|  | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | 
|  | * All rights reserved. | 
|  | * | 
|  | * This package is an SSL implementation written | 
|  | * by Eric Young (eay@cryptsoft.com). | 
|  | * The implementation was written so as to conform with Netscapes SSL. | 
|  | * | 
|  | * This library is free for commercial and non-commercial use as long as | 
|  | * the following conditions are aheared to.  The following conditions | 
|  | * apply to all code found in this distribution, be it the RC4, RSA, | 
|  | * lhash, DES, etc., code; not just the SSL code.  The SSL documentation | 
|  | * included with this distribution is covered by the same copyright terms | 
|  | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 
|  | * | 
|  | * Copyright remains Eric Young's, and as such any Copyright notices in | 
|  | * the code are not to be removed. | 
|  | * If this package is used in a product, Eric Young should be given attribution | 
|  | * as the author of the parts of the library used. | 
|  | * This can be in the form of a textual message at program startup or | 
|  | * in documentation (online or textual) provided with the package. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * 3. All advertising materials mentioning features or use of this software | 
|  | *    must display the following acknowledgement: | 
|  | *    "This product includes cryptographic software written by | 
|  | *     Eric Young (eay@cryptsoft.com)" | 
|  | *    The word 'cryptographic' can be left out if the rouines from the library | 
|  | *    being used are not cryptographic related :-). | 
|  | * 4. If you include any Windows specific code (or a derivative thereof) from | 
|  | *    the apps directory (application code) you must include an acknowledgement: | 
|  | *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 
|  | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | 
|  | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
|  | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
|  | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
|  | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
|  | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
|  | * SUCH DAMAGE. | 
|  | * | 
|  | * The licence and distribution terms for any publically available version or | 
|  | * derivative of this code cannot be changed.  i.e. this code cannot simply be | 
|  | * copied and put under another distribution licence | 
|  | * [including the GNU Public Licence.] */ | 
|  |  | 
|  | #include <openssl/ssl.h> | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <limits.h> | 
|  |  | 
|  | #include <openssl/ec.h> | 
|  | #include <openssl/ec_key.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/evp.h> | 
|  | #include <openssl/mem.h> | 
|  |  | 
|  | #include "internal.h" | 
|  | #include "../crypto/internal.h" | 
|  |  | 
|  |  | 
|  | BSSL_NAMESPACE_BEGIN | 
|  |  | 
|  | bool ssl_is_key_type_supported(int key_type) { | 
|  | return key_type == EVP_PKEY_RSA || key_type == EVP_PKEY_EC || | 
|  | key_type == EVP_PKEY_ED25519; | 
|  | } | 
|  |  | 
|  | static bool ssl_set_pkey(CERT *cert, EVP_PKEY *pkey) { | 
|  | if (!ssl_is_key_type_supported(pkey->type)) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (cert->chain != nullptr && | 
|  | sk_CRYPTO_BUFFER_value(cert->chain.get(), 0) != nullptr && | 
|  | // Sanity-check that the private key and the certificate match. | 
|  | !ssl_cert_check_private_key(cert, pkey)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | cert->privatekey = UpRef(pkey); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | typedef struct { | 
|  | uint16_t sigalg; | 
