blob: 6f952fb3022687e3036f5bc708ff25571876020c [file] [log] [blame]
/* Copyright (c) 2020, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <algorithm>
#include <limits>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
#include <gtest/gtest.h>
#include <openssl/bytestring.h>
#include <openssl/curve25519.h>
#include <openssl/evp.h>
#include <openssl/mem.h>
#include <openssl/rand.h>
#include <openssl/sha.h>
#include <openssl/trust_token.h>
#include "../ec_extra/internal.h"
#include "../fipsmodule/ec/internal.h"
#include "../internal.h"
#include "../test/test_util.h"
#include "internal.h"
BSSL_NAMESPACE_BEGIN
namespace {
const uint8_t kMessage[] = "MSG";
TEST(TrustTokenTest, KeyGenExp1) {
uint8_t priv_key[TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE];
uint8_t pub_key[TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE];
size_t priv_key_len, pub_key_len;
ASSERT_TRUE(TRUST_TOKEN_generate_key(
TRUST_TOKEN_experiment_v1(), priv_key, &priv_key_len,
TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE, pub_key, &pub_key_len,
TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE, 0x0001));
ASSERT_EQ(292u, priv_key_len);
ASSERT_EQ(301u, pub_key_len);
const uint8_t kKeygenSecret[] = "SEED";
ASSERT_TRUE(TRUST_TOKEN_derive_key_from_secret(
TRUST_TOKEN_experiment_v1(), priv_key, &priv_key_len,
TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE, pub_key, &pub_key_len,
TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE, 0x0001, kKeygenSecret,
sizeof(kKeygenSecret) - 1));
const uint8_t kExpectedPriv[] = {
0x00, 0x00, 0x00, 0x01, 0x98, 0xaa, 0x32, 0xfc, 0x5f, 0x83, 0x35, 0xea,
0x57, 0x4f, 0x9e, 0x61, 0x48, 0x6e, 0x89, 0x9d, 0x3d, 0xaa, 0x38, 0x5d,
0xd0, 0x06, 0x96, 0x62, 0xe8, 0x0b, 0xd6, 0x5f, 0x12, 0xa4, 0xcc, 0xa9,
0xb5, 0x20, 0x1b, 0x13, 0x8c, 0x1c, 0xaf, 0x36, 0x1b, 0xab, 0x0c, 0xc6,
0xac, 0x38, 0xae, 0x96, 0x3d, 0x14, 0x9d, 0xb8, 0x8d, 0xf4, 0x7f, 0xe2,
0x7d, 0xeb, 0x17, 0xc2, 0xbc, 0x63, 0x42, 0x93, 0x94, 0xe4, 0x97, 0xbf,
0x97, 0xea, 0x02, 0x40, 0xac, 0xb6, 0xa5, 0x03, 0x4c, 0x6b, 0x4c, 0xb8,
0x8c, 0xf4, 0x66, 0x1b, 0x4e, 0x02, 0x45, 0xf9, 0xcd, 0xb6, 0x0f, 0x59,
0x09, 0x21, 0x03, 0x7e, 0x92, 0x1f, 0x3f, 0x40, 0x83, 0x50, 0xe3, 0xdc,
0x9e, 0x6f, 0x65, 0xc5, 0xbd, 0x2c, 0x7d, 0xab, 0x74, 0x49, 0xc8, 0xa2,
0x3c, 0xab, 0xcb, 0x4d, 0x63, 0x73, 0x81, 0x2b, 0xb2, 0x1e, 0x00, 0x8f,
0x00, 0xb8, 0xd8, 0xb4, 0x5d, 0xc4, 0x3f, 0x3d, 0xa8, 0x4f, 0x4c, 0x72,
0x0e, 0x20, 0x17, 0x4b, 0xac, 0x14, 0x8f, 0xb2, 0xa5, 0x20, 0x41, 0x2b,
0xf7, 0x62, 0x25, 0x6a, 0xd6, 0x41, 0x26, 0x62, 0x10, 0xc1, 0xbc, 0x42,
0xac, 0x54, 0x1b, 0x75, 0x05, 0xd6, 0x53, 0xb1, 0x7b, 0x84, 0x6a, 0x7b,
0x5b, 0x2a, 0x34, 0x6e, 0x43, 0x4b, 0x43, 0xcc, 0x6c, 0xdb, 0x1d, 0x02,
0x34, 0x7f, 0xd1, 0xe8, 0xfd, 0x42, 0x2c, 0xd9, 0x14, 0xdb, 0xd6, 0xf4,
0xad, 0xb5, 0xe4, 0xac, 0xdd, 0x7e, 0xb5, 0x4c, 0x3f, 0x59, 0x24, 0xfa,
0x04, 0xd9, 0xb6, 0xd2, 0xb7, 0x7d, 0xf1, 0xfa, 0x13, 0xc0, 0x4d, 0xd5,
0xca, 0x3a, 0x4e, 0xa8, 0xdd, 0xa9, 0xfc, 0xcb, 0x06, 0xb2, 0xde, 0x4b,
0x2a, 0x86, 0xbb, 0x0d, 0x41, 0xb6, 0x3d, 0xfb, 0x49, 0xc8, 0xdf, 0x9a,
0x48, 0xe5, 0x68, 0x8a, 0xfc, 0x86, 0x9c, 0x79, 0x5a, 0x79, 0xc1, 0x09,
0x33, 0x53, 0xdc, 0x3d, 0xe9, 0x93, 0x7c, 0x5b, 0x72, 0xf7, 0xa0, 0x8a,
0x1f, 0x07, 0x6c, 0x38, 0x3c, 0x99, 0x0b, 0xe4, 0x4e, 0xa4, 0xbd, 0x41,
0x1f, 0x83, 0xa6, 0xd3
};
ASSERT_EQ(Bytes(kExpectedPriv, sizeof(kExpectedPriv)),
Bytes(priv_key, priv_key_len));
const uint8_t kExpectedPub[] = {
0x00, 0x00, 0x00, 0x01, 0x00, 0x61, 0x04, 0x5e, 0x06, 0x6b, 0x7b, 0xfd,
0x54, 0x01, 0xe0, 0xd2, 0xb5, 0x12, 0xce, 0x48, 0x16, 0x66, 0xb2, 0xdf,
