| /* ==================================================================== | 
 |  * Copyright (c) 2001-2011 The OpenSSL Project.  All rights reserved. | 
 |  * | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions | 
 |  * are met: | 
 |  * | 
 |  * 1. Redistributions of source code must retain the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer. | 
 |  * | 
 |  * 2. Redistributions in binary form must reproduce the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer in | 
 |  *    the documentation and/or other materials provided with the | 
 |  *    distribution. | 
 |  * | 
 |  * 3. All advertising materials mentioning features or use of this | 
 |  *    software must display the following acknowledgment: | 
 |  *    "This product includes software developed by the OpenSSL Project | 
 |  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | 
 |  * | 
 |  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | 
 |  *    endorse or promote products derived from this software without | 
 |  *    prior written permission. For written permission, please contact | 
 |  *    openssl-core@openssl.org. | 
 |  * | 
 |  * 5. Products derived from this software may not be called "OpenSSL" | 
 |  *    nor may "OpenSSL" appear in their names without prior written | 
 |  *    permission of the OpenSSL Project. | 
 |  * | 
 |  * 6. Redistributions of any form whatsoever must retain the following | 
 |  *    acknowledgment: | 
 |  *    "This product includes software developed by the OpenSSL Project | 
 |  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)" | 
 |  * | 
 |  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | 
 |  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 |  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
 |  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR | 
 |  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 |  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
 |  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
 |  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
 |  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
 |  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 |  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
 |  * OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  * ==================================================================== */ | 
 |  | 
 | #include <openssl/aes.h> | 
 |  | 
 | #include <assert.h> | 
 | #include <limits.h> | 
 | #include <string.h> | 
 |  | 
 | #include <openssl/mem.h> | 
 |  | 
 | #include "../../internal.h" | 
 | #include "../service_indicator/internal.h" | 
 |  | 
 |  | 
 | // kDefaultIV is the default IV value given in RFC 3394, 2.2.3.1. | 
 | static const uint8_t kDefaultIV[] = { | 
 |     0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6, | 
 | }; | 
 |  | 
 | static const unsigned kBound = 6; | 
 |  | 
 | int AES_wrap_key(const AES_KEY *key, const uint8_t *iv, uint8_t *out, | 
 |                  const uint8_t *in, size_t in_len) { | 
 |   // See RFC 3394, section 2.2.1. Additionally, note that section 2 requires the | 
 |   // plaintext be at least two 8-byte blocks. | 
 |  | 
 |   if (in_len > INT_MAX - 8 || in_len < 16 || in_len % 8 != 0) { | 
 |     return -1; | 
 |   } | 
 |  | 
 |   if (iv == NULL) { | 
 |     iv = kDefaultIV; | 
 |   } | 
 |  | 
 |   OPENSSL_memmove(out + 8, in, in_len); | 
 |   uint8_t A[AES_BLOCK_SIZE]; | 
 |   OPENSSL_memcpy(A, iv, 8); | 
 |  | 
 |   size_t n = in_len / 8; | 
 |  | 
 |   for (unsigned j = 0; j < kBound; j++) { | 
 |     for (size_t i = 1; i <= n; i++) { | 
 |       OPENSSL_memcpy(A + 8, out + 8 * i, 8); | 
 |       AES_encrypt(A, A, key); | 
 |  | 
 |       uint32_t t = (uint32_t)(n * j + i); | 
 |       A[7] ^= t & 0xff; | 
 |       A[6] ^= (t >> 8) & 0xff; | 
 |       A[5] ^= (t >> 16) & 0xff; | 
 |       A[4] ^= (t >> 24) & 0xff; | 
 |       OPENSSL_memcpy(out + 8 * i, A + 8, 8); | 
 |     } | 
 |   } | 
 |  | 
 |   OPENSSL_memcpy(out, A, 8); | 
 |   FIPS_service_indicator_update_state(); | 
 |   return (int)in_len + 8; | 
 | } | 
 |  | 
 | // aes_unwrap_key_inner performs steps one and two from | 
 | // https://tools.ietf.org/html/rfc3394#section-2.2.2 | 
 | static int aes_unwrap_key_inner(const AES_KEY *key, uint8_t *out, | 
 |                                 uint8_t out_iv[8], const uint8_t *in, | 
 |                                 size_t in_len) { | 
 |   // See RFC 3394, section 2.2.2. Additionally, note that section 2 requires the | 
 |   // plaintext be at least two 8-byte blocks, so the ciphertext must be at least | 