|  | int pkey_type; | 
|  | int curve; | 
|  | const EVP_MD *(*digest_func)(void); | 
|  | bool is_rsa_pss; | 
|  | } SSL_SIGNATURE_ALGORITHM; | 
|  |  | 
|  | static const SSL_SIGNATURE_ALGORITHM kSignatureAlgorithms[] = { | 
|  | {SSL_SIGN_RSA_PKCS1_MD5_SHA1, EVP_PKEY_RSA, NID_undef, &EVP_md5_sha1, | 
|  | false}, | 
|  | {SSL_SIGN_RSA_PKCS1_SHA1, EVP_PKEY_RSA, NID_undef, &EVP_sha1, false}, | 
|  | {SSL_SIGN_RSA_PKCS1_SHA256, EVP_PKEY_RSA, NID_undef, &EVP_sha256, false}, | 
|  | {SSL_SIGN_RSA_PKCS1_SHA384, EVP_PKEY_RSA, NID_undef, &EVP_sha384, false}, | 
|  | {SSL_SIGN_RSA_PKCS1_SHA512, EVP_PKEY_RSA, NID_undef, &EVP_sha512, false}, | 
|  |  | 
|  | {SSL_SIGN_RSA_PSS_RSAE_SHA256, EVP_PKEY_RSA, NID_undef, &EVP_sha256, true}, | 
|  | {SSL_SIGN_RSA_PSS_RSAE_SHA384, EVP_PKEY_RSA, NID_undef, &EVP_sha384, true}, | 
|  | {SSL_SIGN_RSA_PSS_RSAE_SHA512, EVP_PKEY_RSA, NID_undef, &EVP_sha512, true}, | 
|  |  | 
|  | {SSL_SIGN_ECDSA_SHA1, EVP_PKEY_EC, NID_undef, &EVP_sha1, false}, | 
|  | {SSL_SIGN_ECDSA_SECP256R1_SHA256, EVP_PKEY_EC, NID_X9_62_prime256v1, | 
|  | &EVP_sha256, false}, | 
|  | {SSL_SIGN_ECDSA_SECP384R1_SHA384, EVP_PKEY_EC, NID_secp384r1, &EVP_sha384, | 
|  | false}, | 
|  | {SSL_SIGN_ECDSA_SECP521R1_SHA512, EVP_PKEY_EC, NID_secp521r1, &EVP_sha512, | 
|  | false}, | 
|  |  | 
|  | {SSL_SIGN_ED25519, EVP_PKEY_ED25519, NID_undef, nullptr, false}, | 
|  | }; | 
|  |  | 
|  | static const SSL_SIGNATURE_ALGORITHM *get_signature_algorithm(uint16_t sigalg) { | 
|  | for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kSignatureAlgorithms); i++) { | 
|  | if (kSignatureAlgorithms[i].sigalg == sigalg) { | 
|  | return &kSignatureAlgorithms[i]; | 
|  | } | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | bool ssl_has_private_key(const SSL_HANDSHAKE *hs) { | 
|  | if (hs->config->cert->privatekey != nullptr || | 
|  | hs->config->cert->key_method != nullptr || | 
|  | ssl_signing_with_dc(hs)) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool pkey_supports_algorithm(const SSL *ssl, EVP_PKEY *pkey, | 
|  | uint16_t sigalg) { | 
|  | const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg); | 
|  | if (alg == NULL || | 
|  | EVP_PKEY_id(pkey) != alg->pkey_type) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) { | 
|  | // RSA keys may only be used with RSA-PSS. | 
|  | if (alg->pkey_type == EVP_PKEY_RSA && !alg->is_rsa_pss) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // EC keys have a curve requirement. | 
|  | if (alg->pkey_type == EVP_PKEY_EC && | 
|  | (alg->curve == NID_undef || | 
|  | EC_GROUP_get_curve_name( | 
|  | EC_KEY_get0_group(EVP_PKEY_get0_EC_KEY(pkey))) != alg->curve)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool setup_ctx(SSL *ssl, EVP_MD_CTX *ctx, EVP_PKEY *pkey, | 
|  | uint16_t sigalg, bool is_verify) { | 
|  | if (!pkey_supports_algorithm(ssl, pkey, sigalg)) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg); | 
|  | const EVP_MD *digest = alg->digest_func != NULL ? alg->digest_func() : NULL; | 
|  | EVP_PKEY_CTX *pctx; | 
|  | if (is_verify) { | 
|  | if (!EVP_DigestVerifyInit(ctx, &pctx, digest, NULL, pkey)) { | 
|  | return false; | 
|  | } | 
|  | } else if (!EVP_DigestSignInit(ctx, &pctx, digest, NULL, pkey)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (alg->is_rsa_pss) { | 
|  | if (!EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) || | 
|  | !EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, -1 /* salt len = hash len */)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | enum ssl_private_key_result_t ssl_private_key_sign( | 
|  | SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, size_t max_out, | 
