|  | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | 
|  | * All rights reserved. | 
|  | * | 
|  | * This package is an SSL implementation written | 
|  | * by Eric Young (eay@cryptsoft.com). | 
|  | * The implementation was written so as to conform with Netscapes SSL. | 
|  | * | 
|  | * This library is free for commercial and non-commercial use as long as | 
|  | * the following conditions are aheared to.  The following conditions | 
|  | * apply to all code found in this distribution, be it the RC4, RSA, | 
|  | * lhash, DES, etc., code; not just the SSL code.  The SSL documentation | 
|  | * included with this distribution is covered by the same copyright terms | 
|  | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 
|  | * | 
|  | * Copyright remains Eric Young's, and as such any Copyright notices in | 
|  | * the code are not to be removed. | 
|  | * If this package is used in a product, Eric Young should be given attribution | 
|  | * as the author of the parts of the library used. | 
|  | * This can be in the form of a textual message at program startup or | 
|  | * in documentation (online or textual) provided with the package. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * 3. All advertising materials mentioning features or use of this software | 
|  | *    must display the following acknowledgement: | 
|  | *    "This product includes cryptographic software written by | 
|  | *     Eric Young (eay@cryptsoft.com)" | 
|  | *    The word 'cryptographic' can be left out if the rouines from the library | 
|  | *    being used are not cryptographic related :-). | 
|  | * 4. If you include any Windows specific code (or a derivative thereof) from | 
|  | *    the apps directory (application code) you must include an acknowledgement: | 
|  | *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 
|  | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | 
|  | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
|  | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
|  | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
|  | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
|  | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
|  | * SUCH DAMAGE. | 
|  | * | 
|  | * The licence and distribution terms for any publically available version or | 
|  | * derivative of this code cannot be changed.  i.e. this code cannot simply be | 
|  | * copied and put under another distribution licence | 
|  | * [including the GNU Public Licence.] */ | 
|  |  | 
|  | #include <ctype.h> | 
|  | #include <limits.h> | 
|  | #include <string.h> | 
|  | #include <time.h> | 
|  |  | 
|  | #include <openssl/asn1.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/evp.h> | 
|  | #include <openssl/mem.h> | 
|  | #include <openssl/obj.h> | 
|  | #include <openssl/thread.h> | 
|  | #include <openssl/x509.h> | 
|  |  | 
|  | #include "../internal.h" | 
|  | #include "internal.h" | 
|  |  | 
|  | static CRYPTO_EX_DATA_CLASS g_ex_data_class = | 
|  | CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA; | 
|  |  | 
|  | // CRL score values | 
|  |  | 
|  | // No unhandled critical extensions | 
|  | #define CRL_SCORE_NOCRITICAL 0x100 | 
|  |  | 
|  | // certificate is within CRL scope | 
|  | #define CRL_SCORE_SCOPE 0x080 | 
|  |  | 
|  | // CRL times valid | 
|  | #define CRL_SCORE_TIME 0x040 | 
|  |  | 
|  | // Issuer name matches certificate | 
|  | #define CRL_SCORE_ISSUER_NAME 0x020 | 
|  |  | 
|  | // If this score or above CRL is probably valid | 
|  | #define CRL_SCORE_VALID \ | 
|  | (CRL_SCORE_NOCRITICAL | CRL_SCORE_TIME | CRL_SCORE_SCOPE) | 
|  |  | 
|  | // CRL issuer is certificate issuer | 
|  | #define CRL_SCORE_ISSUER_CERT 0x018 | 
|  |  | 
|  | // CRL issuer is on certificate path | 
|  | #define CRL_SCORE_SAME_PATH 0x008 | 
|  |  | 
|  | // CRL issuer matches CRL AKID | 
|  | #define CRL_SCORE_AKID 0x004 | 
|  |  | 
|  | static int null_callback(int ok, X509_STORE_CTX *e); | 
|  | static X509 *find_issuer(X509_STORE_CTX *ctx, STACK_OF(X509) *sk, X509 *x); | 
|  | static int check_chain_extensions(X509_STORE_CTX *ctx); | 
|  | static int check_name_constraints(X509_STORE_CTX *ctx); | 
|  | static int check_id(X509_STORE_CTX *ctx); | 
|  | static int check_trust(X509_STORE_CTX *ctx); | 
|  | static int check_revocation(X509_STORE_CTX *ctx); | 
|  | static int check_cert(X509_STORE_CTX *ctx); | 
|  | static int check_policy(X509_STORE_CTX *ctx); | 
|  |  | 
|  | static X509 *get_trusted_issuer(X509_STORE_CTX *ctx, X509 *x); | 
|  | static int get_crl_score(X509_STORE_CTX *ctx, X509 **pissuer, X509_CRL *crl, | 
|  | X509 *x); | 
|  | static int get_crl(X509_STORE_CTX *ctx, X509_CRL **pcrl, X509 *x); | 
|  | static int crl_akid_check(X509_STORE_CTX *ctx, X509_CRL *crl, X509 **pissuer, | 
|  | int *pcrl_score); | 
|  | static int crl_crldp_check(X509 *x, X509_CRL *crl, int crl_score); | 
|  | static int check_crl(X509_STORE_CTX *ctx, X509_CRL *crl); | 
|  | static int cert_crl(X509_STORE_CTX *ctx, X509_CRL *crl, X509 *x); | 
|  |  | 
|  | static int internal_verify(X509_STORE_CTX *ctx); | 
|  |  | 
|  | static int null_callback(int ok, X509_STORE_CTX *e) { return ok; } | 
|  |  | 
|  | // cert_self_signed checks if |x| is self-signed. If |x| is valid, it returns | 
|  | // one and sets |*out_is_self_signed| to the result. If |x| is invalid, it | 
|  | // returns zero. | 
|  | static int cert_self_signed(X509 *x, int *out_is_self_signed) { | 
|  | if (!x509v3_cache_extensions(x)) { | 
|  | return 0; | 
|  | } | 
|  | *out_is_self_signed = (x->ex_flags & EXFLAG_SS) != 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int call_verify_cb(int ok, X509_STORE_CTX *ctx) { | 
|  | ok = ctx->verify_cb(ok, ctx); | 
|  | // Historically, callbacks returning values like -1 would be treated as a mix | 
|  | // of success or failure. Insert that callers check correctly. | 
|  | // | 
|  | // TODO(davidben): Also use this wrapper to constrain which errors may be | 
|  | // suppressed, and ensure all |verify_cb| calls remember to fill in an error. | 
|  | BSSL_CHECK(ok == 0 || ok == 1); | 
|  | return ok; | 
|  | } | 
|  |  | 
|  | // Given a certificate try and find an exact match in the store | 
|  | static X509 *lookup_cert_match(X509_STORE_CTX *ctx, X509 *x) { | 
|  | STACK_OF(X509) *certs; | 
|  | X509 *xtmp = NULL; | 
|  | size_t i; | 
|  | // Lookup all certs with matching subject name | 
|  | certs = X509_STORE_CTX_get1_certs(ctx, X509_get_subject_name(x)); | 
|  | if (certs == NULL) { | 
|  | return NULL; | 
|  | } | 
|  | // Look for exact match | 
|  | for (i = 0; i < sk_X509_num(certs); i++) { | 
|  | xtmp = sk_X509_value(certs, i); | 
|  | if (!X509_cmp(xtmp, x)) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (i < sk_X509_num(certs)) { | 
