawned_ = is_spawned; }
int status() const { return status_; }
void set_status(int a_status) { status_ = a_status; }
DeathTestOutcome outcome() const { return outcome_; }
void set_outcome(DeathTestOutcome an_outcome) { outcome_ = an_outcome; }
int read_fd() const { return read_fd_; }
void set_read_fd(int fd) { read_fd_ = fd; }
int write_fd() const { return write_fd_; }
void set_write_fd(int fd) { write_fd_ = fd; }
// Called in the parent process only. Reads the result code of the death
// test child process via a pipe, interprets it to set the outcome_
// member, and closes read_fd_. Outputs diagnostics and terminates in
// case of unexpected codes.
void ReadAndInterpretStatusByte();
// Returns stderr output from the child process.
virtual std::string GetErrorLogs();
private:
// The textual content of the code this object is testing. This class
// doesn't own this string and should not attempt to delete it.
const char* const statement_;
// A matcher that's expected to match the stderr output by the child process.
Matcher<const std::string&> matcher_;
// True if the death test child process has been successfully spawned.
bool spawned_;
// The exit status of the child process.
int status_;
// How the death test concluded.
DeathTestOutcome outcome_;
// Descriptor to the read end of the pipe to the child process. It is
// always -1 in the child process. The child keeps its write end of the
// pipe in write_fd_.
int read_fd_;
// Descriptor to the child's write end of the pipe to the parent process.
// It is always -1 in the parent process. The parent keeps its end of the
// pipe in read_fd_.
int write_fd_;
};
// Called in the parent process only. Reads the result code of the death
// test child process via a pipe, interprets it to set the outcome_
// member, and closes read_fd_. Outputs diagnostics and terminates in
// case of unexpected codes.
void DeathTestImpl::ReadAndInterpretStatusByte() {
char flag;
int bytes_read;
// The read() here blocks until data is available (signifying the
// failure of the death test) or until the pipe is closed (signifying
// its success), so it's okay to call this in the parent before
// the child process has exited.
do {
bytes_read = posix::Read(read_fd(), &flag, 1);
} while (bytes_read == -1 && errno == EINTR);
if (bytes_read == 0) {
set_outcome(DIED);
} else if (bytes_read == 1) {
switch (flag) {
case kDeathTestReturned:
set_outcome(RETURNED);
break;
case kDeathTestThrew:
set_outcome(THREW);
break;
case kDeathTestLived:
set_outcome(LIVED);
break;
case kDeathTestInternalError:
FailFromInternalError(read_fd()); // Does not return.
break;
default:
GTEST_LOG_(FATAL) << "Death test child process reported "
<< "unexpected status byte ("
<< static_cast<unsigned int>(flag) << ")";
}
} else {
GTEST_LOG_(FATAL) << "Read from death test child process failed: "
<< GetLastErrnoDescription();
}
GTEST_DEATH_TEST_CHECK_SYSCALL_(posix::Close(read_fd()));
set_read_fd(-1);
}
std::string DeathTestImpl::GetErrorLogs() { return GetCapturedStderr(); }
// Signals that the death test code which should have exited, didn't.
// Should be called only in a death test child process.
// Writes a status byte to the child's status file descriptor, then
// calls _exit(1).
void DeathTestImpl::Abort(AbortReason reason) {
// The parent process considers the death test to be a failure if
// it finds any data in our pipe. So, here we write a single flag byte
// to the pipe, then exit.
const char status_ch = reason == TEST_DID_NOT_DIE ? kDeathTestLived
: reason == TEST_THREW_EXCEPTION ? kDeathTestThrew
: kDeathTestReturned;
GTEST_DEATH_TEST_CHECK_SYSCALL_(posix::Write(write_fd(), &status_ch, 1));
// We are leaking the descriptor here because on some platforms (i.e.,
// when built as Windows DLL), destructors of global objects will still
// run after calling _exit(). On such systems, write_fd_ will be
// indirectly closed from the destructor of UnitTestImpl, causing double
// close if it is also closed here. On debug configurations, double close
// may assert. As there are no in-process buffers to flush here, we are
// relying on the OS to close the descriptor after the process terminates
// when the destructors are not run.
_exit(1); // Exits w/o any normal exit hooks (we were supposed to crash)
}
// Returns an indented copy of stderr output for a death test.
// This makes distinguishing death test output lines from regular log lines
// much easier.
static ::std::string FormatDeathTestOutput(const ::std::string& output) {
::std::string ret;
for (size_t at = 0;;) {
const size_t line_end = output.find('\n', at);
ret += "[ DEATH ] ";
if (line_end == ::std::string::npos) {
ret += output.substr(at);
break;
}
ret += output.substr(at, line_end + 1 - at);
at = line_end + 1;
}
return ret;
}
// Assesses the success or failure of a death test, using both private
// members which have previously been set, and one argument:
//
// Private data members:
// outcome: An enumeration describing how the death test
// concluded: DIED, LIVED, THREW, or RETURNED. The death test
// fails in the latter three cases.
// status: The exit status of the child process. On *nix, it is in the
// in the format specified by wait(2). On Windows, this is the
// value supplied to the ExitProcess() API or a numeric code
// of the exception that terminated the program.
// matcher_: A matcher that's expected to match the stderr output by the child
// process.