0xfd, 0xa8, 0x38, 0x7c, 0x1f, 0x45, 0x1a, 0xb8, 0x21, 0x52, 0x17, 0x25,
0xbb, 0x0b, 0x00, 0xd4, 0xa1, 0xbc, 0x28, 0xd9, 0x08, 0x36, 0x98, 0xb2,
0x17, 0xd3, 0xb5, 0xad, 0xb6, 0x4e, 0x03, 0x5f, 0xd3, 0x66, 0x2c, 0x58,
0x1c, 0xcc, 0xc6, 0x23, 0xa4, 0xf9, 0xa2, 0x7e, 0xb0, 0xe4, 0xd3, 0x95,
0x41, 0x6f, 0xba, 0x23, 0x4a, 0x82, 0x93, 0x29, 0x73, 0x75, 0x38, 0x85,
0x64, 0x9c, 0xaa, 0x12, 0x6d, 0x7d, 0xcd, 0x52, 0x02, 0x91, 0x9f, 0xa9,
0xee, 0x4b, 0xfd, 0x68, 0x97, 0x40, 0xdc, 0x00, 0x61, 0x04, 0x14, 0x16,
0x39, 0xf9, 0x63, 0x66, 0x94, 0x03, 0xfa, 0x0b, 0xbf, 0xca, 0x5a, 0x39,
0x9f, 0x27, 0x5b, 0x3f, 0x69, 0x7a, 0xc9, 0xf7, 0x25, 0x7c, 0x84, 0x9e,
0x1d, 0x61, 0x5a, 0x24, 0x53, 0xf2, 0x4a, 0x9d, 0xe9, 0x05, 0x53, 0xfd,
0x12, 0x01, 0x2d, 0x9a, 0x69, 0x50, 0x74, 0x82, 0xa3, 0x45, 0x73, 0xdc,
0x34, 0x36, 0x31, 0x44, 0x07, 0x0c, 0xda, 0x13, 0xbe, 0x94, 0x37, 0x65,
0xa0, 0xab, 0x16, 0x52, 0x90, 0xe5, 0x8a, 0x03, 0xe5, 0x98, 0x79, 0x14,
0x79, 0xd5, 0x17, 0xee, 0xd4, 0xb8, 0xda, 0x77, 0x76, 0x03, 0x20, 0x2a,
0x7e, 0x3b, 0x76, 0x0b, 0x23, 0xb7, 0x72, 0x77, 0xb2, 0xeb, 0x00, 0x61,
0x04, 0x68, 0x18, 0x4d, 0x23, 0x23, 0xf4, 0x45, 0xb8, 0x81, 0x0d, 0xa4,
0x5d, 0x0b, 0x9e, 0x08, 0xfb, 0x45, 0xfb, 0x96, 0x29, 0x43, 0x2f, 0xab,
0x93, 0x04, 0x4c, 0x04, 0xb6, 0x5e, 0x27, 0xf5, 0x39, 0x66, 0x94, 0x15,
0x1d, 0xb1, 0x1c, 0x7c, 0x27, 0x6f, 0xa5, 0x19, 0x0c, 0x30, 0x12, 0xcc,
0x77, 0x7f, 0x10, 0xa9, 0x7c, 0xe4, 0x08, 0x77, 0x3c, 0xd3, 0x6f, 0xa4,
0xf4, 0xaf, 0xf1, 0x9d, 0x14, 0x1d, 0xd0, 0x02, 0x33, 0x50, 0x55, 0x00,
0x6a, 0x47, 0x96, 0xe1, 0x8b, 0x4e, 0x44, 0x41, 0xad, 0xb3, 0xea, 0x0d,
0x0d, 0xd5, 0x73, 0x8e, 0x62, 0x67, 0x8a, 0xb4, 0xe7, 0x5d, 0x17, 0xa9,
0x24};
ASSERT_EQ(Bytes(kExpectedPub, sizeof(kExpectedPub)),
Bytes(pub_key, pub_key_len));
}
TEST(TrustTokenTest, KeyGenExp2VOPRF) {
uint8_t priv_key[TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE];
uint8_t pub_key[TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE];
size_t priv_key_len, pub_key_len;
ASSERT_TRUE(TRUST_TOKEN_generate_key(
TRUST_TOKEN_experiment_v2_voprf(), priv_key, &priv_key_len,
TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE, pub_key, &pub_key_len,
TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE, 0x0001));
ASSERT_EQ(52u, priv_key_len);
ASSERT_EQ(101u, pub_key_len);
const uint8_t kKeygenSecret[] = "SEED";
ASSERT_TRUE(TRUST_TOKEN_derive_key_from_secret(
TRUST_TOKEN_experiment_v2_voprf(), priv_key, &priv_key_len,
TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE, pub_key, &pub_key_len,
TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE, 0x0001, kKeygenSecret,
sizeof(kKeygenSecret) - 1));
const uint8_t kExpectedPriv[] = {
0x00, 0x00, 0x00, 0x01, 0x0b, 0xe2, 0xc4, 0x73, 0x92, 0xe7, 0xf8,
0x3e, 0xba, 0xab, 0x85, 0xa7, 0x77, 0xd7, 0x0a, 0x02, 0xc5, 0x36,
0xfe, 0x62, 0xa3, 0xca, 0x01, 0x75, 0xc7, 0x62, 0x19, 0xc7, 0xf0,
0x30, 0xc5, 0x14, 0x60, 0x13, 0x97, 0x4f, 0x63, 0x05, 0x37, 0x92,
0x7b, 0x76, 0x8e, 0x9f, 0xd0, 0x1a, 0x74, 0x44
};
ASSERT_EQ(Bytes(kExpectedPriv, sizeof(kExpectedPriv)),
Bytes(priv_key, priv_key_len));
const uint8_t kExpectedPub[] = {
0x00, 0x00, 0x00, 0x01, 0x04, 0x2c, 0x9c, 0x11, 0xc1, 0xe5, 0x52, 0x59,
0x0b, 0x6d, 0x88, 0x8b, 0x6e, 0x28, 0xe8, 0xc5, 0xa3, 0xbe, 0x48, 0x18,
0xf7, 0x1d, 0x31, 0xcf, 0xa2, 0x6e, 0x2a, 0xd6, 0xcb, 0x83, 0x26, 0x04,
0xbd, 0x93, 0x67, 0xe4, 0x53, 0xf6, 0x11, 0x7d, 0x45, 0xe9, 0xfe, 0x27,
0x33, 0x90, 0xdb, 0x1b, 0xfc, 0x9b, 0x31, 0x4d, 0x39, 0x1f, 0x1f, 0x8c,
0x43, 0x06, 0x70, 0x2c, 0x84, 0xdc, 0x23, 0x18, 0xc7, 0x6a, 0x58, 0xcf,