|  | X509_up_ref(xtmp); | 
|  | } else { | 
|  | xtmp = NULL; | 
|  | } | 
|  | sk_X509_pop_free(certs, X509_free); | 
|  | return xtmp; | 
|  | } | 
|  |  | 
|  | int X509_verify_cert(X509_STORE_CTX *ctx) { | 
|  | X509 *chain_ss = NULL; | 
|  | int bad_chain = 0; | 
|  | X509_VERIFY_PARAM *param = ctx->param; | 
|  | int i, ok = 0; | 
|  | int j, retry, trust; | 
|  | STACK_OF(X509) *sktmp = NULL; | 
|  |  | 
|  | { | 
|  | if (ctx->cert == NULL) { | 
|  | OPENSSL_PUT_ERROR(X509, X509_R_NO_CERT_SET_FOR_US_TO_VERIFY); | 
|  | ctx->error = X509_V_ERR_INVALID_CALL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (ctx->chain != NULL) { | 
|  | // This X509_STORE_CTX has already been used to verify a cert. We | 
|  | // cannot do another one. | 
|  | OPENSSL_PUT_ERROR(X509, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
|  | ctx->error = X509_V_ERR_INVALID_CALL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (ctx->param->flags & | 
|  | (X509_V_FLAG_EXTENDED_CRL_SUPPORT | X509_V_FLAG_USE_DELTAS)) { | 
|  | // We do not support indirect or delta CRLs. The flags still exist for | 
|  | // compatibility with bindings libraries, but to ensure we do not | 
|  | // inadvertently skip a CRL check that the caller expects, fail closed. | 
|  | OPENSSL_PUT_ERROR(X509, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
|  | ctx->error = X509_V_ERR_INVALID_CALL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // first we make sure the chain we are going to build is present and that | 
|  | // the first entry is in place | 
|  | ctx->chain = sk_X509_new_null(); | 
|  | if (ctx->chain == NULL || !sk_X509_push(ctx->chain, ctx->cert)) { | 
|  | ctx->error = X509_V_ERR_OUT_OF_MEM; | 
|  | goto end; | 
|  | } | 
|  | X509_up_ref(ctx->cert); | 
|  | ctx->last_untrusted = 1; | 
|  |  | 
|  | // We use a temporary STACK so we can chop and hack at it. | 
|  | if (ctx->untrusted != NULL && | 
|  | (sktmp = sk_X509_dup(ctx->untrusted)) == NULL) { | 
|  | ctx->error = X509_V_ERR_OUT_OF_MEM; | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | int num = (int)sk_X509_num(ctx->chain); | 
|  | X509 *x = sk_X509_value(ctx->chain, num - 1); | 
|  | // |param->depth| does not include the leaf certificate or the trust anchor, | 
|  | // so the maximum size is 2 more. | 
|  | int max_chain = param->depth >= INT_MAX - 2 ? INT_MAX : param->depth + 2; | 
|  |  | 
|  | for (;;) { | 
|  | if (num >= max_chain) { | 
|  | // FIXME: If this happens, we should take note of it and, if | 
|  | // appropriate, use the X509_V_ERR_CERT_CHAIN_TOO_LONG error code later. | 
|  | break; | 
|  | } | 
|  |  | 
|  | int is_self_signed; | 
|  | if (!cert_self_signed(x, &is_self_signed)) { | 
|  | ctx->error = X509_V_ERR_INVALID_EXTENSION; | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | // If we are self signed, we break | 
|  | if (is_self_signed) { | 
|  | break; | 
|  | } | 
|  | // If asked see if we can find issuer in trusted store first | 
|  | if (ctx->param->flags & X509_V_FLAG_TRUSTED_FIRST) { | 
|  | X509 *issuer = get_trusted_issuer(ctx, x); | 
|  | if (issuer != NULL) { | 
|  | // Free the certificate. It will be picked up again later. | 
|  | X509_free(issuer); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we were passed a cert chain, use it first | 
|  | if (sktmp != NULL) { | 
|  | X509 *issuer = find_issuer(ctx, sktmp, x); | 
|  | if (issuer != NULL) { | 
|  | if (!sk_X509_push(ctx->chain, issuer)) { | 
|  | ctx->error = X509_V_ERR_OUT_OF_MEM; | 
|  | goto end; | 
|  | } | 
|  | X509_up_ref(issuer); | 
|  | (void)sk_X509_delete_ptr(sktmp, issuer); | 
|  | ctx->last_untrusted++; | 
|  | x = issuer; | 
|  | num++; | 
|  | // reparse the full chain for the next one | 
|  | continue; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Remember how many untrusted certs we have | 
|  | j = num; | 
|  | // at this point, chain should contain a list of untrusted certificates. | 
|  | // We now need to add at least one trusted one, if possible, otherwise we | 
|  | // complain. | 
|  |  | 
|  | do { | 
|  | // Examine last certificate in chain and see if it is self signed. | 
|  | i = (int)sk_X509_num(ctx->chain); | 
|  | x = sk_X509_value(ctx->chain, i - 1); | 
|  |  | 
|  | int is_self_signed; | 
|  | if (!cert_self_signed(x, &is_self_signed)) { | 
|  | ctx->error = X509_V_ERR_INVALID_EXTENSION; | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | if (is_self_signed) { | 
|  | // we have a self signed certificate | 
|  | if (sk_X509_num(ctx->chain) == 1) { | 
|  | // We have a single self signed certificate: see if we can | 
|  | // find it in the store. We must have an exact match to avoid | 
|  | // possible impersonation. | 
|  | X509 *issuer = get_trusted_issuer(ctx, x); | 
|  | if (issuer == NULL || X509_cmp(x, issuer) != 0) { | 
|  | X509_free(issuer); | 
|  | ctx->error = X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT; | 
|  | ctx->current_cert = x; | 
|  | ctx->error_depth = i - 1; | 
|  | bad_chain = 1; | 
|  | if (!call_verify_cb(0, ctx)) { | 
|  | goto end; | 
|  | } | 
|  | } else { | 
|  | // We have a match: replace certificate with store | 
|  | // version so we get any trust settings. | 
|  | X509_free(x); | 
|  | x = issuer; | 
|  | (void)sk_X509_set(ctx->chain, i - 1, x); | 
|  | ctx->last_untrusted = 0; | 
|  | } | 
|  | } else { | 
|  | // extract and save self signed certificate for later use | 
|  | chain_ss = sk_X509_pop(ctx->chain); | 
|  | ctx->last_untrusted--; | 
|  | num--; | 
|  | j--; | 
|  | x = sk_X509_value(ctx->chain, num - 1); | 
|  | } | 
|  | } | 
|  | // We now lookup certs from the certificate store | 
|  | for (;;) { | 
|  | if (num >= max_chain) { | 
|  | // FIXME: If this happens, we should take note of it and, if | 
|  | // appropriate, use the X509_V_ERR_CERT_CHAIN_TOO_LONG error code | 
|  | // later. | 
|  | break; | 
|  | } | 
|  | if (!cert_self_signed(x, &is_self_signed)) { | 
|  | ctx->error = X509_V_ERR_INVALID_EXTENSION; | 
|  | goto end; | 
|  | } | 
|  | // If we are self signed, we break | 
|  | if (is_self_signed) { | 
|  | break; | 
|  | } | 
|  | X509 *issuer = get_trusted_issuer(ctx, x); | 
|  | if (issuer == NULL) { | 
|  | break; | 
|  | } | 
|  | x = issuer; | 
|  | if (!sk_X509_push(ctx->chain, x)) { | 
|  | X509_free(issuer); | 
|  | ctx->error = X509_V_ERR_OUT_OF_MEM; | 
|  | goto end; | 
|  | } | 
|  | num++; | 
|  | } | 
|  |  | 
|  | // we now have our chain, lets check it... | 
|  | trust = check_trust(ctx); | 
|  |  | 
|  | // If explicitly rejected error | 
|  | if (trust == X509_TRUST_REJECTED) { | 
|  | goto end; | 
|  | } | 
|  | // If it's not explicitly trusted then check if there is an alternative | 