//
// Argument:
// status_ok: true if exit_status is acceptable in the context of
// this particular death test, which fails if it is false
//
// Returns true if and only if all of the above conditions are met. Otherwise,
// the first failing condition, in the order given above, is the one that is
// reported. Also sets the last death test message string.
bool DeathTestImpl::Passed(bool status_ok) {
if (!spawned()) return false;
const std::string error_message = GetErrorLogs();
bool success = false;
Message buffer;
buffer << "Death test: " << statement() << "\n";
switch (outcome()) {
case LIVED:
buffer << " Result: failed to die.\n"
<< " Error msg:\n"
<< FormatDeathTestOutput(error_message);
break;
case THREW:
buffer << " Result: threw an exception.\n"
<< " Error msg:\n"
<< FormatDeathTestOutput(error_message);
break;
case RETURNED:
buffer << " Result: illegal return in test statement.\n"
<< " Error msg:\n"
<< FormatDeathTestOutput(error_message);
break;
case DIED:
if (status_ok) {
if (matcher_.Matches(error_message)) {
success = true;
} else {
std::ostringstream stream;
matcher_.DescribeTo(&stream);
buffer << " Result: died but not with expected error.\n"
<< " Expected: " << stream.str() << "\n"
<< "Actual msg:\n"
<< FormatDeathTestOutput(error_message);
}
} else {
buffer << " Result: died but not with expected exit code:\n"
<< " " << ExitSummary(status()) << "\n"
<< "Actual msg:\n"
<< FormatDeathTestOutput(error_message);
}
break;
case IN_PROGRESS:
default:
GTEST_LOG_(FATAL)
<< "DeathTest::Passed somehow called before conclusion of test";
}
DeathTest::set_last_death_test_message(buffer.GetString());
return success;
}
#ifndef GTEST_OS_WINDOWS
// Note: The return value points into args, so the return value's lifetime is
// bound to that of args.
static std::unique_ptr<char*[]> CreateArgvFromArgs(
std::vector<std::string>& args) {
auto result = std::make_unique<char*[]>(args.size() + 1);
for (size_t i = 0; i < args.size(); ++i) {
result[i] = &args[i][0];
}
result[args.size()] = nullptr; // extra null terminator
return result;
}
#endif
#ifdef GTEST_OS_WINDOWS
// WindowsDeathTest implements death tests on Windows. Due to the
// specifics of starting new processes on Windows, death tests there are
// always threadsafe, and Google Test considers the
// --gtest_death_test_style=fast setting to be equivalent to
// --gtest_death_test_style=threadsafe there.
//
// A few implementation notes: Like the Linux version, the Windows
// implementation uses pipes for child-to-parent communication. But due to
// the specifics of pipes on Windows, some extra steps are required:
//
// 1. The parent creates a communication pipe and stores handles to both
// ends of it.
// 2. The parent starts the child and provides it with the information
// necessary to acquire the handle to the write end of the pipe.
// 3. The child acquires the write end of the pipe and signals the parent
// using a Windows event.
// 4. Now the parent can release the write end of the pipe on its side. If
// this is done before step 3, the object's reference count goes down to
// 0 and it is destroyed, preventing the child from acquiring it. The
// parent now has to release it, or read operations on the read end of
// the pipe will not return when the child terminates.
// 5. The parent reads child's output through the pipe (outcome code and
// any possible error messages) from the pipe, and its stderr and then
// determines whether to fail the test.
//
// Note: to distinguish Win32 API calls from the local method and function
// calls, the former are explicitly resolved in the global namespace.
//
class WindowsDeathTest : public DeathTestImpl {
public:
WindowsDeathTest(const char* a_statement, Matcher<const std::string&> matcher,
const char* file, int line)
: DeathTestImpl(a_statement, std::move(matcher)),
file_(file),
line_(line) {}
// All of these virtual functions are inherited from DeathTest.
virtual int Wait();
virtual TestRole AssumeRole();
private:
// The name of the file in which the death test is located.
const char* const file_;
// The line number on which the death test is located.
const int line_;
// Handle to the write end of the pipe to the child process.
AutoHandle write_handle_;
// Child process handle.
AutoHandle child_handle_;
// Event the child process uses to signal the parent that it has
// acquired the handle to the write end of the pipe. After seeing this
// event the parent can release its own handles to make sure its
// ReadFile() calls return when the child terminates.
AutoHandle event_handle_;
};
// Waits for the child in a death test to exit, returning its exit
// status, or 0 if no child process exists. As a side effect, sets the
// outcome data member.
int WindowsDeathTest::Wait() {
if (!spawned()) return 0;
// Wait until the child either signals that it has acquired the write end
// of the pipe or it dies.
const HANDLE wait_handles[2] = {child_handle_.Get(), event_handle_.Get()};
switch (::WaitForMultipleObjects(2, wait_handles,
FALSE, // Waits for any of the handles.
INFINITE)) {
case WAIT_OBJECT_0:
case WAIT_OBJECT_0 + 1:
break;
default:
GTEST_DEATH_TEST_CHECK_(false); // Should not get here.
}
// The child has acquired the write end of the pipe or exited.
// We release the handle on our side and continue.
write_handle_.Reset();
event_handle_.Reset();
ReadAndInterpretStatusByte();
// Waits for the child process to exit if it haven't already. This
// returns immediately if the child has already exited, regardless of
// whether previous calls to WaitForMultipleObjects synchronized on this
// handle or not.
GTEST_DEATH_TEST_CHECK_(WAIT_OBJECT_0 ==
::WaitForSingleObject(child_handle_.Get(), INFINITE));
DWORD status_code;
GTEST_DEATH_TEST_CHECK_(
::GetExitCodeProcess(child_handle_.Get(), &status_code) != FALSE);
child_handle_.Reset();
set_status(static_cast<int>(status_code));
return status();
}
// The AssumeRole process for a Windows death test. It creates a child
// process with the same executable as the current process to run the
// death test. The child process is given the --gtest_filter and
// --gtest_internal_run_death_test flags such that it knows to run the
// current death test only.