|  | uint16_t sigalg, Span<const uint8_t> in) { | 
|  | SSL *const ssl = hs->ssl; | 
|  | SSL_HANDSHAKE_HINTS *const hints = hs->hints.get(); | 
|  | Array<uint8_t> spki; | 
|  | if (hints) { | 
|  | ScopedCBB spki_cbb; | 
|  | if (!CBB_init(spki_cbb.get(), 64) || | 
|  | !EVP_marshal_public_key(spki_cbb.get(), hs->local_pubkey.get()) || | 
|  | !CBBFinishArray(spki_cbb.get(), &spki)) { | 
|  | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); | 
|  | return ssl_private_key_failure; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Replay the signature from handshake hints if available. | 
|  | if (hints && !hs->hints_requested &&         // | 
|  | sigalg == hints->signature_algorithm &&  // | 
|  | in == hints->signature_input && | 
|  | MakeConstSpan(spki) == hints->signature_spki && | 
|  | !hints->signature.empty() &&  // | 
|  | hints->signature.size() <= max_out) { | 
|  | // Signature algorithm and input both match. Reuse the signature from hints. | 
|  | *out_len = hints->signature.size(); | 
|  | OPENSSL_memcpy(out, hints->signature.data(), hints->signature.size()); | 
|  | return ssl_private_key_success; | 
|  | } | 
|  |  | 
|  | const SSL_PRIVATE_KEY_METHOD *key_method = hs->config->cert->key_method; | 
|  | EVP_PKEY *privatekey = hs->config->cert->privatekey.get(); | 
|  | assert(!hs->can_release_private_key); | 
|  | if (ssl_signing_with_dc(hs)) { | 
|  | key_method = hs->config->cert->dc_key_method; | 
|  | privatekey = hs->config->cert->dc_privatekey.get(); | 
|  | } | 
|  |  | 
|  | if (key_method != NULL) { | 
|  | enum ssl_private_key_result_t ret; | 
|  | if (hs->pending_private_key_op) { | 
|  | ret = key_method->complete(ssl, out, out_len, max_out); | 
|  | } else { | 
|  | ret = key_method->sign(ssl, out, out_len, max_out, sigalg, in.data(), | 
|  | in.size()); | 
|  | } | 
|  | if (ret == ssl_private_key_failure) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_PRIVATE_KEY_OPERATION_FAILED); | 
|  | } | 
|  | hs->pending_private_key_op = ret == ssl_private_key_retry; | 
|  | if (ret != ssl_private_key_success) { | 
|  | return ret; | 
|  | } | 
|  | } else { | 
|  | *out_len = max_out; | 
|  | ScopedEVP_MD_CTX ctx; | 
|  | if (!setup_ctx(ssl, ctx.get(), privatekey, sigalg, false /* sign */) || | 
|  | !EVP_DigestSign(ctx.get(), out, out_len, in.data(), in.size())) { | 
|  | return ssl_private_key_failure; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Save the hint if applicable. | 
|  | if (hints && hs->hints_requested) { | 
|  | hints->signature_algorithm = sigalg; | 
|  | hints->signature_spki = std::move(spki); | 
|  | if (!hints->signature_input.CopyFrom(in) || | 
|  | !hints->signature.CopyFrom(MakeConstSpan(out, *out_len))) { | 
|  | return ssl_private_key_failure; | 
|  | } | 
|  | } | 
|  | return ssl_private_key_success; | 
|  | } | 
|  |  | 
|  | bool ssl_public_key_verify(SSL *ssl, Span<const uint8_t> signature, | 
|  | uint16_t sigalg, EVP_PKEY *pkey, | 
|  | Span<const uint8_t> in) { | 
|  | ScopedEVP_MD_CTX ctx; | 
|  | if (!setup_ctx(ssl, ctx.get(), pkey, sigalg, true /* verify */)) { | 
|  | return false; | 
|  | } | 
|  | bool ok = EVP_DigestVerify(ctx.get(), signature.data(), signature.size(), | 
|  | in.data(), in.size()); | 
|  | #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) | 
|  | ok = true; | 
|  | ERR_clear_error(); | 
|  | #endif | 
|  | return ok; | 
|  | } | 
|  |  | 
|  | enum ssl_private_key_result_t ssl_private_key_decrypt(SSL_HANDSHAKE *hs, | 
|  | uint8_t *out, | 
|  | size_t *out_len, | 
|  | size_t max_out, | 
|  | Span<const uint8_t> in) { | 
|  | SSL *const ssl = hs->ssl; | 