|  | // chain that could be used. We only do this if we haven't already | 
|  | // checked via TRUSTED_FIRST and the user hasn't switched off alternate | 
|  | // chain checking | 
|  | retry = 0; | 
|  | if (trust != X509_TRUST_TRUSTED && | 
|  | !(ctx->param->flags & X509_V_FLAG_TRUSTED_FIRST) && | 
|  | !(ctx->param->flags & X509_V_FLAG_NO_ALT_CHAINS)) { | 
|  | while (j-- > 1) { | 
|  | X509 *issuer = | 
|  | get_trusted_issuer(ctx, sk_X509_value(ctx->chain, j - 1)); | 
|  | // Check if we found an alternate chain | 
|  | if (issuer != NULL) { | 
|  | // Free up the found cert we'll add it again later | 
|  | X509_free(issuer); | 
|  |  | 
|  | // Dump all the certs above this point - we've found an | 
|  | // alternate chain | 
|  | while (num > j) { | 
|  | X509_free(sk_X509_pop(ctx->chain)); | 
|  | num--; | 
|  | } | 
|  | ctx->last_untrusted = (int)sk_X509_num(ctx->chain); | 
|  | retry = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } while (retry); | 
|  |  | 
|  | // If not explicitly trusted then indicate error unless it's a single | 
|  | // self signed certificate in which case we've indicated an error already | 
|  | // and set bad_chain == 1 | 
|  | if (trust != X509_TRUST_TRUSTED && !bad_chain) { | 
|  | if (chain_ss == NULL || | 
|  | !x509_check_issued_with_callback(ctx, x, chain_ss)) { | 
|  | if (ctx->last_untrusted >= num) { | 
|  | ctx->error = X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY; | 
|  | } else { | 
|  | ctx->error = X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT; | 
|  | } | 
|  | ctx->current_cert = x; | 
|  | } else { | 
|  | if (!sk_X509_push(ctx->chain, chain_ss)) { | 
|  | ctx->error = X509_V_ERR_OUT_OF_MEM; | 
|  | goto end; | 
|  | } | 
|  | num++; | 
|  | ctx->last_untrusted = num; | 
|  | ctx->current_cert = chain_ss; | 
|  | ctx->error = X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN; | 
|  | chain_ss = NULL; | 
|  | } | 
|  |  | 
|  | ctx->error_depth = num - 1; | 
|  | bad_chain = 1; | 
|  | if (!call_verify_cb(0, ctx)) { | 
|  | goto end; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We have the chain complete: now we need to check its purpose | 
|  | if (!check_chain_extensions(ctx) ||  // | 
|  | !check_id(ctx) || | 
|  | // We check revocation status after copying parameters because they may | 
|  | // be needed for CRL signature verification. | 
|  | !check_revocation(ctx) ||  // | 
|  | !internal_verify(ctx) ||   // | 
|  | !check_name_constraints(ctx) || | 
|  | // TODO(davidben): Does |check_policy| still need to be conditioned on | 
|  | // |!bad_chain|? DoS concerns have been resolved. | 
|  | (!bad_chain && !check_policy(ctx))) { | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | ok = 1; | 
|  | } | 
|  |  | 
|  | end: | 
|  | sk_X509_free(sktmp); | 
|  | X509_free(chain_ss); | 
|  |  | 
|  | // Safety net, error returns must set ctx->error | 
|  | if (!ok && ctx->error == X509_V_OK) { | 
|  | ctx->error = X509_V_ERR_UNSPECIFIED; | 
|  | } | 
|  | return ok; | 
|  | } | 
|  |  | 
|  | // Given a STACK_OF(X509) find the issuer of cert (if any) | 
|  |  | 
|  | static X509 *find_issuer(X509_STORE_CTX *ctx, STACK_OF(X509) *sk, X509 *x) { | 
|  | size_t i; | 
|  | X509 *issuer; | 
|  | for (i = 0; i < sk_X509_num(sk); i++) { | 
|  | issuer = sk_X509_value(sk, i); | 
|  | if (x509_check_issued_with_callback(ctx, x, issuer)) { | 
|  | return issuer; | 
|  | } | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | // Given a possible certificate and issuer check them | 
|  |  | 
|  | int x509_check_issued_with_callback(X509_STORE_CTX *ctx, X509 *x, | 
|  | X509 *issuer) { | 
|  | int ret; | 
|  | ret = X509_check_issued(issuer, x); | 
|  | if (ret == X509_V_OK) { | 
|  | return 1; | 
|  | } | 
|  | // If we haven't asked for issuer errors don't set ctx | 
|  | if (!(ctx->param->flags & X509_V_FLAG_CB_ISSUER_CHECK)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ctx->error = ret; | 
|  | ctx->current_cert = x; | 
|  | return call_verify_cb(0, ctx); | 
|  | } | 
|  |  | 
|  | static X509 *get_trusted_issuer(X509_STORE_CTX *ctx, X509 *x) { | 
|  | X509 *issuer; | 
|  | if (ctx->trusted_stack != NULL) { | 
|  | // Ignore the store and use the configured stack instead. | 
|  | issuer = find_issuer(ctx, ctx->trusted_stack, x); | 
|  | if (issuer != NULL) { | 
|  | X509_up_ref(issuer); | 
|  | } | 
|  | return issuer; | 
|  | } | 
|  |  | 
|  | if (!X509_STORE_CTX_get1_issuer(&issuer, ctx, x)) { | 
|  | return NULL; | 
|  | } | 
|  | return issuer; | 
|  | } | 
|  |  | 
|  | // Check a certificate chains extensions for consistency with the supplied | 
|  | // purpose | 
|  |  | 
|  | static int check_chain_extensions(X509_STORE_CTX *ctx) { | 
|  | int plen = 0; | 
|  | int purpose = ctx->param->purpose; | 
|  |  | 
|  | // Check all untrusted certificates | 
|  | for (int i = 0; i < ctx->last_untrusted; i++) { | 
|  | X509 *x = sk_X509_value(ctx->chain, i); | 
|  | if (!(ctx->param->flags & X509_V_FLAG_IGNORE_CRITICAL) && | 
|  | (x->ex_flags & EXFLAG_CRITICAL)) { | 
|  | ctx->error = X509_V_ERR_UNHANDLED_CRITICAL_EXTENSION; | 
|  | ctx->error_depth = i; | 
|  | ctx->current_cert = x; | 
|  | if (!call_verify_cb(0, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | int must_be_ca = i > 0; | 
|  | if (must_be_ca && !X509_check_ca(x)) { | 
|  | ctx->error = X509_V_ERR_INVALID_CA; | 
|  | ctx->error_depth = i; | 
|  | ctx->current_cert = x; | 
|  | if (!call_verify_cb(0, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | if (ctx->param->purpose > 0 && | 
|  | X509_check_purpose(x, purpose, must_be_ca) != 1) { | 
|  | ctx->error = X509_V_ERR_INVALID_PURPOSE; | 
|  | ctx->error_depth = i; | 
|  | ctx->current_cert = x; | 
|  | if (!call_verify_cb(0, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | // Check pathlen if not self issued | 
|  | if (i > 1 && !(x->ex_flags & EXFLAG_SI) && x->ex_pathlen != -1 && | 
|  | plen > x->ex_pathlen + 1) { | 
|  | ctx->error = X509_V_ERR_PATH_LENGTH_EXCEEDED; | 
|  | ctx->error_depth = i; | 
|  | ctx->current_cert = x; | 
|  | if (!call_verify_cb(0, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | // Increment path length if not self issued | 
|  | if (!(x->ex_flags & EXFLAG_SI)) { | 
|  | plen++; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int reject_dns_name_in_common_name(X509 *x509) { | 
|  | const X509_NAME *name = X509_get_subject_name(x509); | 
|  | int i = -1; | 
|  | for (;;) { | 
|  | i = X509_NAME_get_index_by_NID(name, NID_commonName, i); | 
|  | if (i == -1) { | 
|  | return X509_V_OK; | 
|  | } | 
|  |  | 
|  | const X509_NAME_ENTRY *entry = X509_NAME_get_entry(name, i); | 
|  | const ASN1_STRING *common_name = X509_NAME_ENTRY_get_data(entry); | 
|  | unsigned char *idval; | 