 |   // three blocks. | 
 |  | 
 |   if (in_len > INT_MAX || in_len < 24 || in_len % 8 != 0) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   uint8_t A[AES_BLOCK_SIZE]; | 
 |   OPENSSL_memcpy(A, in, 8); | 
 |   OPENSSL_memmove(out, in + 8, in_len - 8); | 
 |  | 
 |   size_t n = (in_len / 8) - 1; | 
 |  | 
 |   for (unsigned j = kBound - 1; j < kBound; j--) { | 
 |     for (size_t i = n; i > 0; i--) { | 
 |       uint32_t t = (uint32_t)(n * j + i); | 
 |       A[7] ^= t & 0xff; | 
 |       A[6] ^= (t >> 8) & 0xff; | 
 |       A[5] ^= (t >> 16) & 0xff; | 
 |       A[4] ^= (t >> 24) & 0xff; | 
 |       OPENSSL_memcpy(A + 8, out + 8 * (i - 1), 8); | 
 |       AES_decrypt(A, A, key); | 
 |       OPENSSL_memcpy(out + 8 * (i - 1), A + 8, 8); | 
 |     } | 
 |   } | 
 |  | 
 |   memcpy(out_iv, A, 8); | 
 |   return 1; | 
 | } | 
 |  | 
 | int AES_unwrap_key(const AES_KEY *key, const uint8_t *iv, uint8_t *out, | 
 |                    const uint8_t *in, size_t in_len) { | 
 |   uint8_t calculated_iv[8]; | 
 |   if (!aes_unwrap_key_inner(key, out, calculated_iv, in, in_len)) { | 
 |     return -1; | 
 |   } | 
 |  | 
 |   if (iv == NULL) { | 
 |     iv = kDefaultIV; | 
 |   } | 
 |   if (CRYPTO_memcmp(calculated_iv, iv, 8) != 0) { | 
 |     return -1; | 
 |   } | 
 |  | 
 |   FIPS_service_indicator_update_state(); | 
 |   return (int)in_len - 8; | 
 | } | 
 |  | 
 | // kPaddingConstant is used in Key Wrap with Padding. See | 
 | // https://tools.ietf.org/html/rfc5649#section-3 | 
 | static const uint8_t kPaddingConstant[4] = {0xa6, 0x59, 0x59, 0xa6}; | 
 |  | 
 | int AES_wrap_key_padded(const AES_KEY *key, uint8_t *out, size_t *out_len, | 
 |                         size_t max_out, const uint8_t *in, size_t in_len) { | 
 |   // See https://tools.ietf.org/html/rfc5649#section-4.1 | 
 |   const uint64_t in_len64 = in_len; | 
 |   const size_t padded_len = (in_len + 7) & ~7; | 
 |   *out_len = 0; | 
 |   if (in_len == 0 || in_len64 > 0xffffffffu || in_len + 7 < in_len || | 
 |       padded_len + 8 < padded_len || max_out < padded_len + 8) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   uint8_t block[AES_BLOCK_SIZE]; | 
 |   memcpy(block, kPaddingConstant, sizeof(kPaddingConstant)); | 
 |   CRYPTO_store_u32_be(block + 4, (uint32_t)in_len); | 
 |  | 
 |   if (in_len <= 8) { | 
 |     memset(block + 8, 0, 8); | 
 |     memcpy(block + 8, in, in_len); | 
 |     AES_encrypt(block, out, key); | 
 |     *out_len = AES_BLOCK_SIZE; | 
 |     return 1; | 
 |   } | 
 |  | 
 |   uint8_t *padded_in = OPENSSL_malloc(padded_len); | 
 |   if (padded_in == NULL) { | 
 |     return 0; | 
 |   } | 
 |   assert(padded_len >= 8); | 
 |   memset(padded_in + padded_len - 8, 0, 8); | 
 |   memcpy(padded_in, in, in_len); | 
 |   FIPS_service_indicator_lock_state(); | 
 |   const int ret = AES_wrap_key(key, block, out, padded_in, padded_len); | 
 |   FIPS_service_indicator_unlock_state(); | 
 |   OPENSSL_free(padded_in); | 
 |   if (ret < 0) { | 
 |     return 0; | 
 |   } | 
 |   *out_len = ret; | 
 |   FIPS_service_indicator_update_state(); | 
 |   return 1; | 
 | } | 
 |  | 
 | int AES_unwrap_key_padded(const AES_KEY *key, uint8_t *out, size_t *out_len, | 
 |                           size_t max_out, const uint8_t *in, size_t in_len) { | 
 |   *out_len = 0; | 
 |   if (in_len < AES_BLOCK_SIZE || max_out < in_len - 8) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   uint8_t iv[8]; | 
 |   if (in_len == AES_BLOCK_SIZE) { | 
 |     uint8_t block[AES_BLOCK_SIZE]; | 
 |     AES_decrypt(in, block, key); | 
 |     memcpy(iv, block, sizeof(iv)); | 
 |     memcpy(out, block + 8, 8); | 
 |   } else if (!aes_unwrap_key_inner(key, out, iv, in, in_len)) { | 
 |     return 0; | 
 |   } | 
 |   assert(in_len % 8 == 0); | 
 |  | 
 |   crypto_word_t ok = constant_time_eq_int( | 
 |       CRYPTO_memcmp(iv, kPaddingConstant, sizeof(kPaddingConstant)), 0); | 
 |  | 
 |   const size_t claimed_len = CRYPTO_load_u32_be(iv + 4); | 
 |   ok &= ~constant_time_is_zero_w(claimed_len); | 
 |   ok &= constant_time_eq_w((claimed_len - 1) >> 3, (in_len - 9) >> 3); | 
 |  | 
 |   // Check that padding bytes are all zero. | 
 |   for (size_t i = in_len - 15; i < in_len - 8; i++) { | 
 |     ok &= constant_time_is_zero_w(constant_time_ge_8(i, claimed_len) & out[i]); | 
 |   } | 
 |  | 
 |   *out_len = constant_time_select_w(ok, claimed_len, 0); | 
 |   const int ret = ok & 1; | 
 |   if (ret) { | 
 |     FIPS_service_indicator_update_state(); | 
 |   } | 
 |   return ret; | 
 | } |