DeathTest::TestRole WindowsDeathTest::AssumeRole() {
const UnitTestImpl* const impl = GetUnitTestImpl();
const InternalRunDeathTestFlag* const flag =
impl->internal_run_death_test_flag();
const TestInfo* const info = impl->current_test_info();
const int death_test_index = info->result()->death_test_count();
if (flag != nullptr) {
// ParseInternalRunDeathTestFlag() has performed all the necessary
// processing.
set_write_fd(flag->write_fd());
return EXECUTE_TEST;
}
// WindowsDeathTest uses an anonymous pipe to communicate results of
// a death test.
SECURITY_ATTRIBUTES handles_are_inheritable = {sizeof(SECURITY_ATTRIBUTES),
nullptr, TRUE};
HANDLE read_handle, write_handle;
GTEST_DEATH_TEST_CHECK_(::CreatePipe(&read_handle, &write_handle,
&handles_are_inheritable,
0) // Default buffer size.
!= FALSE);
set_read_fd(
::_open_osfhandle(reinterpret_cast<intptr_t>(read_handle), O_RDONLY));
write_handle_.Reset(write_handle);
event_handle_.Reset(::CreateEvent(
&handles_are_inheritable,
TRUE, // The event will automatically reset to non-signaled state.
FALSE, // The initial state is non-signalled.
nullptr)); // The even is unnamed.
GTEST_DEATH_TEST_CHECK_(event_handle_.Get() != nullptr);
const std::string filter_flag = std::string("--") + GTEST_FLAG_PREFIX_ +
"filter=" + info->test_suite_name() + "." +
info->name();
const std::string internal_flag =
std::string("--") + GTEST_FLAG_PREFIX_ +
"internal_run_death_test=" + file_ + "|" + StreamableToString(line_) +
"|" + StreamableToString(death_test_index) + "|" +
StreamableToString(static_cast<unsigned int>(::GetCurrentProcessId())) +
// size_t has the same width as pointers on both 32-bit and 64-bit
// Windows platforms.
// See http://msdn.microsoft.com/en-us/library/tcxf1dw6.aspx.
"|" + StreamableToString(reinterpret_cast<size_t>(write_handle)) + "|" +
StreamableToString(reinterpret_cast<size_t>(event_handle_.Get()));
char executable_path[_MAX_PATH + 1]; // NOLINT
GTEST_DEATH_TEST_CHECK_(_MAX_PATH + 1 != ::GetModuleFileNameA(nullptr,
executable_path,
_MAX_PATH));
std::string command_line = std::string(::GetCommandLineA()) + " " +
filter_flag + " \"" + internal_flag + "\"";
DeathTest::set_last_death_test_message("");
CaptureStderr();
// Flush the log buffers since the log streams are shared with the child.
FlushInfoLog();
// The child process will share the standard handles with the parent.
STARTUPINFOA startup_info;
memset(&startup_info, 0, sizeof(STARTUPINFO));
startup_info.dwFlags = STARTF_USESTDHANDLES;
startup_info.hStdInput = ::GetStdHandle(STD_INPUT_HANDLE);
startup_info.hStdOutput = ::GetStdHandle(STD_OUTPUT_HANDLE);
startup_info.hStdError = ::GetStdHandle(STD_ERROR_HANDLE);
PROCESS_INFORMATION process_info;
GTEST_DEATH_TEST_CHECK_(
::CreateProcessA(
executable_path, const_cast<char*>(command_line.c_str()),
nullptr, // Returned process handle is not inheritable.
nullptr, // Returned thread handle is not inheritable.
TRUE, // Child inherits all inheritable handles (for write_handle_).
0x0, // Default creation flags.
nullptr, // Inherit the parent's environment.
UnitTest::GetInstance()->original_working_dir(), &startup_info,
&process_info) != FALSE);
child_handle_.Reset(process_info.hProcess);
::CloseHandle(process_info.hThread);
set_spawned(true);
return OVERSEE_TEST;
}
#elif defined(GTEST_OS_FUCHSIA)
class FuchsiaDeathTest : public DeathTestImpl {
public:
FuchsiaDeathTest(const char* a_statement, Matcher<const std::string&> matcher,
const char* file, int line)
: DeathTestImpl(a_statement, std::move(matcher)),
file_(file),
line_(line) {}
// All of these virtual functions are inherited from DeathTest.
int Wait() override;
TestRole AssumeRole() override;
std::string GetErrorLogs() override;
private:
// The name of the file in which the death test is located.
const char* const file_;
// The line number on which the death test is located.
const int line_;
// The stderr data captured by the child process.
std::string captured_stderr_;
zx::process child_process_;
zx::channel exception_channel_;
zx::socket stderr_socket_;
};
// Waits for the child in a death test to exit, returning its exit
// status, or 0 if no child process exists. As a side effect, sets the
// outcome data member.
int FuchsiaDeathTest::Wait() {
const int kProcessKey = 0;
const int kSocketKey = 1;
const int kExceptionKey = 2;
if (!spawned()) return 0;
// Create a port to wait for socket/task/exception events.
zx_status_t status_zx;
zx::port port;
status_zx = zx::port::create(0, &port);
GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK);
// Register to wait for the child process to terminate.
status_zx =
child_process_.wait_async(port, kProcessKey, ZX_PROCESS_TERMINATED, 0);
GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK);
// Register to wait for the socket to be readable or closed.
status_zx = stderr_socket_.wait_async(
port, kSocketKey, ZX_SOCKET_READABLE | ZX_SOCKET_PEER_CLOSED, 0);
GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK);
// Register to wait for an exception.
status_zx = exception_channel_.wait_async(port, kExceptionKey,
ZX_CHANNEL_READABLE, 0);
GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK);
bool process_terminated = false;
bool socket_closed = false;
do {
zx_port_packet_t packet = {};
status_zx = port.wait(zx::time::infinite(), &packet);
GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK);
if (packet.key == kExceptionKey) {
// Process encountered an exception. Kill it directly rather than
// letting other handlers process the event. We will get a kProcessKey
// event when the process actually terminates.
status_zx = child_process_.kill();
GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK);
} else if (packet.key == kProcessKey) {
// Process terminated.