|  | int idlen = ASN1_STRING_to_UTF8(&idval, common_name); | 
|  | if (idlen < 0) { | 
|  | return X509_V_ERR_OUT_OF_MEM; | 
|  | } | 
|  | // Only process attributes that look like host names. Note it is | 
|  | // important that this check be mirrored in |X509_check_host|. | 
|  | int looks_like_dns = x509v3_looks_like_dns_name(idval, (size_t)idlen); | 
|  | OPENSSL_free(idval); | 
|  | if (looks_like_dns) { | 
|  | return X509_V_ERR_NAME_CONSTRAINTS_WITHOUT_SANS; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int check_name_constraints(X509_STORE_CTX *ctx) { | 
|  | int i, j, rv; | 
|  | int has_name_constraints = 0; | 
|  | // Check name constraints for all certificates | 
|  | for (i = (int)sk_X509_num(ctx->chain) - 1; i >= 0; i--) { | 
|  | X509 *x = sk_X509_value(ctx->chain, i); | 
|  | // Ignore self issued certs unless last in chain | 
|  | if (i && (x->ex_flags & EXFLAG_SI)) { | 
|  | continue; | 
|  | } | 
|  | // Check against constraints for all certificates higher in chain | 
|  | // including trust anchor. Trust anchor not strictly speaking needed | 
|  | // but if it includes constraints it is to be assumed it expects them | 
|  | // to be obeyed. | 
|  | for (j = (int)sk_X509_num(ctx->chain) - 1; j > i; j--) { | 
|  | NAME_CONSTRAINTS *nc = sk_X509_value(ctx->chain, j)->nc; | 
|  | if (nc) { | 
|  | has_name_constraints = 1; | 
|  | rv = NAME_CONSTRAINTS_check(x, nc); | 
|  | switch (rv) { | 
|  | case X509_V_OK: | 
|  | continue; | 
|  | case X509_V_ERR_OUT_OF_MEM: | 
|  | ctx->error = rv; | 
|  | return 0; | 
|  | default: | 
|  | ctx->error = rv; | 
|  | ctx->error_depth = i; | 
|  | ctx->current_cert = x; | 
|  | if (!call_verify_cb(0, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Name constraints do not match against the common name, but | 
|  | // |X509_check_host| still implements the legacy behavior where, on | 
|  | // certificates lacking a SAN list, DNS-like names in the common name are | 
|  | // checked instead. | 
|  | // | 
|  | // While we could apply the name constraints to the common name, name | 
|  | // constraints are rare enough that can hold such certificates to a higher | 
|  | // standard. Note this does not make "DNS-like" heuristic failures any | 
|  | // worse. A decorative common-name misidentified as a DNS name would fail | 
|  | // the name constraint anyway. | 
|  | X509 *leaf = sk_X509_value(ctx->chain, 0); | 
|  | if (has_name_constraints && leaf->altname == NULL) { | 
|  | rv = reject_dns_name_in_common_name(leaf); | 
|  | switch (rv) { | 
|  | case X509_V_OK: | 
|  | break; | 
|  | case X509_V_ERR_OUT_OF_MEM: | 
|  | ctx->error = rv; | 
|  | return 0; | 
|  | default: | 
|  | ctx->error = rv; | 
|  | ctx->error_depth = i; | 
|  | ctx->current_cert = leaf; | 
|  | if (!call_verify_cb(0, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int check_id_error(X509_STORE_CTX *ctx, int errcode) { | 
|  | ctx->error = errcode; | 
|  | ctx->current_cert = ctx->cert; | 
|  | ctx->error_depth = 0; | 
|  | return call_verify_cb(0, ctx); | 
|  | } | 
|  |  | 
|  | static int check_hosts(X509 *x, X509_VERIFY_PARAM *param) { | 
|  | size_t i; | 
|  | size_t n = sk_OPENSSL_STRING_num(param->hosts); | 
|  | char *name; | 
|  |  | 
|  | for (i = 0; i < n; ++i) { | 
|  | name = sk_OPENSSL_STRING_value(param->hosts, i); | 
|  | if (X509_check_host(x, name, strlen(name), param->hostflags, NULL) > 0) { | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | return n == 0; | 
|  | } | 
|  |  | 
|  | static int check_id(X509_STORE_CTX *ctx) { | 
|  | X509_VERIFY_PARAM *vpm = ctx->param; | 
|  | X509 *x = ctx->cert; | 
|  | if (vpm->poison) { | 
|  | if (!check_id_error(ctx, X509_V_ERR_INVALID_CALL)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | if (vpm->hosts && check_hosts(x, vpm) <= 0) { | 
|  | if (!check_id_error(ctx, X509_V_ERR_HOSTNAME_MISMATCH)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | if (vpm->email && X509_check_email(x, vpm->email, vpm->emaillen, 0) <= 0) { | 
|  | if (!check_id_error(ctx, X509_V_ERR_EMAIL_MISMATCH)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | if (vpm->ip && X509_check_ip(x, vpm->ip, vpm->iplen, 0) <= 0) { | 
|  | if (!check_id_error(ctx, X509_V_ERR_IP_ADDRESS_MISMATCH)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int check_trust(X509_STORE_CTX *ctx) { | 
|  | X509 *x = NULL; | 
|  | // Check all trusted certificates in chain | 
|  | for (size_t i = ctx->last_untrusted; i < sk_X509_num(ctx->chain); i++) { | 
|  | x = sk_X509_value(ctx->chain, i); | 
|  | int trust = X509_check_trust(x, ctx->param->trust, 0); | 
|  | // If explicitly trusted return trusted | 
|  | if (trust == X509_TRUST_TRUSTED) { | 
|  | return X509_TRUST_TRUSTED; | 
|  | } | 
|  | // If explicitly rejected notify callback and reject if not | 
|  | // overridden. | 
|  | if (trust == X509_TRUST_REJECTED) { | 
|  | ctx->error_depth = (int)i; | 
|  | ctx->current_cert = x; | 
|  | ctx->error = X509_V_ERR_CERT_REJECTED; | 
|  | if (!call_verify_cb(0, ctx)) { | 
|  | return X509_TRUST_REJECTED; | 
|  | } | 
|  | } | 
|  | } | 
|  | // If we accept partial chains and have at least one trusted certificate | 
|  | // return success. | 
|  | if (ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN) { | 
|  | X509 *mx; | 
|  | if (ctx->last_untrusted < (int)sk_X509_num(ctx->chain)) { | 
|  | return X509_TRUST_TRUSTED; | 
|  | } | 
|  | x = sk_X509_value(ctx->chain, 0); | 
|  | mx = lookup_cert_match(ctx, x); | 
|  | if (mx) { | 
|  | (void)sk_X509_set(ctx->chain, 0, mx); | 
|  | X509_free(x); | 
|  | ctx->last_untrusted = 0; | 
|  | return X509_TRUST_TRUSTED; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If no trusted certs in chain at all return untrusted and allow | 
|  | // standard (no issuer cert) etc errors to be indicated. | 
|  | return X509_TRUST_UNTRUSTED; | 
|  | } | 
|  |  | 
|  | static int check_revocation(X509_STORE_CTX *ctx) { | 
|  | if (!(ctx->param->flags & X509_V_FLAG_CRL_CHECK)) { | 
|  | return 1; | 
|  | } | 
|  | int last; | 
|  | if (ctx->param->flags & X509_V_FLAG_CRL_CHECK_ALL) { | 
|  | last = (int)sk_X509_num(ctx->chain) - 1; | 
|  | } else { | 
|  | last = 0; | 
|  | } | 
|  | for (int i = 0; i <= last; i++) { | 
|  | ctx->error_depth = i; | 
|  | if (!check_cert(ctx)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int check_cert(X509_STORE_CTX *ctx) { | 
|  | X509_CRL *crl = NULL; | 
|  | int ok = 0, cnum = ctx->error_depth; | 
|  | X509 *x = sk_X509_value(ctx->chain, cnum); | 
|  | ctx->current_cert = x; | 
|  | ctx->current_crl_issuer = NULL; | 
|  | ctx->current_crl_score = 0; | 
|  |  | 
|  | // Try to retrieve the relevant CRL. Note that |get_crl| sets | 
|  | // |current_crl_issuer| and |current_crl_score|, which |check_crl| then reads. | 
|  | // | 
