| /* Copyright (c) 2018, Google Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| |
| #include <openssl/ec.h> |
| |
| #include <assert.h> |
| |
| #include "internal.h" |
| #include "../bn/internal.h" |
| #include "../../internal.h" |
| |
| |
| static void ec_GFp_simple_mul_single(const EC_GROUP *group, EC_RAW_POINT *r, |
| const EC_RAW_POINT *p, |
| const EC_SCALAR *scalar) { |
| // This is a generic implementation for uncommon curves that not do not |
| // warrant a tuned one. It uses unsigned digits so that the doubling case in |
| // |ec_GFp_simple_add| is always unreachable, erring on safety and simplicity. |
| |
| // Compute a table of the first 32 multiples of |p| (including infinity). |
| EC_RAW_POINT precomp[32]; |
| ec_GFp_simple_point_set_to_infinity(group, &precomp[0]); |
| ec_GFp_simple_point_copy(&precomp[1], p); |
| for (size_t j = 2; j < OPENSSL_ARRAY_SIZE(precomp); j++) { |
| if (j & 1) { |
| ec_GFp_simple_add(group, &precomp[j], &precomp[1], &precomp[j - 1]); |
| } else { |
| ec_GFp_simple_dbl(group, &precomp[j], &precomp[j / 2]); |
| } |
| } |
| |
| // Divide bits in |scalar| into windows. |
| unsigned bits = BN_num_bits(&group->order); |
| int r_is_at_infinity = 1; |
| for (unsigned i = bits - 1; i < bits; i--) { |
| if (!r_is_at_infinity) { |
| ec_GFp_simple_dbl(group, r, r); |
| } |
| if (i % 5 == 0) { |
| // Compute the next window value. |
| const size_t width = group->order.width; |
| uint8_t window = bn_is_bit_set_words(scalar->words, width, i + 4) << 4; |
| window |= bn_is_bit_set_words(scalar->words, width, i + 3) << 3; |
| window |= bn_is_bit_set_words(scalar->words, width, i + 2) << 2; |
| window |= bn_is_bit_set_words(scalar->words, width, i + 1) << 1; |
| window |= bn_is_bit_set_words(scalar->words, width, i); |
| |
| // Select the entry in constant-time. |
| EC_RAW_POINT tmp; |
| OPENSSL_memset(&tmp, 0, sizeof(EC_RAW_POINT)); |
| for (size_t j = 0; j < OPENSSL_ARRAY_SIZE(precomp); j++) { |
| BN_ULONG mask = constant_time_eq_w(j, window); |
| ec_felem_select(group, &tmp.X, mask, &precomp[j].X, &tmp.X); |
| ec_felem_select(group, &tmp.Y, mask, &precomp[j].Y, &tmp.Y); |
| ec_felem_select(group, &tmp.Z, mask, &precomp[j].Z, &tmp.Z); |
| } |
| |
| if (r_is_at_infinity) { |
| ec_GFp_simple_point_copy(r, &tmp); |
| r_is_at_infinity = 0; |
| } else { |
| ec_GFp_simple_add(group, r, r, &tmp); |
| } |
| } |
| } |
| if (r_is_at_infinity) { |
| ec_GFp_simple_point_set_to_infinity(group, r); |
| } |
| } |
| |
| void ec_GFp_simple_mul(const EC_GROUP *group, EC_RAW_POINT *r, |
| const EC_SCALAR *g_scalar, const EC_RAW_POINT *p, |
| const EC_SCALAR *p_scalar) { |
| assert(g_scalar != NULL || p_scalar != NULL); |
| if (p_scalar == NULL) { |
| ec_GFp_simple_mul_single(group, r, &group->generator->raw, g_scalar); |
| } else if (g_scalar == NULL) { |
| ec_GFp_simple_mul_single(group, r, p, p_scalar); |
| } else { |
| // Support constant-time two-point multiplication for compatibility. This |
| // does not actually come up in keygen, ECDH, or ECDSA, so we implement it |
| // the naive way. |
| ec_GFp_simple_mul_single(group, r, &group->generator->raw, g_scalar); |
| EC_RAW_POINT tmp; |
| ec_GFp_simple_mul_single(group, &tmp, p, p_scalar); |
| ec_GFp_simple_add(group, r, r, &tmp); |
| } |
| } |