0x9e, 0xc1, 0xfa, 0xf2, 0x30, 0xdd, 0xad, 0x62, 0x24, 0xde, 0x11, 0xc1,
0xba, 0x8d, 0xc3, 0x4f, 0xfb, 0xe5, 0xa5, 0xd4, 0x37, 0xba, 0x3b, 0x70,
0xc0, 0xc3, 0xef, 0x20, 0x43
};
ASSERT_EQ(Bytes(kExpectedPub, sizeof(kExpectedPub)),
Bytes(pub_key, pub_key_len));
}
TEST(TrustTokenTest, KeyGenExp2PMB) {
uint8_t priv_key[TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE];
uint8_t pub_key[TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE];
size_t priv_key_len, pub_key_len;
ASSERT_TRUE(TRUST_TOKEN_generate_key(
TRUST_TOKEN_experiment_v2_pmb(), priv_key, &priv_key_len,
TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE, pub_key, &pub_key_len,
TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE, 0x0001));
ASSERT_EQ(292u, priv_key_len);
ASSERT_EQ(295u, pub_key_len);
const uint8_t kKeygenSecret[] = "SEED";
ASSERT_TRUE(TRUST_TOKEN_derive_key_from_secret(
TRUST_TOKEN_experiment_v2_pmb(), priv_key, &priv_key_len,
TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE, pub_key, &pub_key_len,
TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE, 0x0001, kKeygenSecret,
sizeof(kKeygenSecret) - 1));
const uint8_t kExpectedPriv[] = {
0x00, 0x00, 0x00, 0x01, 0x1b, 0x74, 0xdc, 0xf0, 0xa9, 0xa7, 0x6c, 0xfb,
0x41, 0xef, 0xfa, 0x65, 0x52, 0xc9, 0x86, 0x4e, 0xfb, 0x16, 0x9d, 0xea,
0x62, 0x3f, 0x47, 0xab, 0x1f, 0x1b, 0x05, 0xf2, 0x4f, 0x05, 0xfe, 0x64,
0xb7, 0xe8, 0xcd, 0x2a, 0x10, 0xfa, 0xa2, 0x48, 0x3f, 0x0e, 0x8b, 0x94,
0x39, 0xf1, 0xe7, 0x53, 0xe9, 0x50, 0x29, 0xe2, 0xb7, 0x0e, 0xc0, 0x94,
0xa9, 0xd3, 0xef, 0x64, 0x10, 0x1d, 0x08, 0xd0, 0x60, 0xcb, 0x6d, 0x97,
0x68, 0xc7, 0x04, 0x92, 0x07, 0xb2, 0x22, 0x83, 0xf7, 0xd9, 0x9b, 0x2c,
0xf2, 0x52, 0x34, 0x0c, 0x42, 0x31, 0x47, 0x41, 0x19, 0xb9, 0xee, 0xfc,
0x46, 0xbd, 0x14, 0xce, 0x42, 0xd7, 0x43, 0xc8, 0x32, 0x3b, 0x24, 0xed,
0xdc, 0x69, 0xa3, 0x8e, 0x29, 0x01, 0xbe, 0xae, 0x24, 0x39, 0x14, 0xa7,
0x52, 0xe5, 0xd5, 0xff, 0x9a, 0xc4, 0x15, 0x79, 0x29, 0x4c, 0x9b, 0x4e,
0xfc, 0x61, 0xf2, 0x12, 0x6f, 0x4f, 0xd3, 0x96, 0x28, 0xb0, 0x79, 0xf0,
0x4e, 0x6e, 0x7d, 0x56, 0x19, 0x1b, 0xc2, 0xd7, 0xf9, 0x3a, 0x58, 0x06,
0xe5, 0xec, 0xa4, 0x33, 0x14, 0x1c, 0x78, 0x0c, 0x83, 0x94, 0x34, 0x22,
0x5a, 0x8e, 0x2e, 0xa1, 0x72, 0x4a, 0x03, 0x35, 0xfe, 0x46, 0x92, 0x41,
0x6b, 0xe6, 0x4b, 0x3f, 0xf0, 0xe7, 0x0b, 0xb5, 0xf3, 0x66, 0x6c, 0xc6,
0x14, 0xcf, 0xce, 0x32, 0x0a, 0x2c, 0x28, 0xba, 0x4e, 0xb9, 0x75, 0x4a,
0xa9, 0x2d, 0xb0, 0x8c, 0xd0, 0x62, 0x52, 0x29, 0x1f, 0x12, 0xfd, 0xfb,
0xd3, 0x2a, 0x36, 0x0f, 0x89, 0x32, 0x86, 0x25, 0x56, 0xb9, 0xe7, 0x3c,
0xeb, 0xb4, 0x84, 0x41, 0x2b, 0xa8, 0xf3, 0xa5, 0x3d, 0xfe, 0x56, 0x94,
0x5b, 0x74, 0xb3, 0x5b, 0x27, 0x3f, 0xe7, 0xcf, 0xe4, 0xf8, 0x15, 0x95,
0x2a, 0xd2, 0x5f, 0x92, 0xb4, 0x6a, 0x89, 0xa5, 0x54, 0xbd, 0x27, 0x5e,
0xeb, 0x43, 0x07, 0x9b, 0x2b, 0x8b, 0x22, 0x59, 0x13, 0x4b, 0x9c, 0x56,
0xd8, 0x63, 0xd9, 0xe6, 0x85, 0x15, 0x2c, 0x82, 0x52, 0x40, 0x8f, 0xb1,
0xe7, 0x56, 0x07, 0x98
};
ASSERT_EQ(Bytes(kExpectedPriv, sizeof(kExpectedPriv)),
Bytes(priv_key, priv_key_len));
const uint8_t kExpectedPub[] = {
0x00, 0x00, 0x00, 0x01, 0x04, 0x48, 0xb1, 0x2d, 0xdd, 0x03, 0x32, 0xeb,
0x93, 0x31, 0x3d, 0x59, 0x74, 0xf0, 0xcf, 0xaa, 0xa5, 0x39, 0x5f, 0x53,
0xc4, 0x94, 0x98, 0xbe, 0x8f, 0x22, 0xd7, 0x30, 0xde, 0x1e, 0xb4, 0xf3,
0x32, 0x23, 0x90, 0x0b, 0xa6, 0x37, 0x4a, 0x4b, 0x44, 0xb3, 0x26, 0x52,
0x93, 0x7b, 0x4b, 0xa4, 0x79, 0xe8, 0x77, 0x6a, 0x19, 0x81, 0x2a, 0xdd,
0x91, 0xfb, 0x90, 0x8b, 0x24, 0xb5, 0xbe, 0x20, 0x2e, 0xe8, 0xbc, 0xd3,
0x83, 0x6c, 0xa8, 0xc5, 0xa1, 0x9a, 0x5b, 0x5e, 0x60, 0xda, 0x45, 0x2e,