GTEST_DEATH_TEST_CHECK_(ZX_PKT_IS_SIGNAL_ONE(packet.type));
GTEST_DEATH_TEST_CHECK_(packet.signal.observed & ZX_PROCESS_TERMINATED);
process_terminated = true;
} else if (packet.key == kSocketKey) {
GTEST_DEATH_TEST_CHECK_(ZX_PKT_IS_SIGNAL_ONE(packet.type));
if (packet.signal.observed & ZX_SOCKET_READABLE) {
// Read data from the socket.
constexpr size_t kBufferSize = 1024;
do {
size_t old_length = captured_stderr_.length();
size_t bytes_read = 0;
captured_stderr_.resize(old_length + kBufferSize);
status_zx =
stderr_socket_.read(0, &captured_stderr_.front() + old_length,
kBufferSize, &bytes_read);
captured_stderr_.resize(old_length + bytes_read);
} while (status_zx == ZX_OK);
if (status_zx == ZX_ERR_PEER_CLOSED) {
socket_closed = true;
} else {
GTEST_DEATH_TEST_CHECK_(status_zx == ZX_ERR_SHOULD_WAIT);
status_zx = stderr_socket_.wait_async(
port, kSocketKey, ZX_SOCKET_READABLE | ZX_SOCKET_PEER_CLOSED, 0);
GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK);
}
} else {
GTEST_DEATH_TEST_CHECK_(packet.signal.observed & ZX_SOCKET_PEER_CLOSED);
socket_closed = true;
}
}
} while (!process_terminated && !socket_closed);
ReadAndInterpretStatusByte();
zx_info_process_t buffer;
status_zx = child_process_.get_info(ZX_INFO_PROCESS, &buffer, sizeof(buffer),
nullptr, nullptr);
GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK);
GTEST_DEATH_TEST_CHECK_(buffer.flags & ZX_INFO_PROCESS_FLAG_EXITED);
set_status(static_cast<int>(buffer.return_code));
return status();
}
// The AssumeRole process for a Fuchsia death test. It creates a child
// process with the same executable as the current process to run the
// death test. The child process is given the --gtest_filter and
// --gtest_internal_run_death_test flags such that it knows to run the
// current death test only.
DeathTest::TestRole FuchsiaDeathTest::AssumeRole() {
const UnitTestImpl* const impl = GetUnitTestImpl();
const InternalRunDeathTestFlag* const flag =
impl->internal_run_death_test_flag();
const TestInfo* const info = impl->current_test_info();
const int death_test_index = info->result()->death_test_count();
if (flag != nullptr) {
// ParseInternalRunDeathTestFlag() has performed all the necessary
// processing.
set_write_fd(kFuchsiaReadPipeFd);
return EXECUTE_TEST;
}
// Flush the log buffers since the log streams are shared with the child.
FlushInfoLog();
// Build the child process command line.
const std::string filter_flag = std::string("--") + GTEST_FLAG_PREFIX_ +
"filter=" + info->test_suite_name() + "." +
info->name();
const std::string internal_flag = std::string("--") + GTEST_FLAG_PREFIX_ +
kInternalRunDeathTestFlag + "=" + file_ +
"|" + StreamableToString(line_) + "|" +
StreamableToString(death_test_index);
std::vector<std::string> args = GetInjectableArgvs();
args.push_back(filter_flag);
args.push_back(internal_flag);
// Build the pipe for communication with the child.
zx_status_t status;
zx_handle_t child_pipe_handle;
int child_pipe_fd;
status = fdio_pipe_half(&child_pipe_fd, &child_pipe_handle);
GTEST_DEATH_TEST_CHECK_(status == ZX_OK);
set_read_fd(child_pipe_fd);
// Set the pipe handle for the child.
fdio_spawn_action_t spawn_actions[2] = {};
fdio_spawn_action_t* add_handle_action = &spawn_actions[0];
add_handle_action->action = FDIO_SPAWN_ACTION_ADD_HANDLE;
add_handle_action->h.id = PA_HND(PA_FD, kFuchsiaReadPipeFd);
add_handle_action->h.handle = child_pipe_handle;
// Create a socket pair will be used to receive the child process' stderr.
zx::socket stderr_producer_socket;
status = zx::socket::create(0, &stderr_producer_socket, &stderr_socket_);
GTEST_DEATH_TEST_CHECK_(status >= 0);
int stderr_producer_fd = -1;
status =
fdio_fd_create(stderr_producer_socket.release(), &stderr_producer_fd);
GTEST_DEATH_TEST_CHECK_(status >= 0);
// Make the stderr socket nonblocking.
GTEST_DEATH_TEST_CHECK_(fcntl(stderr_producer_fd, F_SETFL, 0) == 0);
fdio_spawn_action_t* add_stderr_action = &spawn_actions[1];
add_stderr_action->action = FDIO_SPAWN_ACTION_CLONE_FD;
add_stderr_action->fd.local_fd = stderr_producer_fd;
add_stderr_action->fd.target_fd = STDERR_FILENO;
// Create a child job.
zx_handle_t child_job = ZX_HANDLE_INVALID;
status = zx_job_create(zx_job_default(), 0, &child_job);
GTEST_DEATH_TEST_CHECK_(status == ZX_OK);
zx_policy_basic_t policy;
policy.condition = ZX_POL_NEW_ANY;
policy.policy = ZX_POL_ACTION_ALLOW;
status = zx_job_set_policy(child_job, ZX_JOB_POL_RELATIVE, ZX_JOB_POL_BASIC,
&policy, 1);
GTEST_DEATH_TEST_CHECK_(status == ZX_OK);
// Create an exception channel attached to the |child_job|, to allow
// us to suppress the system default exception handler from firing.
status = zx_task_create_exception_channel(
child_job, 0, exception_channel_.reset_and_get_address());
GTEST_DEATH_TEST_CHECK_(status == ZX_OK);
// Spawn the child process.