|  | assert(!hs->can_release_private_key); | 
|  | if (hs->config->cert->key_method != NULL) { | 
|  | enum ssl_private_key_result_t ret; | 
|  | if (hs->pending_private_key_op) { | 
|  | ret = hs->config->cert->key_method->complete(ssl, out, out_len, max_out); | 
|  | } else { | 
|  | ret = hs->config->cert->key_method->decrypt(ssl, out, out_len, max_out, | 
|  | in.data(), in.size()); | 
|  | } | 
|  | if (ret == ssl_private_key_failure) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_PRIVATE_KEY_OPERATION_FAILED); | 
|  | } | 
|  | hs->pending_private_key_op = ret == ssl_private_key_retry; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | RSA *rsa = EVP_PKEY_get0_RSA(hs->config->cert->privatekey.get()); | 
|  | if (rsa == NULL) { | 
|  | // Decrypt operations are only supported for RSA keys. | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | return ssl_private_key_failure; | 
|  | } | 
|  |  | 
|  | // Decrypt with no padding. PKCS#1 padding will be removed as part of the | 
|  | // timing-sensitive code by the caller. | 
|  | if (!RSA_decrypt(rsa, out_len, out, max_out, in.data(), in.size(), | 
|  | RSA_NO_PADDING)) { | 
|  | return ssl_private_key_failure; | 
|  | } | 
|  | return ssl_private_key_success; | 
|  | } | 
|  |  | 
|  | bool ssl_private_key_supports_signature_algorithm(SSL_HANDSHAKE *hs, | 
|  | uint16_t sigalg) { | 
|  | SSL *const ssl = hs->ssl; | 
|  | if (!pkey_supports_algorithm(ssl, hs->local_pubkey.get(), sigalg)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Ensure the RSA key is large enough for the hash. RSASSA-PSS requires that | 
|  | // emLen be at least hLen + sLen + 2. Both hLen and sLen are the size of the | 
|  | // hash in TLS. Reasonable RSA key sizes are large enough for the largest | 
|  | // defined RSASSA-PSS algorithm, but 1024-bit RSA is slightly too small for | 
|  | // SHA-512. 1024-bit RSA is sometimes used for test credentials, so check the | 
|  | // size so that we can fall back to another algorithm in that case. | 
|  | const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg); | 
|  | if (alg->is_rsa_pss && (size_t)EVP_PKEY_size(hs->local_pubkey.get()) < | 
|  | 2 * EVP_MD_size(alg->digest_func()) + 2) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | BSSL_NAMESPACE_END | 
|  |  | 
|  | using namespace bssl; | 
|  |  | 
|  | int SSL_use_RSAPrivateKey(SSL *ssl, RSA *rsa) { | 
|  | if (rsa == NULL || ssl->config == NULL) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new()); | 
|  | if (!pkey || | 
|  | !EVP_PKEY_set1_RSA(pkey.get(), rsa)) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return ssl_set_pkey(ssl->config->cert.get(), pkey.get()); | 
|  | } | 
|  |  | 
|  | int SSL_use_RSAPrivateKey_ASN1(SSL *ssl, const uint8_t *der, size_t der_len) { | 
|  | UniquePtr<RSA> rsa(RSA_private_key_from_bytes(der, der_len)); | 
|  | if (!rsa) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return SSL_use_RSAPrivateKey(ssl, rsa.get()); | 
|  | } | 
|  |  | 
|  | int SSL_use_PrivateKey(SSL *ssl, EVP_PKEY *pkey) { | 
|  | if (pkey == NULL || ssl->config == NULL) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return ssl_set_pkey(ssl->config->cert.get(), pkey); | 
|  | } | 
|  |  | 
|  | int SSL_use_PrivateKey_ASN1(int type, SSL *ssl, const uint8_t *der, | 
|  | size_t der_len) { | 
|  | if (der_len > LONG_MAX) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const uint8_t *p = der; | 
|  | UniquePtr<EVP_PKEY> pkey(d2i_PrivateKey(type, NULL, &p, (long)der_len)); | 
|  | if (!pkey || p != der + der_len) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return SSL_use_PrivateKey(ssl, pkey.get()); | 
|  | } | 
|  |  | 