0x31, 0x7f, 0x54, 0x0e, 0x14, 0x40, 0xd2, 0x4d, 0x40, 0x2e, 0x21, 0x79,
0xfc, 0x77, 0xdd, 0xc7, 0x2d, 0x04, 0xfe, 0xc6, 0xe3, 0xcf, 0x99, 0xef,
0x88, 0xab, 0x76, 0x86, 0x16, 0x14, 0xed, 0x72, 0x35, 0xa7, 0x05, 0x13,
0x9f, 0x2c, 0x53, 0xd5, 0xdf, 0x66, 0x75, 0x2e, 0x68, 0xdc, 0xd4, 0xc4,
0x00, 0x36, 0x08, 0x6d, 0xb7, 0x15, 0xf7, 0xe5, 0x32, 0x59, 0x81, 0x16,
0x57, 0xaa, 0x72, 0x06, 0xf0, 0xad, 0xd1, 0x85, 0xa0, 0x04, 0xd4, 0x11,
0x95, 0x1d, 0xac, 0x0b, 0x25, 0xbe, 0x59, 0xa2, 0xb3, 0x30, 0xee, 0x97,
0x07, 0x2a, 0x51, 0x15, 0xc1, 0x8d, 0xa8, 0xa6, 0x57, 0x9a, 0x4e, 0xbf,
0xd7, 0x2d, 0x35, 0x07, 0x6b, 0xd6, 0xc9, 0x3c, 0xe4, 0xcf, 0x0b, 0x14,
0x3e, 0x10, 0x51, 0x77, 0xd6, 0x84, 0x04, 0xbe, 0xd1, 0xd5, 0xa8, 0xf3,
0x9d, 0x1d, 0x4f, 0xc1, 0xc9, 0xf1, 0x0c, 0x6d, 0xb6, 0xcb, 0xe2, 0x05,
0x0b, 0x9c, 0x7a, 0x3a, 0x9a, 0x99, 0xe9, 0xa1, 0x93, 0xdc, 0x72, 0x2e,
0xef, 0xf3, 0x8d, 0xb9, 0x7b, 0xb0, 0x19, 0x24, 0x95, 0x0d, 0x68, 0xa7,
0xe0, 0xaa, 0x0b, 0xb1, 0xd1, 0xcc, 0x52, 0x14, 0xf9, 0x6c, 0x91, 0x59,
0xe4, 0xe1, 0x9b, 0xf9, 0x12, 0x39, 0xb1, 0x79, 0xbb, 0x21, 0x92, 0x00,
0xa4, 0x89, 0xf5, 0xbd, 0xd7, 0x89, 0x27, 0x40, 0xdc, 0xb1, 0x09, 0x38,
0x63, 0x91, 0x8c, 0xa5, 0x27, 0x27, 0x97, 0x39, 0x35, 0xfa, 0x1a, 0x8a,
0xa7, 0xe5, 0xc4, 0xd8, 0xbf, 0xe7, 0xbe
};
ASSERT_EQ(Bytes(kExpectedPub, sizeof(kExpectedPub)),
Bytes(pub_key, pub_key_len));
}
// Test that H in |TRUST_TOKEN_experiment_v1| was computed correctly.
TEST(TrustTokenTest, HExp1) {
const EC_GROUP *group = EC_GROUP_new_by_curve_name(NID_secp384r1);
ASSERT_TRUE(group);
const uint8_t kHGen[] = "generator";
const uint8_t kHLabel[] = "PMBTokens Experiment V1 HashH";
bssl::UniquePtr<EC_POINT> expected_h(EC_POINT_new(group));
ASSERT_TRUE(expected_h);
ASSERT_TRUE(ec_hash_to_curve_p384_xmd_sha512_sswu_draft07(
group, &expected_h->raw, kHLabel, sizeof(kHLabel), kHGen, sizeof(kHGen)));
uint8_t expected_bytes[1 + 2 * EC_MAX_BYTES];
size_t expected_len =
EC_POINT_point2oct(group, expected_h.get(), POINT_CONVERSION_UNCOMPRESSED,
expected_bytes, sizeof(expected_bytes), nullptr);
uint8_t h[97];
ASSERT_TRUE(pmbtoken_exp1_get_h_for_testing(h));
EXPECT_EQ(Bytes(h), Bytes(expected_bytes, expected_len));
}
// Test that H in |TRUST_TOKEN_experiment_v2_pmb| was computed correctly.
TEST(TrustTokenTest, HExp2) {
const EC_GROUP *group = EC_GROUP_new_by_curve_name(NID_secp384r1);
ASSERT_TRUE(group);
const uint8_t kHGen[] = "generator";
const uint8_t kHLabel[] = "PMBTokens Experiment V2 HashH";
bssl::UniquePtr<EC_POINT> expected_h(EC_POINT_new(group));
ASSERT_TRUE(expected_h);
ASSERT_TRUE(ec_hash_to_curve_p384_xmd_sha512_sswu_draft07(
group, &expected_h->raw, kHLabel, sizeof(kHLabel), kHGen, sizeof(kHGen)));
uint8_t expected_bytes[1 + 2 * EC_MAX_BYTES];
size_t expected_len =
EC_POINT_point2oct(group, expected_h.get(), POINT_CONVERSION_UNCOMPRESSED,
expected_bytes, sizeof(expected_bytes), nullptr);
uint8_t h[97];
ASSERT_TRUE(pmbtoken_exp2_get_h_for_testing(h));
EXPECT_EQ(Bytes(h), Bytes(expected_bytes, expected_len));
}
static std::vector<const TRUST_TOKEN_METHOD *> AllMethods() {
return {
TRUST_TOKEN_experiment_v1(),
TRUST_TOKEN_experiment_v2_voprf(),
TRUST_TOKEN_experiment_v2_pmb()
};
}
class TrustTokenProtocolTestBase : public ::testing::Test {
public:
explicit TrustTokenProtocolTestBase(const TRUST_TOKEN_METHOD *method_arg,
bool use_msg)
: method_(method_arg), use_msg_(use_msg) {}
// KeyID returns the key ID associated with key index |i|.
static uint32_t KeyID(size_t i) {
assert(i <= UINT32_MAX);
// Use a different value from the indices to that we do not mix them up.