|  | // TODO(davidben): The awkward internal calling convention is a historical | 
|  | // artifact of when these functions were user-overridable callbacks, even | 
|  | // though there was no way to set them correctly. These callbacks have since | 
|  | // been removed, so we can pass input and output parameters more directly. | 
|  | if (!get_crl(ctx, &crl, x)) { | 
|  | ctx->error = X509_V_ERR_UNABLE_TO_GET_CRL; | 
|  | ok = call_verify_cb(0, ctx); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ctx->current_crl = crl; | 
|  | if (!check_crl(ctx, crl) ||  // | 
|  | !cert_crl(ctx, crl, x)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ok = 1; | 
|  |  | 
|  | err: | 
|  | X509_CRL_free(crl); | 
|  | ctx->current_crl = NULL; | 
|  | return ok; | 
|  | } | 
|  |  | 
|  | // Check CRL times against values in X509_STORE_CTX | 
|  | static int check_crl_time(X509_STORE_CTX *ctx, X509_CRL *crl, int notify) { | 
|  | if (ctx->param->flags & X509_V_FLAG_NO_CHECK_TIME) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (notify) { | 
|  | ctx->current_crl = crl; | 
|  | } | 
|  | int64_t ptime; | 
|  | if (ctx->param->flags & X509_V_FLAG_USE_CHECK_TIME) { | 
|  | ptime = ctx->param->check_time; | 
|  | } else { | 
|  | ptime = time(NULL); | 
|  | } | 
|  |  | 
|  | int i = X509_cmp_time_posix(X509_CRL_get0_lastUpdate(crl), ptime); | 
|  | if (i == 0) { | 
|  | if (!notify) { | 
|  | return 0; | 
|  | } | 
|  | ctx->error = X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD; | 
|  | if (!call_verify_cb(0, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (i > 0) { | 
|  | if (!notify) { | 
|  | return 0; | 
|  | } | 
|  | ctx->error = X509_V_ERR_CRL_NOT_YET_VALID; | 
|  | if (!call_verify_cb(0, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (X509_CRL_get0_nextUpdate(crl)) { | 
|  | i = X509_cmp_time_posix(X509_CRL_get0_nextUpdate(crl), ptime); | 
|  |  | 
|  | if (i == 0) { | 
|  | if (!notify) { | 
|  | return 0; | 
|  | } | 
|  | ctx->error = X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD; | 
|  | if (!call_verify_cb(0, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | if (i < 0) { | 
|  | if (!notify) { | 
|  | return 0; | 
|  | } | 
|  | ctx->error = X509_V_ERR_CRL_HAS_EXPIRED; | 
|  | if (!call_verify_cb(0, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (notify) { | 
|  | ctx->current_crl = NULL; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int get_crl_sk(X509_STORE_CTX *ctx, X509_CRL **pcrl, X509 **pissuer, | 
|  | int *pscore, STACK_OF(X509_CRL) *crls) { | 
|  | int crl_score, best_score = *pscore; | 
|  | X509 *x = ctx->current_cert; | 
|  | X509_CRL *best_crl = NULL; | 
|  | X509 *crl_issuer = NULL, *best_crl_issuer = NULL; | 
|  |  | 
|  | for (size_t i = 0; i < sk_X509_CRL_num(crls); i++) { | 
|  | X509_CRL *crl = sk_X509_CRL_value(crls, i); | 
|  | crl_score = get_crl_score(ctx, &crl_issuer, crl, x); | 
|  | if (crl_score < best_score || crl_score == 0) { | 
|  | continue; | 
|  | } | 
|  | // If current CRL is equivalent use it if it is newer | 
|  | if (crl_score == best_score && best_crl != NULL) { | 
|  | int day, sec; | 
|  | if (ASN1_TIME_diff(&day, &sec, X509_CRL_get0_lastUpdate(best_crl), | 
|  | X509_CRL_get0_lastUpdate(crl)) == 0) { | 
|  | continue; | 
|  | } | 
|  | // ASN1_TIME_diff never returns inconsistent signs for |day| | 
|  | // and |sec|. | 
|  | if (day <= 0 && sec <= 0) { | 
|  | continue; | 
|  | } | 
|  | } | 
|  | best_crl = crl; | 
|  | best_crl_issuer = crl_issuer; | 
|  | best_score = crl_score; | 
|  | } | 
|  |  | 
|  | if (best_crl) { | 
|  | if (*pcrl) { | 
|  | X509_CRL_free(*pcrl); | 
|  | } | 
|  | *pcrl = best_crl; | 
|  | *pissuer = best_crl_issuer; | 
|  | *pscore = best_score; | 
|  | X509_CRL_up_ref(best_crl); | 
|  | } | 
|  |  | 
|  | if (best_score >= CRL_SCORE_VALID) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // For a given CRL return how suitable it is for the supplied certificate | 
|  | // 'x'. The return value is a mask of several criteria. If the issuer is not | 
|  | // the certificate issuer this is returned in *pissuer. | 
|  | static int get_crl_score(X509_STORE_CTX *ctx, X509 **pissuer, X509_CRL *crl, | 
|  | X509 *x) { | 
|  | int crl_score = 0; | 
|  |  | 
|  | // First see if we can reject CRL straight away | 
|  |  | 
|  | // Invalid IDP cannot be processed | 
|  | if (crl->idp_flags & IDP_INVALID) { | 
|  | return 0; | 
|  | } | 
|  | // Reason codes and indirect CRLs are not supported. | 
|  | if (crl->idp_flags & (IDP_INDIRECT | IDP_REASONS)) { | 
|  | return 0; | 
|  | } | 
|  | // We do not support indirect CRLs, so the issuer names must match. | 
|  | if (X509_NAME_cmp(X509_get_issuer_name(x), X509_CRL_get_issuer(crl))) { | 
|  | return 0; | 
|  | } | 
|  | crl_score |= CRL_SCORE_ISSUER_NAME; | 
|  |  | 
|  | if (!(crl->flags & EXFLAG_CRITICAL)) { | 
|  | crl_score |= CRL_SCORE_NOCRITICAL; | 
|  | } | 
|  |  | 
|  | // Check expiry | 
|  | if (check_crl_time(ctx, crl, 0)) { | 
|  | crl_score |= CRL_SCORE_TIME; | 
|  | } | 
|  |  | 
|  | // Check authority key ID and locate certificate issuer | 
|  | if (!crl_akid_check(ctx, crl, pissuer, &crl_score)) { | 
|  | // If we can't locate certificate issuer at this point forget it | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Check cert for matching CRL distribution points | 
|  | if (crl_crldp_check(x, crl, crl_score)) { | 
|  | crl_score |= CRL_SCORE_SCOPE; | 
|  | } | 
|  |  | 
|  | return crl_score; | 
|  | } | 
|  |  | 
|  | static int crl_akid_check(X509_STORE_CTX *ctx, X509_CRL *crl, X509 **pissuer, | 
|  | int *pcrl_score) { | 
|  | X509 *crl_issuer = NULL; | 
|  | X509_NAME *cnm = X509_CRL_get_issuer(crl); | 
|  | int cidx = ctx->error_depth; | 
|  |  | 
|  | if ((size_t)cidx != sk_X509_num(ctx->chain) - 1) { | 
|  | cidx++; | 
|  | } | 
|  |  | 
|  | crl_issuer = sk_X509_value(ctx->chain, cidx); | 
|  |  | 
|  | if (X509_check_akid(crl_issuer, crl->akid) == X509_V_OK) { | 
|  | *pcrl_score |= CRL_SCORE_AKID | CRL_SCORE_ISSUER_CERT; | 
|  | *pissuer = crl_issuer; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | for (cidx++; cidx < (int)sk_X509_num(ctx->chain); cidx++) { | 
|  | crl_issuer = sk_X509_value(ctx->chain, cidx); | 
|  | if (X509_NAME_cmp(X509_get_subject_name(crl_issuer), cnm)) { | 
|  | continue; | 
|  | } | 
|  | if (X509_check_akid(crl_issuer, crl->akid) == X509_V_OK) { | 
|  | *pcrl_score |= CRL_SCORE_AKID | CRL_SCORE_SAME_PATH; | 
|  | *pissuer = crl_issuer; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Check for match between two dist point names: three separate cases. 1. | 
|  | // Both are relative names and compare X509_NAME types. 2. One full, one | 
|  | // relative. Compare X509_NAME to GENERAL_NAMES. 3. Both are full names and | 