|  | int SSL_CTX_use_RSAPrivateKey(SSL_CTX *ctx, RSA *rsa) { | 
|  | if (rsa == NULL) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new()); | 
|  | if (!pkey || | 
|  | !EVP_PKEY_set1_RSA(pkey.get(), rsa)) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return ssl_set_pkey(ctx->cert.get(), pkey.get()); | 
|  | } | 
|  |  | 
|  | int SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX *ctx, const uint8_t *der, | 
|  | size_t der_len) { | 
|  | UniquePtr<RSA> rsa(RSA_private_key_from_bytes(der, der_len)); | 
|  | if (!rsa) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return SSL_CTX_use_RSAPrivateKey(ctx, rsa.get()); | 
|  | } | 
|  |  | 
|  | int SSL_CTX_use_PrivateKey(SSL_CTX *ctx, EVP_PKEY *pkey) { | 
|  | if (pkey == NULL) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return ssl_set_pkey(ctx->cert.get(), pkey); | 
|  | } | 
|  |  | 
|  | int SSL_CTX_use_PrivateKey_ASN1(int type, SSL_CTX *ctx, const uint8_t *der, | 
|  | size_t der_len) { | 
|  | if (der_len > LONG_MAX) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const uint8_t *p = der; | 
|  | UniquePtr<EVP_PKEY> pkey(d2i_PrivateKey(type, NULL, &p, (long)der_len)); | 
|  | if (!pkey || p != der + der_len) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return SSL_CTX_use_PrivateKey(ctx, pkey.get()); | 
|  | } | 
|  |  | 
|  | void SSL_set_private_key_method(SSL *ssl, | 
|  | const SSL_PRIVATE_KEY_METHOD *key_method) { | 
|  | if (!ssl->config) { | 
|  | return; | 
|  | } | 
|  | ssl->config->cert->key_method = key_method; | 
|  | } | 
|  |  | 
|  | void SSL_CTX_set_private_key_method(SSL_CTX *ctx, | 
|  | const SSL_PRIVATE_KEY_METHOD *key_method) { | 
|  | ctx->cert->key_method = key_method; | 
|  | } | 
|  |  | 
|  | static constexpr size_t kMaxSignatureAlgorithmNameLen = 23; | 
|  |  | 
|  | // This was "constexpr" rather than "const", but that triggered a bug in MSVC | 
|  | // where it didn't pad the strings to the correct length. | 
|  | static const struct { | 
|  | uint16_t signature_algorithm; | 
|  | const char name[kMaxSignatureAlgorithmNameLen]; | 
|  | } kSignatureAlgorithmNames[] = { | 
|  | {SSL_SIGN_RSA_PKCS1_MD5_SHA1, "rsa_pkcs1_md5_sha1"}, | 
|  | {SSL_SIGN_RSA_PKCS1_SHA1, "rsa_pkcs1_sha1"}, | 
|  | {SSL_SIGN_RSA_PKCS1_SHA256, "rsa_pkcs1_sha256"}, | 
|  | {SSL_SIGN_RSA_PKCS1_SHA384, "rsa_pkcs1_sha384"}, | 
|  | {SSL_SIGN_RSA_PKCS1_SHA512, "rsa_pkcs1_sha512"}, | 
|  | {SSL_SIGN_ECDSA_SHA1, "ecdsa_sha1"}, | 
|  | {SSL_SIGN_ECDSA_SECP256R1_SHA256, "ecdsa_secp256r1_sha256"}, | 
|  | {SSL_SIGN_ECDSA_SECP384R1_SHA384, "ecdsa_secp384r1_sha384"}, | 
|  | {SSL_SIGN_ECDSA_SECP521R1_SHA512, "ecdsa_secp521r1_sha512"}, | 
|  | {SSL_SIGN_RSA_PSS_RSAE_SHA256, "rsa_pss_rsae_sha256"}, | 
|  | {SSL_SIGN_RSA_PSS_RSAE_SHA384, "rsa_pss_rsae_sha384"}, | 
|  | {SSL_SIGN_RSA_PSS_RSAE_SHA512, "rsa_pss_rsae_sha512"}, | 
|  | {SSL_SIGN_ED25519, "ed25519"}, | 
|  | }; | 
|  |  | 
|  | const char *SSL_get_signature_algorithm_name(uint16_t sigalg, | 
|  | int include_curve) { | 
|  | if (!include_curve) { | 
|  | switch (sigalg) { | 
|  | case SSL_SIGN_ECDSA_SECP256R1_SHA256: | 
|  | return "ecdsa_sha256"; | 
|  | case SSL_SIGN_ECDSA_SECP384R1_SHA384: | 
|  | return "ecdsa_sha384"; | 
|  | case SSL_SIGN_ECDSA_SECP521R1_SHA512: | 
|  | return "ecdsa_sha512"; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (const auto &candidate : kSignatureAlgorithmNames) { | 
|  | if (candidate.signature_algorithm == sigalg) { | 
|  | return candidate.name; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | int SSL_get_signature_algorithm_key_type(uint16_t sigalg) { | 
|  | const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg); | 