return static_cast<uint32_t>(7 + i);
}
const TRUST_TOKEN_METHOD *method() { return method_; }
const bool use_message() { return use_msg_; }
protected:
void SetupContexts() {
client.reset(TRUST_TOKEN_CLIENT_new(method(), client_max_batchsize));
ASSERT_TRUE(client);
issuer.reset(TRUST_TOKEN_ISSUER_new(method(), issuer_max_batchsize));
ASSERT_TRUE(issuer);
for (size_t i = 0; i < method()->max_keys; i++) {
uint8_t priv_key[TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE];
uint8_t pub_key[TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE];
size_t priv_key_len, pub_key_len, key_index;
ASSERT_TRUE(TRUST_TOKEN_generate_key(
method(), priv_key, &priv_key_len, TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE,
pub_key, &pub_key_len, TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE, KeyID(i)));
ASSERT_TRUE(TRUST_TOKEN_CLIENT_add_key(client.get(), &key_index, pub_key,
pub_key_len));
ASSERT_EQ(i, key_index);
ASSERT_TRUE(
TRUST_TOKEN_ISSUER_add_key(issuer.get(), priv_key, priv_key_len));
}
uint8_t public_key[32], private_key[64];
ED25519_keypair(public_key, private_key);
bssl::UniquePtr<EVP_PKEY> priv(EVP_PKEY_new_raw_private_key(
EVP_PKEY_ED25519, nullptr, private_key, 32));
ASSERT_TRUE(priv);
bssl::UniquePtr<EVP_PKEY> pub(
EVP_PKEY_new_raw_public_key(EVP_PKEY_ED25519, nullptr, public_key, 32));
ASSERT_TRUE(pub);
TRUST_TOKEN_CLIENT_set_srr_key(client.get(), pub.get());
TRUST_TOKEN_ISSUER_set_srr_key(issuer.get(), priv.get());
RAND_bytes(metadata_key, sizeof(metadata_key));
ASSERT_TRUE(TRUST_TOKEN_ISSUER_set_metadata_key(issuer.get(), metadata_key,
sizeof(metadata_key)));
}
const TRUST_TOKEN_METHOD *method_;
bool use_msg_;
uint16_t client_max_batchsize = 10;
uint16_t issuer_max_batchsize = 10;
bssl::UniquePtr<TRUST_TOKEN_CLIENT> client;
bssl::UniquePtr<TRUST_TOKEN_ISSUER> issuer;
uint8_t metadata_key[32];
};
class TrustTokenProtocolTest
: public TrustTokenProtocolTestBase,
public testing::WithParamInterface<
std::tuple<const TRUST_TOKEN_METHOD *, bool>> {
public:
TrustTokenProtocolTest()
: TrustTokenProtocolTestBase(std::get<0>(GetParam()),
std::get<1>(GetParam())) {}
};
INSTANTIATE_TEST_SUITE_P(TrustTokenAllProtocolTest, TrustTokenProtocolTest,
testing::Combine(testing::ValuesIn(AllMethods()),
testing::Bool()));
TEST_P(TrustTokenProtocolTest, InvalidToken) {
ASSERT_NO_FATAL_FAILURE(SetupContexts());
uint8_t *issue_msg = NULL, *issue_resp = NULL;
size_t msg_len, resp_len;
size_t key_index;
size_t tokens_issued;
if (use_message()) {
ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance_over_message(
client.get(), &issue_msg, &msg_len, 1, kMessage, sizeof(kMessage)));
} else {
ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance(client.get(), &issue_msg,
&msg_len, 1));
}
bssl::UniquePtr<uint8_t> free_issue_msg(issue_msg);
ASSERT_TRUE(TRUST_TOKEN_ISSUER_issue(
issuer.get(), &issue_resp, &resp_len, &tokens_issued, issue_msg, msg_len,
/*public_metadata=*/KeyID(0), /*private_metadata=*/0,
/*max_issuance=*/10));
bssl::UniquePtr<uint8_t> free_msg(issue_resp);
bssl::UniquePtr<STACK_OF(TRUST_TOKEN)> tokens(
TRUST_TOKEN_CLIENT_finish_issuance(client.get(), &key_index, issue_resp,
resp_len));
ASSERT_TRUE(tokens);
for (TRUST_TOKEN *token : tokens.get()) {
// Corrupt the token.
token->data[0] ^= 0x42;
uint8_t *redeem_msg = NULL, *redeem_resp = NULL;
ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_redemption(
client.get(), &redeem_msg, &msg_len, token, NULL, 0, 0));
bssl::UniquePtr<uint8_t> free_redeem_msg(redeem_msg);
uint32_t public_value;
uint8_t private_value;
TRUST_TOKEN *rtoken;
uint8_t *client_data;
size_t client_data_len;
if (use_message()) {
ASSERT_FALSE(TRUST_TOKEN_ISSUER_redeem_over_message(
issuer.get(), &public_value, &private_value, &rtoken, &client_data,
&client_data_len, redeem_msg, msg_len, kMessage, sizeof(kMessage)));
} else {
ASSERT_FALSE(TRUST_TOKEN_ISSUER_redeem(
issuer.get(), &public_value, &private_value, &rtoken, &client_data,
&client_data_len, redeem_msg, msg_len));
}
bssl::UniquePtr<uint8_t> free_redeem_resp(redeem_resp);
}
}
TEST_P(TrustTokenProtocolTest, TruncatedIssuanceRequest) {
ASSERT_NO_FATAL_FAILURE(SetupContexts());
uint8_t *issue_msg = NULL, *issue_resp = NULL;
size_t msg_len, resp_len;
if (use_message()) {
ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance_over_message(
client.get(), &issue_msg, &msg_len, 10, kMessage, sizeof(kMessage)));
} else {
ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance(client.get(), &issue_msg,
&msg_len, 10));
}
bssl::UniquePtr<uint8_t> free_issue_msg(issue_msg);
msg_len = 10;
size_t tokens_issued;
ASSERT_FALSE(TRUST_TOKEN_ISSUER_issue(
issuer.get(), &issue_resp, &resp_len, &tokens_issued, issue_msg, msg_len,
/*public_metadata=*/KeyID(0), /*private_metadata=*/0,
/*max_issuance=*/10));
bssl::UniquePtr<uint8_t> free_msg(issue_resp);
}
TEST_P(TrustTokenProtocolTest, TruncatedIssuanceResponse) {
ASSERT_NO_FATAL_FAILURE(SetupContexts());
uint8_t *issue_msg = NULL, *issue_resp = NULL;
size_t msg_len, resp_len;
if (use_message()) {
ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance_over_message(
client.get(), &issue_msg, &msg_len, 10, kMessage, sizeof(kMessage)));
} else {
ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance(client.get(), &issue_msg,
&msg_len, 10));
}
bssl::UniquePtr<uint8_t> free_issue_msg(issue_msg);
size_t tokens_issued;
ASSERT_TRUE(TRUST_TOKEN_ISSUER_issue(
issuer.get(), &issue_resp, &resp_len, &tokens_issued, issue_msg, msg_len,
/*public_metadata=*/KeyID(0), /*private_metadata=*/0,
/*max_issuance=*/10));
bssl::UniquePtr<uint8_t> free_msg(issue_resp);
