| /* Copyright (c) 2020, Google Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| |
| #include <assert.h> |
| #include <string.h> |
| |
| #include <openssl/aead.h> |
| #include <openssl/bytestring.h> |
| #include <openssl/digest.h> |
| #include <openssl/err.h> |
| #include <openssl/evp.h> |
| #include <openssl/hkdf.h> |
| #include <openssl/sha.h> |
| |
| #include "../internal.h" |
| #include "internal.h" |
| |
| |
| // This file implements draft-irtf-cfrg-hpke-05. |
| |
| #define KEM_CONTEXT_LEN (2 * X25519_PUBLIC_VALUE_LEN) |
| |
| // HPKE KEM scheme IDs. |
| #define HPKE_DHKEM_X25519_HKDF_SHA256 0x0020 |
| |
| // This is strlen("HPKE") + 3 * sizeof(uint16_t). |
| #define HPKE_SUITE_ID_LEN 10 |
| |
| #define HPKE_MODE_BASE 0 |
| #define HPKE_MODE_PSK 1 |
| |
| static const char kHpkeRfcId[] = "HPKE-05 "; |
| |
| static int add_label_string(CBB *cbb, const char *label) { |
| return CBB_add_bytes(cbb, (const uint8_t *)label, strlen(label)); |
| } |
| |
| // The suite_id for the KEM is defined as concat("KEM", I2OSP(kem_id, 2)). Note |
| // that the suite_id used outside of the KEM also includes the kdf_id and |
| // aead_id. |
| static const uint8_t kX25519SuiteID[] = { |
| 'K', 'E', 'M', HPKE_DHKEM_X25519_HKDF_SHA256 >> 8, |
| HPKE_DHKEM_X25519_HKDF_SHA256 & 0x00ff}; |
| |
| // The suite_id for non-KEM pieces of HPKE is defined as concat("HPKE", |
| // I2OSP(kem_id, 2), I2OSP(kdf_id, 2), I2OSP(aead_id, 2)). |
| static int hpke_build_suite_id(uint8_t out[HPKE_SUITE_ID_LEN], uint16_t kdf_id, |
| uint16_t aead_id) { |
| CBB cbb; |
| int ret = CBB_init_fixed(&cbb, out, HPKE_SUITE_ID_LEN) && |
| add_label_string(&cbb, "HPKE") && |
| CBB_add_u16(&cbb, HPKE_DHKEM_X25519_HKDF_SHA256) && |
| CBB_add_u16(&cbb, kdf_id) && |
| CBB_add_u16(&cbb, aead_id); |
| CBB_cleanup(&cbb); |
| return ret; |
| } |
| |
| static int hpke_labeled_extract(const EVP_MD *hkdf_md, uint8_t *out_key, |
| size_t *out_len, const uint8_t *salt, |
| size_t salt_len, const uint8_t *suite_id, |
| size_t suite_id_len, const char *label, |
| const uint8_t *ikm, size_t ikm_len) { |
| // labeledIKM = concat("RFCXXXX ", suite_id, label, IKM) |
| CBB labeled_ikm; |
| int ok = CBB_init(&labeled_ikm, 0) && |
| add_label_string(&labeled_ikm, kHpkeRfcId) && |
| CBB_add_bytes(&labeled_ikm, suite_id, suite_id_len) && |
| add_label_string(&labeled_ikm, label) && |
| CBB_add_bytes(&labeled_ikm, ikm, ikm_len) && |
| HKDF_extract(out_key, out_len, hkdf_md, CBB_data(&labeled_ikm), |
| CBB_len(&labeled_ikm), salt, salt_len); |
| CBB_cleanup(&labeled_ikm); |
| return ok; |
| } |
| |
| static int hpke_labeled_expand(const EVP_MD *hkdf_md, uint8_t *out_key, |
| size_t out_len, const uint8_t *prk, |
| size_t prk_len, const uint8_t *suite_id, |
| size_t suite_id_len, const char *label, |
| const uint8_t *info, size_t info_len) { |
| // labeledInfo = concat(I2OSP(L, 2), "RFCXXXX ", suite_id, label, info) |
| CBB labeled_info; |
| int ok = CBB_init(&labeled_info, 0) && |
| CBB_add_u16(&labeled_info, out_len) && |
| add_label_string(&labeled_info, kHpkeRfcId) && |
| CBB_add_bytes(&labeled_info, suite_id, suite_id_len) && |