|  | return alg != nullptr ? alg->pkey_type : EVP_PKEY_NONE; | 
|  | } | 
|  |  | 
|  | const EVP_MD *SSL_get_signature_algorithm_digest(uint16_t sigalg) { | 
|  | const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg); | 
|  | if (alg == nullptr || alg->digest_func == nullptr) { | 
|  | return nullptr; | 
|  | } | 
|  | return alg->digest_func(); | 
|  | } | 
|  |  | 
|  | int SSL_is_signature_algorithm_rsa_pss(uint16_t sigalg) { | 
|  | const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg); | 
|  | return alg != nullptr && alg->is_rsa_pss; | 
|  | } | 
|  |  | 
|  | int SSL_CTX_set_signing_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs, | 
|  | size_t num_prefs) { | 
|  | return ctx->cert->sigalgs.CopyFrom(MakeConstSpan(prefs, num_prefs)); | 
|  | } | 
|  |  | 
|  | int SSL_set_signing_algorithm_prefs(SSL *ssl, const uint16_t *prefs, | 
|  | size_t num_prefs) { | 
|  | if (!ssl->config) { | 
|  | return 0; | 
|  | } | 
|  | return ssl->config->cert->sigalgs.CopyFrom(MakeConstSpan(prefs, num_prefs)); | 
|  | } | 
|  |  | 
|  | static constexpr struct { | 
|  | int pkey_type; | 
|  | int hash_nid; | 
|  | uint16_t signature_algorithm; | 
|  | } kSignatureAlgorithmsMapping[] = { | 
|  | {EVP_PKEY_RSA, NID_sha1, SSL_SIGN_RSA_PKCS1_SHA1}, | 
|  | {EVP_PKEY_RSA, NID_sha256, SSL_SIGN_RSA_PKCS1_SHA256}, | 
|  | {EVP_PKEY_RSA, NID_sha384, SSL_SIGN_RSA_PKCS1_SHA384}, | 
|  | {EVP_PKEY_RSA, NID_sha512, SSL_SIGN_RSA_PKCS1_SHA512}, | 
|  | {EVP_PKEY_RSA_PSS, NID_sha256, SSL_SIGN_RSA_PSS_RSAE_SHA256}, | 
|  | {EVP_PKEY_RSA_PSS, NID_sha384, SSL_SIGN_RSA_PSS_RSAE_SHA384}, | 
|  | {EVP_PKEY_RSA_PSS, NID_sha512, SSL_SIGN_RSA_PSS_RSAE_SHA512}, | 
|  | {EVP_PKEY_EC, NID_sha1, SSL_SIGN_ECDSA_SHA1}, | 
|  | {EVP_PKEY_EC, NID_sha256, SSL_SIGN_ECDSA_SECP256R1_SHA256}, | 
|  | {EVP_PKEY_EC, NID_sha384, SSL_SIGN_ECDSA_SECP384R1_SHA384}, | 
|  | {EVP_PKEY_EC, NID_sha512, SSL_SIGN_ECDSA_SECP521R1_SHA512}, | 
|  | {EVP_PKEY_ED25519, NID_undef, SSL_SIGN_ED25519}, | 
|  | }; | 
|  |  | 
|  | static bool parse_sigalg_pairs(Array<uint16_t> *out, const int *values, | 
|  | size_t num_values) { | 
|  | if ((num_values & 1) == 1) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const size_t num_pairs = num_values / 2; | 
|  | if (!out->Init(num_pairs)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < num_values; i += 2) { | 
|  | const int hash_nid = values[i]; | 
|  | const int pkey_type = values[i+1]; | 
|  |  | 
|  | bool found = false; | 
|  | for (const auto &candidate : kSignatureAlgorithmsMapping) { | 
|  | if (candidate.pkey_type == pkey_type && candidate.hash_nid == hash_nid) { | 
|  | (*out)[i / 2] = candidate.signature_algorithm; | 
|  | found = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!found) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); | 
|  | ERR_add_error_dataf("unknown hash:%d pkey:%d", hash_nid, pkey_type); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int compare_uint16_t(const void *p1, const void *p2) { | 
|  | uint16_t u1 = *((const uint16_t *)p1); | 
|  | uint16_t u2 = *((const uint16_t *)p2); | 
|  | if (u1 < u2) { | 
|  | return -1; | 
|  | } else if (u1 > u2) { | 
|  | return 1; | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool sigalgs_unique(Span<const uint16_t> in_sigalgs) { | 
|  | if (in_sigalgs.size() < 2) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Array<uint16_t> sigalgs; | 
|  | if (!sigalgs.CopyFrom(in_sigalgs)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | qsort(sigalgs.data(), sigalgs.size(), sizeof(uint16_t), compare_uint16_t); | 
|  |  | 
|  | for (size_t i = 1; i < sigalgs.size(); i++) { | 