resp_len = 10;
size_t key_index;
bssl::UniquePtr<STACK_OF(TRUST_TOKEN)> tokens(
TRUST_TOKEN_CLIENT_finish_issuance(client.get(), &key_index, issue_resp,
resp_len));
ASSERT_FALSE(tokens);
}
TEST_P(TrustTokenProtocolTest, ExtraDataIssuanceResponse) {
ASSERT_NO_FATAL_FAILURE(SetupContexts());
uint8_t *request = NULL, *response = NULL;
size_t request_len, response_len;
if (use_message()) {
ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance_over_message(
client.get(), &request, &request_len, 10, kMessage, sizeof(kMessage)));
} else {
ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance(client.get(), &request,
&request_len, 10));
}
bssl::UniquePtr<uint8_t> free_request(request);
size_t tokens_issued;
ASSERT_TRUE(TRUST_TOKEN_ISSUER_issue(issuer.get(), &response, &response_len,
&tokens_issued, request, request_len,
/*public_metadata=*/KeyID(0),
/*private_metadata=*/0,
/*max_issuance=*/10));
bssl::UniquePtr<uint8_t> free_response(response);
std::vector<uint8_t> response2(response, response + response_len);
response2.push_back(0);
size_t key_index;
bssl::UniquePtr<STACK_OF(TRUST_TOKEN)> tokens(
TRUST_TOKEN_CLIENT_finish_issuance(client.get(), &key_index,
response2.data(), response2.size()));
ASSERT_FALSE(tokens);
}
TEST_P(TrustTokenProtocolTest, TruncatedRedemptionRequest) {
ASSERT_NO_FATAL_FAILURE(SetupContexts());
uint8_t *issue_msg = NULL, *issue_resp = NULL;
size_t msg_len, resp_len;
if (use_message()) {
ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance_over_message(
client.get(), &issue_msg, &msg_len, 10, kMessage, sizeof(kMessage)));
} else {
ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance(client.get(), &issue_msg,
&msg_len, 10));
}
bssl::UniquePtr<uint8_t> free_issue_msg(issue_msg);
size_t tokens_issued;
ASSERT_TRUE(TRUST_TOKEN_ISSUER_issue(
issuer.get(), &issue_resp, &resp_len, &tokens_issued, issue_msg, msg_len,
/*public_metadata=*/KeyID(0), /*private_metadata=*/0,
/*max_issuance=*/10));
bssl::UniquePtr<uint8_t> free_msg(issue_resp);
size_t key_index;
bssl::UniquePtr<STACK_OF(TRUST_TOKEN)> tokens(
TRUST_TOKEN_CLIENT_finish_issuance(client.get(), &key_index, issue_resp,
resp_len));
ASSERT_TRUE(tokens);
for (TRUST_TOKEN *token : tokens.get()) {
const uint8_t kClientData[] = "\x70TEST CLIENT DATA";
uint64_t kRedemptionTime = (method()->has_srr ? 13374242 : 0);
uint8_t *redeem_msg = NULL;
ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_redemption(
client.get(), &redeem_msg, &msg_len, token, kClientData,
sizeof(kClientData) - 1, kRedemptionTime));
bssl::UniquePtr<uint8_t> free_redeem_msg(redeem_msg);
msg_len = 10;
uint32_t public_value;
uint8_t private_value;
TRUST_TOKEN *rtoken;
uint8_t *client_data;
size_t client_data_len;
if (use_message()) {
ASSERT_FALSE(TRUST_TOKEN_ISSUER_redeem_over_message(
issuer.get(), &public_value, &private_value, &rtoken, &client_data,
&client_data_len, redeem_msg, msg_len, kMessage, sizeof(kMessage)));
} else {
ASSERT_FALSE(TRUST_TOKEN_ISSUER_redeem(
issuer.get(), &public_value, &private_value, &rtoken, &client_data,
&client_data_len, redeem_msg, msg_len));
}
}
}
TEST_P(TrustTokenProtocolTest, IssuedWithBadKeyID) {
client.reset(TRUST_TOKEN_CLIENT_new(method(), client_max_batchsize));
ASSERT_TRUE(client);
issuer.reset(TRUST_TOKEN_ISSUER_new(method(), issuer_max_batchsize));
ASSERT_TRUE(issuer);
// We configure the client and the issuer with different key IDs and test
// that the client notices.
const uint32_t kClientKeyID = 0;
const uint32_t kIssuerKeyID = 42;
uint8_t priv_key[TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE];
uint8_t pub_key[TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE];
size_t priv_key_len, pub_key_len, key_index;
ASSERT_TRUE(TRUST_TOKEN_generate_key(
method(), priv_key, &priv_key_len, TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE,
pub_key, &pub_key_len, TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE, kClientKeyID));
ASSERT_TRUE(TRUST_TOKEN_CLIENT_add_key(client.get(), &key_index, pub_key,
pub_key_len));
ASSERT_EQ(0UL, key_index);
ASSERT_TRUE(TRUST_TOKEN_generate_key(
method(), priv_key, &priv_key_len, TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE,
pub_key, &pub_key_len, TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE, kIssuerKeyID));
ASSERT_TRUE(TRUST_TOKEN_ISSUER_add_key(issuer.get(), priv_key, priv_key_len));
uint8_t public_key[32], private_key[64];
ED25519_keypair(public_key, private_key);
bssl::UniquePtr<EVP_PKEY> priv(
EVP_PKEY_new_raw_private_key(EVP_PKEY_ED25519, nullptr, private_key, 32));
ASSERT_TRUE(priv);
bssl::UniquePtr<EVP_PKEY> pub(
EVP_PKEY_new_raw_public_key(EVP_PKEY_ED25519, nullptr, public_key, 32));
ASSERT_TRUE(pub);
TRUST_TOKEN_CLIENT_set_srr_key(client.get(), pub.get());
TRUST_TOKEN_ISSUER_set_srr_key(issuer.get(), priv.get());
RAND_bytes(metadata_key, sizeof(metadata_key));
ASSERT_TRUE(TRUST_TOKEN_ISSUER_set_metadata_key(issuer.get(), metadata_key,
sizeof(metadata_key)));
uint8_t *issue_msg = NULL, *issue_resp = NULL;
size_t msg_len, resp_len;
if (use_message()) {
ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance_over_message(
client.get(), &issue_msg, &msg_len, 10, kMessage, sizeof(kMessage)));
} else {
ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance(client.get(), &issue_msg,
&msg_len, 10));
}
bssl::UniquePtr<uint8_t> free_issue_msg(issue_msg);
size_t tokens_issued;
ASSERT_TRUE(TRUST_TOKEN_ISSUER_issue(
issuer.get(), &issue_resp, &resp_len, &tokens_issued, issue_msg, msg_len,
/*public_metadata=*/42, /*private_metadata=*/0, /*max_issuance=*/10));
bssl::UniquePtr<uint8_t> free_msg(issue_resp);