// Note: The test component must have `fuchsia.process.Launcher` declared
// in its manifest. (Fuchsia integration tests require creating a
// "Fuchsia Test Component" which contains a "Fuchsia Component Manifest")
// Launching processes is a privileged operation in Fuchsia, and the
// declaration indicates that the ability is required for the component.
std::unique_ptr<char*[]> argv = CreateArgvFromArgs(args);
status = fdio_spawn_etc(child_job, FDIO_SPAWN_CLONE_ALL, argv[0], argv.get(),
nullptr, 2, spawn_actions,
child_process_.reset_and_get_address(), nullptr);
GTEST_DEATH_TEST_CHECK_(status == ZX_OK);
set_spawned(true);
return OVERSEE_TEST;
}
std::string FuchsiaDeathTest::GetErrorLogs() { return captured_stderr_; }
#else // We are neither on Windows, nor on Fuchsia.
// ForkingDeathTest provides implementations for most of the abstract
// methods of the DeathTest interface. Only the AssumeRole method is
// left undefined.
class ForkingDeathTest : public DeathTestImpl {
public:
ForkingDeathTest(const char* statement, Matcher<const std::string&> matcher);
// All of these virtual functions are inherited from DeathTest.
int Wait() override;
protected:
void set_child_pid(pid_t child_pid) { child_pid_ = child_pid; }
private:
// PID of child process during death test; 0 in the child process itself.
pid_t child_pid_;
};
// Constructs a ForkingDeathTest.
ForkingDeathTest::ForkingDeathTest(const char* a_statement,
Matcher<const std::string&> matcher)
: DeathTestImpl(a_statement, std::move(matcher)), child_pid_(-1) {}
// Waits for the child in a death test to exit, returning its exit
// status, or 0 if no child process exists. As a side effect, sets the
// outcome data member.
int ForkingDeathTest::Wait() {
if (!spawned()) return 0;
ReadAndInterpretStatusByte();
int status_value;
GTEST_DEATH_TEST_CHECK_SYSCALL_(waitpid(child_pid_, &status_value, 0));
set_status(status_value);
return status_value;
}
// A concrete death test class that forks, then immediately runs the test
// in the child process.
class NoExecDeathTest : public ForkingDeathTest {
public:
NoExecDeathTest(const char* a_statement, Matcher<const std::string&> matcher)
: ForkingDeathTest(a_statement, std::move(matcher)) {}
TestRole AssumeRole() override;
};
// The AssumeRole process for a fork-and-run death test. It implements a
// straightforward fork, with a simple pipe to transmit the status byte.
DeathTest::TestRole NoExecDeathTest::AssumeRole() {
const size_t thread_count = GetThreadCount();
if (thread_count != 1) {
GTEST_LOG_(WARNING) << DeathTestThreadWarning(thread_count);
}
int pipe_fd[2];
GTEST_DEATH_TEST_CHECK_(pipe(pipe_fd) != -1);
DeathTest::set_last_death_test_message("");
CaptureStderr();
// When we fork the process below, the log file buffers are copied, but the
// file descriptors are shared. We flush all log files here so that closing
// the file descriptors in the child process doesn't throw off the
// synchronization between descriptors and buffers in the parent process.
// This is as close to the fork as possible to avoid a race condition in case
// there are multiple threads running before the death test, and another
// thread writes to the log file.
FlushInfoLog();
const pid_t child_pid = fork();
GTEST_DEATH_TEST_CHECK_(child_pid != -1);
set_child_pid(child_pid);
if (child_pid == 0) {
GTEST_DEATH_TEST_CHECK_SYSCALL_(close(pipe_fd[0]));
set_write_fd(pipe_fd[1]);
// Redirects all logging to stderr in the child process to prevent
// concurrent writes to the log files. We capture stderr in the parent
// process and append the child process' output to a log.
LogToStderr();
// Event forwarding to the listeners of event listener API mush be shut
// down in death test subprocesses.
GetUnitTestImpl()->listeners()->SuppressEventForwarding();
g_in_fast_death_test_child = true;
return EXECUTE_TEST;
} else {
GTEST_DEATH_TEST_CHECK_SYSCALL_(close(pipe_fd[1]));
set_read_fd(pipe_fd[0]);
set_spawned(true);
return OVERSEE_TEST;
}
}
// A concrete death test class that forks and re-executes the main
// program from the beginning, with command-line flags set that cause
// only this specific death test to be run.
class ExecDeathTest : public ForkingDeathTest {
public:
ExecDeathTest(const char* a_statement, Matcher<const std::string&> matcher,
const char* file, int line)
: ForkingDeathTest(a_statement, std::move(matcher)),
file_(file),
line_(line) {}
TestRole AssumeRole() override;
private:
static ::std::vector<std::string> GetArgvsForDeathTestChildProcess() {
::std::vector<std::string> args = GetInjectableArgvs();
#if defined(GTEST_EXTRA_DEATH_TEST_COMMAND_LINE_ARGS_)
::std::vector<std::string> extra_args =
GTEST_EXTRA_DEATH_TEST_COMMAND_LINE_ARGS_();
args.insert(args.end(), extra_args.begin(), extra_args.end());
#endif // defined(GTEST_EXTRA_DEATH_TEST_COMMAND_LINE_ARGS_)
return args;
}
// The name of the file in which the death test is located.
const char* const file_;
// The line number on which the death test is located.
const int line_;
};
// A struct that encompasses the arguments to the child process of a
// threadsafe-style death test process.
struct ExecDeathTestArgs {
char* const* argv; // Command-line arguments for the child's call to exec
int close_fd; // File descriptor to close; the read end of a pipe
};
#ifdef GTEST_OS_QNX
extern "C" char** environ;
#else // GTEST_OS_QNX
// The main function for a threadsafe-style death test child process.