|  | if (sigalgs[i - 1] == sigalgs[i]) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_DUPLICATE_SIGNATURE_ALGORITHM); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int SSL_CTX_set1_sigalgs(SSL_CTX *ctx, const int *values, size_t num_values) { | 
|  | Array<uint16_t> sigalgs; | 
|  | if (!parse_sigalg_pairs(&sigalgs, values, num_values) || | 
|  | !sigalgs_unique(sigalgs)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!SSL_CTX_set_signing_algorithm_prefs(ctx, sigalgs.data(), | 
|  | sigalgs.size()) || | 
|  | !ctx->verify_sigalgs.CopyFrom(sigalgs)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int SSL_set1_sigalgs(SSL *ssl, const int *values, size_t num_values) { | 
|  | if (!ssl->config) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Array<uint16_t> sigalgs; | 
|  | if (!parse_sigalg_pairs(&sigalgs, values, num_values) || | 
|  | !sigalgs_unique(sigalgs)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!SSL_set_signing_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size()) || | 
|  | !ssl->config->verify_sigalgs.CopyFrom(sigalgs)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static bool parse_sigalgs_list(Array<uint16_t> *out, const char *str) { | 
|  | // str looks like "RSA+SHA1:ECDSA+SHA256:ecdsa_secp256r1_sha256". | 
|  |  | 
|  | // Count colons to give the number of output elements from any successful | 
|  | // parse. | 
|  | size_t num_elements = 1; | 
|  | size_t len = 0; | 
|  | for (const char *p = str; *p; p++) { | 
|  | len++; | 
|  | if (*p == ':') { | 
|  | num_elements++; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!out->Init(num_elements)) { | 
|  | return false; | 
|  | } | 
|  | size_t out_i = 0; | 
|  |  | 
|  | enum { | 
|  | pkey_or_name, | 
|  | hash_name, | 
|  | } state = pkey_or_name; | 
|  |  | 
|  | char buf[kMaxSignatureAlgorithmNameLen]; | 
|  | // buf_used is always < sizeof(buf). I.e. it's always safe to write | 
|  | // buf[buf_used] = 0. | 
|  | size_t buf_used = 0; | 
|  |  | 
|  | int pkey_type = 0, hash_nid = 0; | 
|  |  | 
|  | // Note that the loop runs to len+1, i.e. it'll process the terminating NUL. | 
|  | for (size_t offset = 0; offset < len+1; offset++) { | 
|  | const unsigned char c = str[offset]; | 
|  |  | 
|  | switch (c) { | 
|  | case '+': | 
|  | if (state == hash_name) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); | 
|  | ERR_add_error_dataf("+ found in hash name at offset %zu", offset); | 
|  | return false; | 
|  | } | 
|  | if (buf_used == 0) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); | 
|  | ERR_add_error_dataf("empty public key type at offset %zu", offset); | 
|  | return false; | 
|  | } | 
|  | buf[buf_used] = 0; | 
|  |  | 
|  | if (strcmp(buf, "RSA") == 0) { | 
|  | pkey_type = EVP_PKEY_RSA; | 
|  | } else if (strcmp(buf, "RSA-PSS") == 0 || | 
|  | strcmp(buf, "PSS") == 0) { | 
|  | pkey_type = EVP_PKEY_RSA_PSS; | 
|  | } else if (strcmp(buf, "ECDSA") == 0) { | 
|  | pkey_type = EVP_PKEY_EC; | 
|  | } else { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); | 
|  | ERR_add_error_dataf("unknown public key type '%s'", buf); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | state = hash_name; | 
|  | buf_used = 0; | 
|  | break; | 
|  |  | 
|  | case ':': | 
|  | OPENSSL_FALLTHROUGH; | 
|  | case 0: | 
|  | if (buf_used == 0) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); | 
|  | ERR_add_error_dataf("empty element at offset %zu", offset); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | buf[buf_used] = 0; | 
|  |  | 
|  | if (state == pkey_or_name) { | 
|  | // No '+' was seen thus this is a TLS 1.3-style name. | 
|  | bool found = false; | 