bssl::UniquePtr<STACK_OF(TRUST_TOKEN)> tokens(
TRUST_TOKEN_CLIENT_finish_issuance(client.get(), &key_index, issue_resp,
resp_len));
ASSERT_FALSE(tokens);
}
class TrustTokenMetadataTest
: public TrustTokenProtocolTestBase,
public testing::WithParamInterface<
std::tuple<const TRUST_TOKEN_METHOD *, bool, int, bool>> {
public:
TrustTokenMetadataTest()
: TrustTokenProtocolTestBase(std::get<0>(GetParam()),
std::get<1>(GetParam())) {}
int public_metadata() { return std::get<2>(GetParam()); }
bool private_metadata() { return std::get<3>(GetParam()); }
};
TEST_P(TrustTokenMetadataTest, SetAndGetMetadata) {
ASSERT_NO_FATAL_FAILURE(SetupContexts());
uint8_t *issue_msg = NULL, *issue_resp = NULL;
size_t msg_len, resp_len;
if (use_message()) {
ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance_over_message(
client.get(), &issue_msg, &msg_len, 10, kMessage, sizeof(kMessage)));
} else {
ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance(client.get(), &issue_msg,
&msg_len, 10));
}
bssl::UniquePtr<uint8_t> free_issue_msg(issue_msg);
size_t tokens_issued;
bool result = TRUST_TOKEN_ISSUER_issue(
issuer.get(), &issue_resp, &resp_len, &tokens_issued, issue_msg, msg_len,
public_metadata(), private_metadata(), /*max_issuance=*/1);
if (!method()->has_private_metadata && private_metadata()) {
ASSERT_FALSE(result);
return;
}
ASSERT_TRUE(result);
bssl::UniquePtr<uint8_t> free_msg(issue_resp);
size_t key_index;
bssl::UniquePtr<STACK_OF(TRUST_TOKEN)> tokens(
TRUST_TOKEN_CLIENT_finish_issuance(client.get(), &key_index, issue_resp,
resp_len));
ASSERT_TRUE(tokens);
EXPECT_EQ(1u, sk_TRUST_TOKEN_num(tokens.get()));
for (TRUST_TOKEN *token : tokens.get()) {
const uint8_t kClientData[] = "\x70TEST CLIENT DATA";
uint64_t kRedemptionTime = (method()->has_srr ? 13374242 : 0);
uint8_t *redeem_msg = NULL;
ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_redemption(
client.get(), &redeem_msg, &msg_len, token, kClientData,
sizeof(kClientData) - 1, kRedemptionTime));
bssl::UniquePtr<uint8_t> free_redeem_msg(redeem_msg);
uint32_t public_value;
uint8_t private_value;
TRUST_TOKEN *rtoken;
uint8_t *client_data;
size_t client_data_len;
if (use_message()) {
ASSERT_TRUE(TRUST_TOKEN_ISSUER_redeem_over_message(
issuer.get(), &public_value, &private_value, &rtoken, &client_data,
&client_data_len, redeem_msg, msg_len, kMessage, sizeof(kMessage)));
} else {
ASSERT_TRUE(TRUST_TOKEN_ISSUER_redeem(
issuer.get(), &public_value, &private_value, &rtoken, &client_data,
&client_data_len, redeem_msg, msg_len));
}
bssl::UniquePtr<uint8_t> free_client_data(client_data);
bssl::UniquePtr<TRUST_TOKEN> free_rtoken(rtoken);
ASSERT_EQ(Bytes(kClientData, sizeof(kClientData) - 1),
Bytes(client_data, client_data_len));
ASSERT_EQ(public_value, static_cast<uint32_t>(public_metadata()));
ASSERT_EQ(private_value, private_metadata());
}
}
TEST_P(TrustTokenMetadataTest, TooManyRequests) {
if (!method()->has_private_metadata && private_metadata()) {
return;
}
issuer_max_batchsize = 1;
ASSERT_NO_FATAL_FAILURE(SetupContexts());
uint8_t *issue_msg = NULL, *issue_resp = NULL;
size_t msg_len, resp_len;
if (use_message()) {
ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance_over_message(
client.get(), &issue_msg, &msg_len, 10, kMessage, sizeof(kMessage)));
} else {
ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance(client.get(), &issue_msg,
&msg_len, 10));
}
bssl::UniquePtr<uint8_t> free_issue_msg(issue_msg);
size_t tokens_issued;
ASSERT_TRUE(TRUST_TOKEN_ISSUER_issue(
issuer.get(), &issue_resp, &resp_len, &tokens_issued, issue_msg, msg_len,
public_metadata(), private_metadata(), /*max_issuance=*/1));
bssl::UniquePtr<uint8_t> free_msg(issue_resp);
ASSERT_EQ(tokens_issued, issuer_max_batchsize);
size_t key_index;
bssl::UniquePtr<STACK_OF(TRUST_TOKEN)> tokens(
TRUST_TOKEN_CLIENT_finish_issuance(client.get(), &key_index, issue_resp,
resp_len));
ASSERT_TRUE(tokens);
ASSERT_EQ(sk_TRUST_TOKEN_num(tokens.get()), 1UL);
}
TEST_P(TrustTokenMetadataTest, TruncatedProof) {
if (!method()->has_private_metadata && private_metadata()) {
return;
}
ASSERT_NO_FATAL_FAILURE(SetupContexts());
uint8_t *issue_msg = NULL, *issue_resp = NULL;
size_t msg_len, resp_len;
if (use_message()) {
ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance_over_message(
client.get(), &issue_msg, &msg_len, 10, kMessage, sizeof(kMessage)));
} else {
ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance(client.get(), &issue_msg,
&msg_len, 10));
}
bssl::UniquePtr<uint8_t> free_issue_msg(issue_msg);
size_t tokens_issued;
ASSERT_TRUE(TRUST_TOKEN_ISSUER_issue(
issuer.get(), &issue_resp, &resp_len, &tokens_issued, issue_msg, msg_len,
public_metadata(), private_metadata(), /*max_issuance=*/1));
bssl::UniquePtr<uint8_t> free_msg(issue_resp);
CBS real_response;
CBS_init(&real_response, issue_resp, resp_len);
uint16_t count;
uint32_t parsed_public_metadata;
bssl::ScopedCBB bad_response;
ASSERT_TRUE(CBB_init(bad_response.get(), 0));
ASSERT_TRUE(CBS_get_u16(&real_response, &count));
ASSERT_TRUE(CBB_add_u16(bad_response.get(), count));
ASSERT_TRUE(CBS_get_u32(&real_response, &parsed_public_metadata));
ASSERT_TRUE(CBB_add_u32(bad_response.get(), parsed_public_metadata));
const EC_GROUP *group = EC_GROUP_new_by_curve_name(NID_secp384r1);
size_t token_length =
TRUST_TOKEN_NONCE_SIZE + 2 * (1 + 2 * BN_num_bytes(&group->field));
if (method() == TRUST_TOKEN_experiment_v1()) {
token_length += 4;
}
if (method() == TRUST_TOKEN_experiment_v2_voprf()) {
token_length = 1 + 2 * BN_num_bytes(&group->field);
}
for (size_t i = 0; i < count; i++) {
ASSERT_TRUE(CBB_add_bytes(bad_response.get(), CBS_data(&real_response),