|  | // compare two GENERAL_NAMES. 4. One is NULL: automatic match. | 
|  | static int idp_check_dp(DIST_POINT_NAME *a, DIST_POINT_NAME *b) { | 
|  | X509_NAME *nm = NULL; | 
|  | GENERAL_NAMES *gens = NULL; | 
|  | GENERAL_NAME *gena, *genb; | 
|  | size_t i, j; | 
|  | if (!a || !b) { | 
|  | return 1; | 
|  | } | 
|  | if (a->type == 1) { | 
|  | if (!a->dpname) { | 
|  | return 0; | 
|  | } | 
|  | // Case 1: two X509_NAME | 
|  | if (b->type == 1) { | 
|  | if (!b->dpname) { | 
|  | return 0; | 
|  | } | 
|  | if (!X509_NAME_cmp(a->dpname, b->dpname)) { | 
|  | return 1; | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | // Case 2: set name and GENERAL_NAMES appropriately | 
|  | nm = a->dpname; | 
|  | gens = b->name.fullname; | 
|  | } else if (b->type == 1) { | 
|  | if (!b->dpname) { | 
|  | return 0; | 
|  | } | 
|  | // Case 2: set name and GENERAL_NAMES appropriately | 
|  | gens = a->name.fullname; | 
|  | nm = b->dpname; | 
|  | } | 
|  |  | 
|  | // Handle case 2 with one GENERAL_NAMES and one X509_NAME | 
|  | if (nm) { | 
|  | for (i = 0; i < sk_GENERAL_NAME_num(gens); i++) { | 
|  | gena = sk_GENERAL_NAME_value(gens, i); | 
|  | if (gena->type != GEN_DIRNAME) { | 
|  | continue; | 
|  | } | 
|  | if (!X509_NAME_cmp(nm, gena->d.directoryName)) { | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Else case 3: two GENERAL_NAMES | 
|  |  | 
|  | for (i = 0; i < sk_GENERAL_NAME_num(a->name.fullname); i++) { | 
|  | gena = sk_GENERAL_NAME_value(a->name.fullname, i); | 
|  | for (j = 0; j < sk_GENERAL_NAME_num(b->name.fullname); j++) { | 
|  | genb = sk_GENERAL_NAME_value(b->name.fullname, j); | 
|  | if (!GENERAL_NAME_cmp(gena, genb)) { | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Check CRLDP and IDP | 
|  | static int crl_crldp_check(X509 *x, X509_CRL *crl, int crl_score) { | 
|  | if (crl->idp_flags & IDP_ONLYATTR) { | 
|  | return 0; | 
|  | } | 
|  | if (x->ex_flags & EXFLAG_CA) { | 
|  | if (crl->idp_flags & IDP_ONLYUSER) { | 
|  | return 0; | 
|  | } | 
|  | } else { | 
|  | if (crl->idp_flags & IDP_ONLYCA) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | for (size_t i = 0; i < sk_DIST_POINT_num(x->crldp); i++) { | 
|  | DIST_POINT *dp = sk_DIST_POINT_value(x->crldp, i); | 
|  | // Skip distribution points with a reasons field or a CRL issuer: | 
|  | // | 
|  | // We do not support CRLs partitioned by reason code. RFC 5280 requires CAs | 
|  | // include at least one DistributionPoint that covers all reasons. | 
|  | // | 
|  | // We also do not support indirect CRLs, and a CRL issuer can only match | 
|  | // indirect CRLs (RFC 5280, section 6.3.3, step b.1). | 
|  | // support. | 
|  | if (dp->reasons != NULL && dp->CRLissuer != NULL && | 
|  | (!crl->idp || idp_check_dp(dp->distpoint, crl->idp->distpoint))) { | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the CRL does not specify an issuing distribution point, allow it to | 
|  | // match anything. | 
|  | // | 
|  | // TODO(davidben): Does this match RFC 5280? It's hard to follow because RFC | 
|  | // 5280 starts from distribution points, while this starts from CRLs. | 
|  | return !crl->idp || !crl->idp->distpoint; | 
|  | } | 
|  |  | 
|  | // Retrieve CRL corresponding to current certificate. | 
|  | static int get_crl(X509_STORE_CTX *ctx, X509_CRL **pcrl, X509 *x) { | 
|  | X509 *issuer = NULL; | 
|  | int crl_score = 0; | 
|  | X509_CRL *crl = NULL; | 
|  | STACK_OF(X509_CRL) *skcrl = NULL; | 
|  | if (get_crl_sk(ctx, &crl, &issuer, &crl_score, ctx->crls)) { | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | // Lookup CRLs from store | 
|  | skcrl = X509_STORE_CTX_get1_crls(ctx, X509_get_issuer_name(x)); | 
|  |  | 
|  | // If no CRLs found and a near match from get_crl_sk use that | 
|  | if (!skcrl && crl) { | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | get_crl_sk(ctx, &crl, &issuer, &crl_score, skcrl); | 
|  |  | 
|  | sk_X509_CRL_pop_free(skcrl, X509_CRL_free); | 
|  |  | 
|  | done: | 
|  | // If we got any kind of CRL use it and return success | 
|  | if (crl) { | 
|  | ctx->current_crl_issuer = issuer; | 
|  | ctx->current_crl_score = crl_score; | 
|  | *pcrl = crl; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Check CRL validity | 
|  | static int check_crl(X509_STORE_CTX *ctx, X509_CRL *crl) { | 
|  | X509 *issuer = NULL; | 
|  | int cnum = ctx->error_depth; | 
|  | int chnum = (int)sk_X509_num(ctx->chain) - 1; | 
|  | // If we have an alternative CRL issuer cert use that. Otherwise, it is the | 
|  | // issuer of the current certificate. | 
|  | if (ctx->current_crl_issuer) { | 
|  | issuer = ctx->current_crl_issuer; | 
|  | } else if (cnum < chnum) { | 
|  | issuer = sk_X509_value(ctx->chain, cnum + 1); | 
|  | } else { | 
|  | issuer = sk_X509_value(ctx->chain, chnum); | 
|  | // If not self signed, can't check signature | 
|  | if (!x509_check_issued_with_callback(ctx, issuer, issuer)) { | 
|  | ctx->error = X509_V_ERR_UNABLE_TO_GET_CRL_ISSUER; | 
|  | if (!call_verify_cb(0, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (issuer) { | 
|  | // Check for cRLSign bit if keyUsage present | 
|  | if ((issuer->ex_flags & EXFLAG_KUSAGE) && | 
|  | !(issuer->ex_kusage & X509v3_KU_CRL_SIGN)) { | 
|  | ctx->error = X509_V_ERR_KEYUSAGE_NO_CRL_SIGN; | 
|  | if (!call_verify_cb(0, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!(ctx->current_crl_score & CRL_SCORE_SCOPE)) { | 
|  | ctx->error = X509_V_ERR_DIFFERENT_CRL_SCOPE; | 
|  | if (!call_verify_cb(0, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (crl->idp_flags & IDP_INVALID) { | 
|  | ctx->error = X509_V_ERR_INVALID_EXTENSION; | 
|  | if (!call_verify_cb(0, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!(ctx->current_crl_score & CRL_SCORE_TIME)) { | 
|  | if (!check_crl_time(ctx, crl, 1)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Attempt to get issuer certificate public key | 
|  | EVP_PKEY *ikey = X509_get0_pubkey(issuer); | 
|  | if (!ikey) { | 
|  | ctx->error = X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY; | 
|  | if (!call_verify_cb(0, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | } else { | 
|  | // Verify CRL signature | 
|  | if (X509_CRL_verify(crl, ikey) <= 0) { | 
|  | ctx->error = X509_V_ERR_CRL_SIGNATURE_FAILURE; | 
|  | if (!call_verify_cb(0, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Check certificate against CRL | 
|  | static int cert_crl(X509_STORE_CTX *ctx, X509_CRL *crl, X509 *x) { | 
|  | // The rules changed for this... previously if a CRL contained unhandled | 
|  | // critical extensions it could still be used to indicate a certificate | 
|  | // was revoked. This has since been changed since critical extension can | 
|  | // change the meaning of CRL entries. | 