// This function is called in a clone()-ed process and thus must avoid
// any potentially unsafe operations like malloc or libc functions.
static int ExecDeathTestChildMain(void* child_arg) {
ExecDeathTestArgs* const args = static_cast<ExecDeathTestArgs*>(child_arg);
GTEST_DEATH_TEST_CHECK_SYSCALL_(close(args->close_fd));
// We need to execute the test program in the same environment where
// it was originally invoked. Therefore we change to the original
// working directory first.
const char* const original_dir =
UnitTest::GetInstance()->original_working_dir();
// We can safely call chdir() as it's a direct system call.
if (chdir(original_dir) != 0) {
DeathTestAbort(std::string("chdir(\"") + original_dir +
"\") failed: " + GetLastErrnoDescription());
return EXIT_FAILURE;
}
// We can safely call execv() as it's almost a direct system call. We
// cannot use execvp() as it's a libc function and thus potentially
// unsafe. Since execv() doesn't search the PATH, the user must
// invoke the test program via a valid path that contains at least
// one path separator.
execv(args->argv[0], args->argv);
DeathTestAbort(std::string("execv(") + args->argv[0] + ", ...) in " +
original_dir + " failed: " + GetLastErrnoDescription());
return EXIT_FAILURE;
}
#endif // GTEST_OS_QNX
#if GTEST_HAS_CLONE
// Two utility routines that together determine the direction the stack
// grows.
// This could be accomplished more elegantly by a single recursive
// function, but we want to guard against the unlikely possibility of
// a smart compiler optimizing the recursion away.
//
// GTEST_NO_INLINE_ is required to prevent GCC 4.6 from inlining
// StackLowerThanAddress into StackGrowsDown, which then doesn't give
// correct answer.
static void StackLowerThanAddress(const void* ptr,
bool* result) GTEST_NO_INLINE_;
// Make sure sanitizers do not tamper with the stack here.
// Ideally, we want to use `__builtin_frame_address` instead of a local variable
// address with sanitizer disabled, but it does not work when the
// compiler optimizes the stack frame out, which happens on PowerPC targets.
// HWAddressSanitizer add a random tag to the MSB of the local variable address,
// making comparison result unpredictable.
GTEST_ATTRIBUTE_NO_SANITIZE_ADDRESS_
GTEST_ATTRIBUTE_NO_SANITIZE_HWADDRESS_
static void StackLowerThanAddress(const void* ptr, bool* result) {
int dummy = 0;
*result = std::less<const void*>()(&dummy, ptr);
}
// Make sure AddressSanitizer does not tamper with the stack here.
GTEST_ATTRIBUTE_NO_SANITIZE_ADDRESS_
GTEST_ATTRIBUTE_NO_SANITIZE_HWADDRESS_
static bool StackGrowsDown() {
int dummy = 0;
bool result;
StackLowerThanAddress(&dummy, &result);
return result;
}
#endif // GTEST_HAS_CLONE
// Spawns a child process with the same executable as the current process in
// a thread-safe manner and instructs it to run the death test. The
// implementation uses fork(2) + exec. On systems where clone(2) is
// available, it is used instead, being slightly more thread-safe. On QNX,
// fork supports only single-threaded environments, so this function uses
// spawn(2) there instead. The function dies with an error message if
// anything goes wrong.
static pid_t ExecDeathTestSpawnChild(char* const* argv, int close_fd) {
ExecDeathTestArgs args = {argv, close_fd};
pid_t child_pid = -1;
#ifdef GTEST_OS_QNX
// Obtains the current directory and sets it to be closed in the child
// process.
const int cwd_fd = open(".", O_RDONLY);
GTEST_DEATH_TEST_CHECK_(cwd_fd != -1);
GTEST_DEATH_TEST_CHECK_SYSCALL_(fcntl(cwd_fd, F_SETFD, FD_CLOEXEC));
// We need to execute the test program in the same environment where
// it was originally invoked. Therefore we change to the original
// working directory first.
const char* const original_dir =
UnitTest::GetInstance()->original_working_dir();
// We can safely call chdir() as it's a direct system call.
if (chdir(original_dir) != 0) {
DeathTestAbort(std::string("chdir(\"") + original_dir +
"\") failed: " + GetLastErrnoDescription());
return EXIT_FAILURE;
}
int fd_flags;
// Set close_fd to be closed after spawn.
GTEST_DEATH_TEST_CHECK_SYSCALL_(fd_flags = fcntl(close_fd, F_GETFD));
GTEST_DEATH_TEST_CHECK_SYSCALL_(
fcntl(close_fd, F_SETFD, fd_flags | FD_CLOEXEC));
struct inheritance inherit = {0};
// spawn is a system call.
child_pid = spawn(args.argv[0], 0, nullptr, &inherit, args.argv, environ);
// Restores the current working directory.