token_length));
ASSERT_TRUE(CBS_skip(&real_response, token_length));
}
CBS tmp;
ASSERT_TRUE(CBS_get_u16_length_prefixed(&real_response, &tmp));
CBB dleq;
ASSERT_TRUE(CBB_add_u16_length_prefixed(bad_response.get(), &dleq));
ASSERT_TRUE(CBB_add_bytes(&dleq, CBS_data(&tmp), CBS_len(&tmp) - 2));
ASSERT_TRUE(CBB_flush(bad_response.get()));
uint8_t *bad_buf;
size_t bad_len;
ASSERT_TRUE(CBB_finish(bad_response.get(), &bad_buf, &bad_len));
bssl::UniquePtr<uint8_t> free_bad(bad_buf);
size_t key_index;
bssl::UniquePtr<STACK_OF(TRUST_TOKEN)> tokens(
TRUST_TOKEN_CLIENT_finish_issuance(client.get(), &key_index, bad_buf,
bad_len));
ASSERT_FALSE(tokens);
}
TEST_P(TrustTokenMetadataTest, ExcessDataProof) {
if (!method()->has_private_metadata && private_metadata()) {
return;
}
ASSERT_NO_FATAL_FAILURE(SetupContexts());
uint8_t *issue_msg = NULL, *issue_resp = NULL;
size_t msg_len, resp_len;
if (use_message()) {
ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance_over_message(
client.get(), &issue_msg, &msg_len, 10, kMessage, sizeof(kMessage)));
} else {
ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance(client.get(), &issue_msg,
&msg_len, 10));
}
bssl::UniquePtr<uint8_t> free_issue_msg(issue_msg);
size_t tokens_issued;
ASSERT_TRUE(TRUST_TOKEN_ISSUER_issue(
issuer.get(), &issue_resp, &resp_len, &tokens_issued, issue_msg, msg_len,
public_metadata(), private_metadata(), /*max_issuance=*/1));
bssl::UniquePtr<uint8_t> free_msg(issue_resp);
CBS real_response;
CBS_init(&real_response, issue_resp, resp_len);
uint16_t count;
uint32_t parsed_public_metadata;
bssl::ScopedCBB bad_response;
ASSERT_TRUE(CBB_init(bad_response.get(), 0));
ASSERT_TRUE(CBS_get_u16(&real_response, &count));
ASSERT_TRUE(CBB_add_u16(bad_response.get(), count));
ASSERT_TRUE(CBS_get_u32(&real_response, &parsed_public_metadata));
ASSERT_TRUE(CBB_add_u32(bad_response.get(), parsed_public_metadata));
const EC_GROUP *group = EC_GROUP_new_by_curve_name(NID_secp384r1);
size_t token_length =
TRUST_TOKEN_NONCE_SIZE + 2 * (1 + 2 * BN_num_bytes(&group->field));
if (method() == TRUST_TOKEN_experiment_v1()) {
token_length += 4;
}
if (method() == TRUST_TOKEN_experiment_v2_voprf()) {
token_length = 1 + 2 * BN_num_bytes(&group->field);
}
for (size_t i = 0; i < count; i++) {
ASSERT_TRUE(CBB_add_bytes(bad_response.get(), CBS_data(&real_response),
token_length));
ASSERT_TRUE(CBS_skip(&real_response, token_length));
}
CBS tmp;
ASSERT_TRUE(CBS_get_u16_length_prefixed(&real_response, &tmp));
CBB dleq;
ASSERT_TRUE(CBB_add_u16_length_prefixed(bad_response.get(), &dleq));
ASSERT_TRUE(CBB_add_bytes(&dleq, CBS_data(&tmp), CBS_len(&tmp)));
ASSERT_TRUE(CBB_add_u16(&dleq, 42));
ASSERT_TRUE(CBB_flush(bad_response.get()));
uint8_t *bad_buf;
size_t bad_len;
ASSERT_TRUE(CBB_finish(bad_response.get(), &bad_buf, &bad_len));
bssl::UniquePtr<uint8_t> free_bad(bad_buf);
size_t key_index;
bssl::UniquePtr<STACK_OF(TRUST_TOKEN)> tokens(
TRUST_TOKEN_CLIENT_finish_issuance(client.get(), &key_index, bad_buf,
bad_len));
ASSERT_FALSE(tokens);
}
INSTANTIATE_TEST_SUITE_P(
TrustTokenAllMetadataTest, TrustTokenMetadataTest,
testing::Combine(testing::ValuesIn(AllMethods()),
testing::Bool(),
testing::Values(TrustTokenProtocolTest::KeyID(0),
TrustTokenProtocolTest::KeyID(1),
TrustTokenProtocolTest::KeyID(2)),
testing::Bool()));
class TrustTokenBadKeyTest
: public TrustTokenProtocolTestBase,
public testing::WithParamInterface<
std::tuple<const TRUST_TOKEN_METHOD *, bool, bool, int>> {
public:
TrustTokenBadKeyTest()
: TrustTokenProtocolTestBase(std::get<0>(GetParam()),
std::get<1>(GetParam())) {}
bool private_metadata() { return std::get<2>(GetParam()); }
int corrupted_key() { return std::get<3>(GetParam()); }
};
TEST_P(TrustTokenBadKeyTest, BadKey) {
// For versions without private metadata, only corruptions of 'xs' (the 4th
// entry in |scalars| below) result in a bad key, as the other scalars are
// unused internally.
if (!method()->has_private_metadata &&
(private_metadata() || corrupted_key() != 4)) {
return;
}
ASSERT_NO_FATAL_FAILURE(SetupContexts());
uint8_t *issue_msg = NULL, *issue_resp = NULL;
size_t msg_len, resp_len;
if (use_message()) {
ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance_over_message(
client.get(), &issue_msg, &msg_len, 10, kMessage, sizeof(kMessage)));
} else {
ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance(client.get(), &issue_msg,
&msg_len, 10));
}
bssl::UniquePtr<uint8_t> free_issue_msg(issue_msg);
struct trust_token_issuer_key_st *key = &issuer->keys[0];
EC_SCALAR *scalars[] = {&key->key.x0, &key->key.y0, &key->key.x1,
&key->key.y1, &key->key.xs, &key->key.ys};
// Corrupt private key scalar.
scalars[corrupted_key()]->words[0] ^= 42;
size_t tokens_issued;
ASSERT_TRUE(TRUST_TOKEN_ISSUER_issue(
issuer.get(), &issue_resp, &resp_len, &tokens_issued, issue_msg, msg_len,
/*public_metadata=*/7, private_metadata(), /*max_issuance=*/1));
bssl::UniquePtr<uint8_t> free_msg(issue_resp);
size_t key_index;
bssl::UniquePtr<STACK_OF(TRUST_TOKEN)> tokens(
TRUST_TOKEN_CLIENT_finish_issuance(client.get(), &key_index, issue_resp,
resp_len));
// If the unused private key is corrupted, then the DLEQ proof should succeed.
if ((corrupted_key() / 2 == 0 && private_metadata() == true) ||
(corrupted_key() / 2 == 1 && private_metadata() == false)) {
ASSERT_TRUE(tokens);
} else {
ASSERT_FALSE(tokens);
}
}
INSTANTIATE_TEST_SUITE_P(TrustTokenAllBadKeyTest, TrustTokenBadKeyTest,
testing::Combine(testing::ValuesIn(AllMethods()),
testing::Bool(),
testing::Bool(),
testing::Values(0, 1, 2, 3, 4, 5)));
} // namespace
BSSL_NAMESPACE_END