|  | if (!(ctx->param->flags & X509_V_FLAG_IGNORE_CRITICAL) && | 
|  | (crl->flags & EXFLAG_CRITICAL)) { | 
|  | ctx->error = X509_V_ERR_UNHANDLED_CRITICAL_CRL_EXTENSION; | 
|  | if (!call_verify_cb(0, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | // Look for serial number of certificate in CRL. | 
|  | X509_REVOKED *rev; | 
|  | if (X509_CRL_get0_by_cert(crl, &rev, x)) { | 
|  | ctx->error = X509_V_ERR_CERT_REVOKED; | 
|  | if (!call_verify_cb(0, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int check_policy(X509_STORE_CTX *ctx) { | 
|  | X509 *current_cert = NULL; | 
|  | int ret = X509_policy_check(ctx->chain, ctx->param->policies, | 
|  | ctx->param->flags, ¤t_cert); | 
|  | if (ret != X509_V_OK) { | 
|  | ctx->current_cert = current_cert; | 
|  | ctx->error = ret; | 
|  | if (ret == X509_V_ERR_OUT_OF_MEM) { | 
|  | return 0; | 
|  | } | 
|  | return call_verify_cb(0, ctx); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int check_cert_time(X509_STORE_CTX *ctx, X509 *x) { | 
|  | if (ctx->param->flags & X509_V_FLAG_NO_CHECK_TIME) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int64_t ptime; | 
|  | if (ctx->param->flags & X509_V_FLAG_USE_CHECK_TIME) { | 
|  | ptime = ctx->param->check_time; | 
|  | } else { | 
|  | ptime = time(NULL); | 
|  | } | 
|  |  | 
|  | int i = X509_cmp_time_posix(X509_get_notBefore(x), ptime); | 
|  | if (i == 0) { | 
|  | ctx->error = X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD; | 
|  | ctx->current_cert = x; | 
|  | if (!call_verify_cb(0, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (i > 0) { | 
|  | ctx->error = X509_V_ERR_CERT_NOT_YET_VALID; | 
|  | ctx->current_cert = x; | 
|  | if (!call_verify_cb(0, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | i = X509_cmp_time_posix(X509_get_notAfter(x), ptime); | 
|  | if (i == 0) { | 
|  | ctx->error = X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD; | 
|  | ctx->current_cert = x; | 
|  | if (!call_verify_cb(0, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (i < 0) { | 
|  | ctx->error = X509_V_ERR_CERT_HAS_EXPIRED; | 
|  | ctx->current_cert = x; | 
|  | if (!call_verify_cb(0, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int internal_verify(X509_STORE_CTX *ctx) { | 
|  | // TODO(davidben): This logic is incredibly confusing. Rewrite this: | 
|  | // | 
|  | // First, don't allow the verify callback to suppress | 
|  | // X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY, which will simplify the | 
|  | // signature check. Then replace jumping into the middle of the loop. It's | 
|  | // trying to ensure that all certificates see |check_cert_time|, then checking | 
|  | // the root's self signature when requested, but not breaking partial chains | 
|  | // in the process. | 
|  | int n = (int)sk_X509_num(ctx->chain); | 
|  | ctx->error_depth = n - 1; | 
|  | n--; | 
|  | X509 *xi = sk_X509_value(ctx->chain, n); | 
|  | X509 *xs; | 
|  | if (x509_check_issued_with_callback(ctx, xi, xi)) { | 
|  | xs = xi; | 
|  | } else { | 
|  | if (ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN) { | 
|  | xs = xi; | 
|  | goto check_cert; | 
|  | } | 
|  | if (n <= 0) { | 
|  | ctx->error = X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE; | 
|  | ctx->current_cert = xi; | 
|  | return call_verify_cb(0, ctx); | 
|  | } | 
|  | n--; | 
|  | ctx->error_depth = n; | 
|  | xs = sk_X509_value(ctx->chain, n); | 
|  | } | 
|  |  | 
|  | //      ctx->error=0;  not needed | 
|  | while (n >= 0) { | 
|  | ctx->error_depth = n; | 
|  |  | 
|  | // Skip signature check for self signed certificates unless | 
|  | // explicitly asked for. It doesn't add any security and just wastes | 
|  | // time. | 
|  | if (xs != xi || (ctx->param->flags & X509_V_FLAG_CHECK_SS_SIGNATURE)) { | 
|  | EVP_PKEY *pkey = X509_get0_pubkey(xi); | 
|  | if (pkey == NULL) { | 
|  | ctx->error = X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY; | 
|  | ctx->current_cert = xi; | 
|  | if (!call_verify_cb(0, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | } else if (X509_verify(xs, pkey) <= 0) { | 
|  | ctx->error = X509_V_ERR_CERT_SIGNATURE_FAILURE; | 
|  | ctx->current_cert = xs; | 
|  | if (!call_verify_cb(0, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | check_cert: | 
|  | if (!check_cert_time(ctx, xs)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // The last error (if any) is still in the error value | 
|  | ctx->current_cert = xs; | 
|  | if (!call_verify_cb(1, ctx)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | n--; | 
|  | if (n >= 0) { | 
|  | xi = xs; | 
|  | xs = sk_X509_value(ctx->chain, n); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int X509_cmp_current_time(const ASN1_TIME *ctm) { | 
|  | return X509_cmp_time_posix(ctm, time(NULL)); | 
|  | } | 
|  |  | 
|  | int X509_cmp_time(const ASN1_TIME *ctm, const time_t *cmp_time) { | 
|  | int64_t compare_time = (cmp_time == NULL) ? time(NULL) : *cmp_time; | 
|  | return X509_cmp_time_posix(ctm, compare_time); | 
|  | } | 
|  |  | 
|  | int X509_cmp_time_posix(const ASN1_TIME *ctm, int64_t cmp_time) { | 
|  | int64_t ctm_time; | 
|  | if (!ASN1_TIME_to_posix(ctm, &ctm_time)) { | 
|  | return 0; | 
|  | } | 
|  | // The return value 0 is reserved for errors. | 
|  | return (ctm_time - cmp_time <= 0) ? -1 : 1; | 
|  | } | 
|  |  | 
|  | ASN1_TIME *X509_gmtime_adj(ASN1_TIME *s, long offset_sec) { | 
|  | return X509_time_adj(s, offset_sec, NULL); | 
|  | } | 
|  |  | 
|  | ASN1_TIME *X509_time_adj(ASN1_TIME *s, long offset_sec, const time_t *in_tm) { | 
|  | return X509_time_adj_ex(s, 0, offset_sec, in_tm); | 
|  | } | 
|  |  | 
|  | ASN1_TIME *X509_time_adj_ex(ASN1_TIME *s, int offset_day, long offset_sec, | 
|  | const time_t *in_tm) { | 
|  | int64_t t = 0; | 
|  |  | 
|  | if (in_tm) { | 
|  | t = *in_tm; | 
|  | } else { | 
|  | t = time(NULL); | 
|  | } | 
|  |  | 
|  | return ASN1_TIME_adj(s, t, offset_day, offset_sec); | 
|  | } | 
|  |  | 
|  | int X509_STORE_CTX_get_ex_new_index(long argl, void *argp, | 
|  | CRYPTO_EX_unused *unused, | 
|  | CRYPTO_EX_dup *dup_unused, | 
|  | CRYPTO_EX_free *free_func) { | 
|  | return CRYPTO_get_ex_new_index_ex(&g_ex_data_class, argl, argp, free_func); | 
|  | } | 
|  |  | 
|  | int X509_STORE_CTX_set_ex_data(X509_STORE_CTX *ctx, int idx, void *data) { | 
|  | return CRYPTO_set_ex_data(&ctx->ex_data, idx, data); | 
|  | } | 
|  |  | 
|  | void *X509_STORE_CTX_get_ex_data(X509_STORE_CTX *ctx, int idx) { | 
|  | return CRYPTO_get_ex_data(&ctx->ex_data, idx); | 
|  | } | 
|  |  | 
|  | int X509_STORE_CTX_get_error(const X509_STORE_CTX *ctx) { return ctx->error; } | 
|  |  | 
|  | void X509_STORE_CTX_set_error(X509_STORE_CTX *ctx, int err) { | 
|  | ctx->error = err; | 
|  | } | 