GTEST_DEATH_TEST_CHECK_(fchdir(cwd_fd) != -1);
GTEST_DEATH_TEST_CHECK_SYSCALL_(close(cwd_fd));
#else // GTEST_OS_QNX
#ifdef GTEST_OS_LINUX
// When a SIGPROF signal is received while fork() or clone() are executing,
// the process may hang. To avoid this, we ignore SIGPROF here and re-enable
// it after the call to fork()/clone() is complete.
struct sigaction saved_sigprof_action;
struct sigaction ignore_sigprof_action;
memset(&ignore_sigprof_action, 0, sizeof(ignore_sigprof_action));
sigemptyset(&ignore_sigprof_action.sa_mask);
ignore_sigprof_action.sa_handler = SIG_IGN;
GTEST_DEATH_TEST_CHECK_SYSCALL_(
sigaction(SIGPROF, &ignore_sigprof_action, &saved_sigprof_action));
#endif // GTEST_OS_LINUX
#if GTEST_HAS_CLONE
const bool use_fork = GTEST_FLAG_GET(death_test_use_fork);
if (!use_fork) {
static const bool stack_grows_down = StackGrowsDown();
const auto stack_size = static_cast<size_t>(getpagesize() * 2);
// MMAP_ANONYMOUS is not defined on Mac, so we use MAP_ANON instead.
void* const stack = mmap(nullptr, stack_size, PROT_READ | PROT_WRITE,
MAP_ANON | MAP_PRIVATE, -1, 0);
GTEST_DEATH_TEST_CHECK_(stack != MAP_FAILED);
// Maximum stack alignment in bytes: For a downward-growing stack, this
// amount is subtracted from size of the stack space to get an address
// that is within the stack space and is aligned on all systems we care
// about. As far as I know there is no ABI with stack alignment greater
// than 64. We assume stack and stack_size already have alignment of
// kMaxStackAlignment.
const size_t kMaxStackAlignment = 64;
void* const stack_top =
static_cast<char*>(stack) +
(stack_grows_down ? stack_size - kMaxStackAlignment : 0);
GTEST_DEATH_TEST_CHECK_(
static_cast<size_t>(stack_size) > kMaxStackAlignment &&
reinterpret_cast<uintptr_t>(stack_top) % kMaxStackAlignment == 0);
child_pid = clone(&ExecDeathTestChildMain, stack_top, SIGCHLD, &args);
GTEST_DEATH_TEST_CHECK_(munmap(stack, stack_size) != -1);
}
#else
const bool use_fork = true;
#endif // GTEST_HAS_CLONE
if (use_fork && (child_pid = fork()) == 0) {
_exit(ExecDeathTestChildMain(&args));
}
#endif // GTEST_OS_QNX
#ifdef GTEST_OS_LINUX
GTEST_DEATH_TEST_CHECK_SYSCALL_(
sigaction(SIGPROF, &saved_sigprof_action, nullptr));
#endif // GTEST_OS_LINUX
GTEST_DEATH_TEST_CHECK_(child_pid != -1);
return child_pid;
}
// The AssumeRole process for a fork-and-exec death test. It re-executes the
// main program from the beginning, setting the --gtest_filter
// and --gtest_internal_run_death_test flags to cause only the current
// death test to be re-run.
DeathTest::TestRole ExecDeathTest::AssumeRole() {
const UnitTestImpl* const impl = GetUnitTestImpl();
const InternalRunDeathTestFlag* const flag =
impl->internal_run_death_test_flag();
const TestInfo* const info = impl->current_test_info();
const int death_test_index = info->result()->death_test_count();
if (flag != nullptr) {
set_write_fd(flag->write_fd());
return EXECUTE_TEST;
}
int pipe_fd[2];
GTEST_DEATH_TEST_CHECK_(pipe(pipe_fd) != -1);
// Clear the close-on-exec flag on the write end of the pipe, lest
// it be closed when the child process does an exec:
GTEST_DEATH_TEST_CHECK_(fcntl(pipe_fd[1], F_SETFD, 0) != -1);
const std::string filter_flag = std::string("--") + GTEST_FLAG_PREFIX_ +
"filter=" + info->test_suite_name() + "." +
info->name();
const std::string internal_flag = std::string("--") + GTEST_FLAG_PREFIX_ +
"internal_run_death_test=" + file_ + "|" +
StreamableToString(line_) + "|" +
StreamableToString(death_test_index) + "|" +
StreamableToString(pipe_fd[1]);
std::vector<std::string> args = GetArgvsForDeathTestChildProcess();
args.push_back(filter_flag);
args.push_back(internal_flag);
DeathTest::set_last_death_test_message("");
CaptureStderr();
// See the comment in NoExecDeathTest::AssumeRole for why the next line
// is necessary.
FlushInfoLog();
std::unique_ptr<char*[]> argv = CreateArgvFromArgs(args);
const pid_t child_pid = ExecDeathTestSpawnChild(argv.get(), pipe_fd[0]);
GTEST_DEATH_TEST_CHECK_SYSCALL_(close(pipe_fd[1]));
set_child_pid(child_pid);
set_read_fd(pipe_fd[0]);
set_spawned(true);
return OVERSEE_TEST;
}
#endif // !GTEST_OS_WINDOWS
// Creates a concrete DeathTest-derived class that depends on the
// --gtest_death_test_style flag, and sets the pointer pointed to
// by the "test" argument to its address. If the test should be
// skipped, sets that pointer to NULL. Returns true, unless the
// flag is set to an invalid value.
bool DefaultDeathTestFactory::Create(const char* statement,
Matcher<const std::string&> matcher,
const char* file, int line,
DeathTest** test) {
UnitTestImpl* const impl = GetUnitTestImpl();
const InternalRunDeathTestFlag* const flag =
impl->internal_run_death_test_flag();
const int death_test_index =
impl->current_test_info()->increment_death_test_count();
if (flag != nullptr) {
if (death_test_index > flag->index()) {
DeathTest::set_last_death_test_message(
"Death test count (" + StreamableToString(death_test_index) +
") somehow exceeded expected maximum (" +
StreamableToString(flag->index()) + ")");
return false;
}
if (!(flag->file() == file && flag->line() == line &&
flag->index() == death_test_index)) {
*test = nullptr;
return true;
}
}
#ifdef GTEST_OS_WINDOWS
if (GTEST_FLAG_GET(death_test_style) == "threadsafe" ||
GTEST_FLAG_GET(death_test_style) == "fast") {
*test = new WindowsDeathTest(statement, std::move(matcher), file, line);
}
#elif defined(GTEST_OS_FUCHSIA)
if (GTEST_FLAG_GET(death_test_style) == "threadsafe" ||
GTEST_FLAG_GET(death_test_style) == "fast") {
*test = new FuchsiaDeathTest(statement, std::move(matcher), file, line);
}
#else
if (GTEST_FLAG_GET(death_test_style) == "threadsafe") {
*test = new ExecDeathTest(statement, std::move(matcher), file, line);
} else if (GTEST_FLAG_GET(death_test_style) == "fast") {
*test = new NoExecDeathTest(statement, std::move(matcher));
}
#endif // GTEST_OS_WINDOWS
else { // NOLINT - this is more readable than unbalanced brackets inside #if.