|  | for (const auto &candidate : kSignatureAlgorithmNames) { | 
|  | if (strcmp(candidate.name, buf) == 0) { | 
|  | assert(out_i < num_elements); | 
|  | (*out)[out_i++] = candidate.signature_algorithm; | 
|  | found = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!found) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); | 
|  | ERR_add_error_dataf("unknown signature algorithm '%s'", buf); | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | if (strcmp(buf, "SHA1") == 0) { | 
|  | hash_nid = NID_sha1; | 
|  | } else if (strcmp(buf, "SHA256") == 0) { | 
|  | hash_nid = NID_sha256; | 
|  | } else if (strcmp(buf, "SHA384") == 0) { | 
|  | hash_nid = NID_sha384; | 
|  | } else if (strcmp(buf, "SHA512") == 0) { | 
|  | hash_nid = NID_sha512; | 
|  | } else { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); | 
|  | ERR_add_error_dataf("unknown hash function '%s'", buf); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool found = false; | 
|  | for (const auto &candidate : kSignatureAlgorithmsMapping) { | 
|  | if (candidate.pkey_type == pkey_type && | 
|  | candidate.hash_nid == hash_nid) { | 
|  | assert(out_i < num_elements); | 
|  | (*out)[out_i++] = candidate.signature_algorithm; | 
|  | found = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!found) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); | 
|  | ERR_add_error_dataf("unknown pkey:%d hash:%s", pkey_type, buf); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | state = pkey_or_name; | 
|  | buf_used = 0; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | if (buf_used == sizeof(buf) - 1) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); | 
|  | ERR_add_error_dataf("substring too long at offset %zu", offset); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if ((c >= '0' && c <= '9') || (c >= 'a' && c <= 'z') || | 
|  | (c >= 'A' && c <= 'Z') || c == '-' || c == '_') { | 
|  | buf[buf_used++] = c; | 
|  | } else { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); | 
|  | ERR_add_error_dataf("invalid character 0x%02x at offest %zu", c, | 
|  | offset); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(out_i == out->size()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int SSL_CTX_set1_sigalgs_list(SSL_CTX *ctx, const char *str) { | 
|  | Array<uint16_t> sigalgs; | 
|  | if (!parse_sigalgs_list(&sigalgs, str) || | 
|  | !sigalgs_unique(sigalgs)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!SSL_CTX_set_signing_algorithm_prefs(ctx, sigalgs.data(), | 
|  | sigalgs.size()) || | 
|  | !SSL_CTX_set_verify_algorithm_prefs(ctx, sigalgs.data(), | 
|  | sigalgs.size())) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int SSL_set1_sigalgs_list(SSL *ssl, const char *str) { | 
|  | if (!ssl->config) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Array<uint16_t> sigalgs; | 
|  | if (!parse_sigalgs_list(&sigalgs, str) || | 
|  | !sigalgs_unique(sigalgs)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!SSL_set_signing_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size()) || | 
|  | !SSL_set_verify_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size())) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int SSL_CTX_set_verify_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs, | 
|  | size_t num_prefs) { | 
|  | return ctx->verify_sigalgs.CopyFrom(MakeConstSpan(prefs, num_prefs)); | 
|  | } | 
|  |  | 
|  | int SSL_set_verify_algorithm_prefs(SSL *ssl, const uint16_t *prefs, | 
|  | size_t num_prefs) { | 
|  | if (!ssl->config) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return ssl->config->verify_sigalgs.CopyFrom(MakeConstSpan(prefs, num_prefs)); | 
|  | } |