|  |  | 
|  | int X509_STORE_CTX_get_error_depth(const X509_STORE_CTX *ctx) { | 
|  | return ctx->error_depth; | 
|  | } | 
|  |  | 
|  | X509 *X509_STORE_CTX_get_current_cert(const X509_STORE_CTX *ctx) { | 
|  | return ctx->current_cert; | 
|  | } | 
|  |  | 
|  | STACK_OF(X509) *X509_STORE_CTX_get_chain(const X509_STORE_CTX *ctx) { | 
|  | return ctx->chain; | 
|  | } | 
|  |  | 
|  | STACK_OF(X509) *X509_STORE_CTX_get0_chain(const X509_STORE_CTX *ctx) { | 
|  | return ctx->chain; | 
|  | } | 
|  |  | 
|  | STACK_OF(X509) *X509_STORE_CTX_get1_chain(const X509_STORE_CTX *ctx) { | 
|  | if (!ctx->chain) { | 
|  | return NULL; | 
|  | } | 
|  | return X509_chain_up_ref(ctx->chain); | 
|  | } | 
|  |  | 
|  | X509_CRL *X509_STORE_CTX_get0_current_crl(const X509_STORE_CTX *ctx) { | 
|  | return ctx->current_crl; | 
|  | } | 
|  |  | 
|  | X509_STORE_CTX *X509_STORE_CTX_get0_parent_ctx(const X509_STORE_CTX *ctx) { | 
|  | // In OpenSSL, an |X509_STORE_CTX| sometimes has a parent context during CRL | 
|  | // path validation for indirect CRLs. We require the CRL to be issued | 
|  | // somewhere along the certificate path, so this is always NULL. | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void X509_STORE_CTX_set_chain(X509_STORE_CTX *ctx, STACK_OF(X509) *sk) { | 
|  | ctx->untrusted = sk; | 
|  | } | 
|  |  | 
|  | STACK_OF(X509) *X509_STORE_CTX_get0_untrusted(const X509_STORE_CTX *ctx) { | 
|  | return ctx->untrusted; | 
|  | } | 
|  |  | 
|  | void X509_STORE_CTX_set0_crls(X509_STORE_CTX *ctx, STACK_OF(X509_CRL) *sk) { | 
|  | ctx->crls = sk; | 
|  | } | 
|  |  | 
|  | int X509_STORE_CTX_set_purpose(X509_STORE_CTX *ctx, int purpose) { | 
|  | // If |purpose| is zero, this function historically silently did nothing. | 
|  | if (purpose == 0) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | const X509_PURPOSE *pobj = X509_PURPOSE_get0(purpose); | 
|  | if (pobj == NULL) { | 
|  | OPENSSL_PUT_ERROR(X509, X509_R_UNKNOWN_PURPOSE_ID); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int trust = X509_PURPOSE_get_trust(pobj); | 
|  | if (!X509_STORE_CTX_set_trust(ctx, trust)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (ctx->param->purpose == 0) { | 
|  | ctx->param->purpose = purpose; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int X509_STORE_CTX_set_trust(X509_STORE_CTX *ctx, int trust) { | 
|  | // If |trust| is zero, this function historically silently did nothing. | 
|  | if (trust == 0) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (!X509_is_valid_trust_id(trust)) { | 
|  | OPENSSL_PUT_ERROR(X509, X509_R_UNKNOWN_TRUST_ID); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (ctx->param->trust == 0) { | 
|  | ctx->param->trust = trust; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | X509_STORE_CTX *X509_STORE_CTX_new(void) { | 
|  | return reinterpret_cast<X509_STORE_CTX *>( | 
|  | OPENSSL_zalloc(sizeof(X509_STORE_CTX))); | 
|  | } | 
|  |  | 
|  | void X509_STORE_CTX_free(X509_STORE_CTX *ctx) { | 
|  | if (ctx == NULL) { | 
|  | return; | 
|  | } | 
|  | X509_STORE_CTX_cleanup(ctx); | 
|  | OPENSSL_free(ctx); | 
|  | } | 
|  |  | 
|  | int X509_STORE_CTX_init(X509_STORE_CTX *ctx, X509_STORE *store, X509 *x509, | 
|  | STACK_OF(X509) *chain) { | 
|  | X509_STORE_CTX_cleanup(ctx); | 
|  |  | 
|  | ctx->ctx = store; | 
|  | ctx->cert = x509; | 
|  | ctx->untrusted = chain; | 
|  |  | 
|  | CRYPTO_new_ex_data(&ctx->ex_data); | 
|  |  | 
|  | if (store == NULL) { | 
|  | OPENSSL_PUT_ERROR(X509, ERR_R_PASSED_NULL_PARAMETER); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ctx->param = X509_VERIFY_PARAM_new(); | 
|  | if (!ctx->param) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | // Inherit callbacks and flags from X509_STORE. | 
|  |  | 
|  | ctx->verify_cb = store->verify_cb; | 
|  |  | 
|  | if (!X509_VERIFY_PARAM_inherit(ctx->param, store->param) || | 
|  | !X509_VERIFY_PARAM_inherit(ctx->param, | 
|  | X509_VERIFY_PARAM_lookup("default"))) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (store->verify_cb) { | 
|  | ctx->verify_cb = store->verify_cb; | 
|  | } else { | 
|  | ctx->verify_cb = null_callback; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  |  | 
|  | err: | 
|  | CRYPTO_free_ex_data(&g_ex_data_class, ctx, &ctx->ex_data); | 
|  | if (ctx->param != NULL) { | 
|  | X509_VERIFY_PARAM_free(ctx->param); | 
|  | } | 
|  |  | 
|  | OPENSSL_memset(ctx, 0, sizeof(X509_STORE_CTX)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Set alternative lookup method: just a STACK of trusted certificates. This | 
|  | // avoids X509_STORE nastiness where it isn't needed. | 
|  |  | 
|  | void X509_STORE_CTX_set0_trusted_stack(X509_STORE_CTX *ctx, | 
|  | STACK_OF(X509) *sk) { | 
|  | ctx->trusted_stack = sk; | 
|  | } | 
|  |  | 
|  | void X509_STORE_CTX_trusted_stack(X509_STORE_CTX *ctx, STACK_OF(X509) *sk) { | 
|  | X509_STORE_CTX_set0_trusted_stack(ctx, sk); | 
|  | } | 
|  |  | 
|  | void X509_STORE_CTX_cleanup(X509_STORE_CTX *ctx) { | 
|  | CRYPTO_free_ex_data(&g_ex_data_class, ctx, &(ctx->ex_data)); | 
|  | X509_VERIFY_PARAM_free(ctx->param); | 
|  | sk_X509_pop_free(ctx->chain, X509_free); | 
|  | OPENSSL_memset(ctx, 0, sizeof(X509_STORE_CTX)); | 
|  | } | 
|  |  | 
|  | void X509_STORE_CTX_set_depth(X509_STORE_CTX *ctx, int depth) { | 
|  | X509_VERIFY_PARAM_set_depth(ctx->param, depth); | 
|  | } | 
|  |  | 
|  | void X509_STORE_CTX_set_flags(X509_STORE_CTX *ctx, unsigned long flags) { | 
|  | X509_VERIFY_PARAM_set_flags(ctx->param, flags); | 
|  | } | 
|  |  | 
|  | void X509_STORE_CTX_set_time_posix(X509_STORE_CTX *ctx, unsigned long flags, | 
|  | int64_t t) { | 
|  | X509_VERIFY_PARAM_set_time_posix(ctx->param, t); | 
|  | } | 
|  |  | 
|  | void X509_STORE_CTX_set_time(X509_STORE_CTX *ctx, unsigned long flags, | 
|  | time_t t) { | 
|  | X509_STORE_CTX_set_time_posix(ctx, flags, t); | 
|  | } | 
|  |  | 
|  | X509 *X509_STORE_CTX_get0_cert(const X509_STORE_CTX *ctx) { return ctx->cert; } | 
|  |  | 
|  | void X509_STORE_CTX_set_verify_cb(X509_STORE_CTX *ctx, | 
|  | int (*verify_cb)(int, X509_STORE_CTX *)) { | 
|  | ctx->verify_cb = verify_cb; | 
|  | } | 
|  |  | 
|  | int X509_STORE_CTX_set_default(X509_STORE_CTX *ctx, const char *name) { | 
|  | const X509_VERIFY_PARAM *param = X509_VERIFY_PARAM_lookup(name); | 
|  | if (!param) { | 
|  | return 0; | 
|  | } | 
|  | return X509_VERIFY_PARAM_inherit(ctx->param, param); | 
|  | } | 
|  |  | 
|  | X509_VERIFY_PARAM *X509_STORE_CTX_get0_param(X509_STORE_CTX *ctx) { | 
|  | return ctx->param; | 
|  | } | 
|  |  | 
|  | void X509_STORE_CTX_set0_param(X509_STORE_CTX *ctx, X509_VERIFY_PARAM *param) { | 
|  | if (ctx->param) { | 
|  | X509_VERIFY_PARAM_free(ctx->param); | 
|  | } | 
|  | ctx->param = param; | 
|  | } |