DeathTest::set_last_death_test_message("Unknown death test style \"" +
GTEST_FLAG_GET(death_test_style) +
"\" encountered");
return false;
}
return true;
}
#ifdef GTEST_OS_WINDOWS
// Recreates the pipe and event handles from the provided parameters,
// signals the event, and returns a file descriptor wrapped around the pipe
// handle. This function is called in the child process only.
static int GetStatusFileDescriptor(unsigned int parent_process_id,
size_t write_handle_as_size_t,
size_t event_handle_as_size_t) {
AutoHandle parent_process_handle(::OpenProcess(PROCESS_DUP_HANDLE,
FALSE, // Non-inheritable.
parent_process_id));
if (parent_process_handle.Get() == INVALID_HANDLE_VALUE) {
DeathTestAbort("Unable to open parent process " +
StreamableToString(parent_process_id));
}
GTEST_CHECK_(sizeof(HANDLE) <= sizeof(size_t));
const HANDLE write_handle = reinterpret_cast<HANDLE>(write_handle_as_size_t);
HANDLE dup_write_handle;
// The newly initialized handle is accessible only in the parent
// process. To obtain one accessible within the child, we need to use
// DuplicateHandle.
if (!::DuplicateHandle(parent_process_handle.Get(), write_handle,
::GetCurrentProcess(), &dup_write_handle,
0x0, // Requested privileges ignored since
// DUPLICATE_SAME_ACCESS is used.
FALSE, // Request non-inheritable handler.
DUPLICATE_SAME_ACCESS)) {
DeathTestAbort("Unable to duplicate the pipe handle " +
StreamableToString(write_handle_as_size_t) +
" from the parent process " +
StreamableToString(parent_process_id));
}
const HANDLE event_handle = reinterpret_cast<HANDLE>(event_handle_as_size_t);
HANDLE dup_event_handle;
if (!::DuplicateHandle(parent_process_handle.Get(), event_handle,
::GetCurrentProcess(), &dup_event_handle, 0x0, FALSE,
DUPLICATE_SAME_ACCESS)) {
DeathTestAbort("Unable to duplicate the event handle " +
StreamableToString(event_handle_as_size_t) +
" from the parent process " +
StreamableToString(parent_process_id));
}
const int write_fd =
::_open_osfhandle(reinterpret_cast<intptr_t>(dup_write_handle), O_APPEND);
if (write_fd == -1) {
DeathTestAbort("Unable to convert pipe handle " +
StreamableToString(write_handle_as_size_t) +
" to a file descriptor");
}
// Signals the parent that the write end of the pipe has been acquired
// so the parent can release its own write end.
::SetEvent(dup_event_handle);
return write_fd;
}
#endif // GTEST_OS_WINDOWS
// Returns a newly created InternalRunDeathTestFlag object with fields
// initialized from the GTEST_FLAG(internal_run_death_test) flag if
// the flag is specified; otherwise returns NULL.
InternalRunDeathTestFlag* ParseInternalRunDeathTestFlag() {
if (GTEST_FLAG_GET(internal_run_death_test).empty()) return nullptr;
// GTEST_HAS_DEATH_TEST implies that we have ::std::string, so we
// can use it here.
int line = -1;
int index = -1;
::std::vector< ::std::string> fields;
SplitString(GTEST_FLAG_GET(internal_run_death_test), '|', &fields);
int write_fd = -1;
#ifdef GTEST_OS_WINDOWS
unsigned int parent_process_id = 0;
size_t write_handle_as_size_t = 0;
size_t event_handle_as_size_t = 0;
if (fields.size() != 6 || !ParseNaturalNumber(fields[1], &line) ||
!ParseNaturalNumber(fields[2], &index) ||
!ParseNaturalNumber(fields[3], &parent_process_id) ||
!ParseNaturalNumber(fields[4], &write_handle_as_size_t) ||
!ParseNaturalNumber(fields[5], &event_handle_as_size_t)) {
DeathTestAbort("Bad --gtest_internal_run_death_test flag: " +
GTEST_FLAG_GET(internal_run_death_test));
}
write_fd = GetStatusFileDescriptor(parent_process_id, write_handle_as_size_t,
event_handle_as_size_t);
#elif defined(GTEST_OS_FUCHSIA)
if (fields.size() != 3 || !ParseNaturalNumber(fields[1], &line) ||
!ParseNaturalNumber(fields[2], &index)) {
DeathTestAbort("Bad --gtest_internal_run_death_test flag: " +
GTEST_FLAG_GET(internal_run_death_test));
}
#else
if (fields.size() != 4 || !ParseNaturalNumber(fields[1], &line) ||
!ParseNaturalNumber(fields[2], &index) ||
!ParseNaturalNumber(fields[3], &write_fd)) {
DeathTestAbort("Bad --gtest_internal_run_death_test flag: " +
GTEST_FLAG_GET(internal_run_death_test));
}
#endif // GTEST_OS_WINDOWS
return new InternalRunDeathTestFlag(fields[0], line, index, write_fd);
}
} // namespace internal
#endif // GTEST_HAS_DEATH_TEST
} // namespace testing