| add_label_string(&labeled_info, label) && |
| CBB_add_bytes(&labeled_info, info, info_len) && |
| HKDF_expand(out_key, out_len, hkdf_md, prk, prk_len, |
| CBB_data(&labeled_info), CBB_len(&labeled_info)); |
| CBB_cleanup(&labeled_info); |
| return ok; |
| } |
| |
| static int hpke_extract_and_expand(const EVP_MD *hkdf_md, uint8_t *out_key, |
| size_t out_len, |
| const uint8_t dh[X25519_PUBLIC_VALUE_LEN], |
| const uint8_t kem_context[KEM_CONTEXT_LEN]) { |
| uint8_t prk[EVP_MAX_MD_SIZE]; |
| size_t prk_len; |
| static const char kEaePrkLabel[] = "eae_prk"; |
| if (!hpke_labeled_extract(hkdf_md, prk, &prk_len, NULL, 0, kX25519SuiteID, |
| sizeof(kX25519SuiteID), kEaePrkLabel, dh, |
| X25519_PUBLIC_VALUE_LEN)) { |
| return 0; |
| } |
| static const char kPRKExpandLabel[] = "shared_secret"; |
| if (!hpke_labeled_expand(hkdf_md, out_key, out_len, prk, prk_len, |
| kX25519SuiteID, sizeof(kX25519SuiteID), |
| kPRKExpandLabel, kem_context, KEM_CONTEXT_LEN)) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| static const EVP_AEAD *hpke_get_aead(uint16_t aead_id) { |
| switch (aead_id) { |
| case EVP_HPKE_AEAD_AES_GCM_128: |
| return EVP_aead_aes_128_gcm(); |
| case EVP_HPKE_AEAD_AES_GCM_256: |
| return EVP_aead_aes_256_gcm(); |
| case EVP_HPKE_AEAD_CHACHA20POLY1305: |
| return EVP_aead_chacha20_poly1305(); |
| } |
| OPENSSL_PUT_ERROR(EVP, ERR_R_INTERNAL_ERROR); |
| return NULL; |
| } |
| |
| static const EVP_MD *hpke_get_kdf(uint16_t kdf_id) { |
| switch (kdf_id) { |
| case EVP_HPKE_HKDF_SHA256: |
| return EVP_sha256(); |
| case EVP_HPKE_HKDF_SHA384: |
| return EVP_sha384(); |
| case EVP_HPKE_HKDF_SHA512: |
| return EVP_sha512(); |
| } |
| OPENSSL_PUT_ERROR(EVP, ERR_R_INTERNAL_ERROR); |
| return NULL; |
| } |
| |
| static int hpke_key_schedule(EVP_HPKE_CTX *hpke, uint8_t mode, |
| const uint8_t *shared_secret, |
| size_t shared_secret_len, const uint8_t *info, |
| size_t info_len, const uint8_t *psk, |
| size_t psk_len, const uint8_t *psk_id, |
| size_t psk_id_len) { |
| // Verify the PSK inputs. |
| switch (mode) { |
| case HPKE_MODE_BASE: |
| // This is an internal error, unreachable from the caller. |
| assert(psk_len == 0 && psk_id_len == 0); |
| break; |
| case HPKE_MODE_PSK: |
| if (psk_len == 0 || psk_id_len == 0) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_EMPTY_PSK); |
| return 0; |
| } |
| break; |
| default: |
| return 0; |
| } |
| |
| // Attempt to get an EVP_AEAD*. |
| const EVP_AEAD *aead = hpke_get_aead(hpke->aead_id); |
| if (aead == NULL) { |
| return 0; |
| } |
| |
| uint8_t suite_id[HPKE_SUITE_ID_LEN]; |
| if (!hpke_build_suite_id(suite_id, hpke->kdf_id, hpke->aead_id)) { |
| return 0; |
| } |
| |
| // psk_id_hash = LabeledExtract("", "psk_id_hash", psk_id) |
| static const char kPskIdHashLabel[] = "psk_id_hash"; |
| uint8_t psk_id_hash[EVP_MAX_MD_SIZE]; |
| size_t psk_id_hash_len; |
| if (!hpke_labeled_extract(hpke->hkdf_md, psk_id_hash, &psk_id_hash_len, NULL, |
| 0, suite_id, sizeof(suite_id), kPskIdHashLabel, |
| psk_id, psk_id_len)) { |
| return 0; |
| } |
| |
| // info_hash = LabeledExtract("", "info_hash", info) |
| static const char kInfoHashLabel[] = "info_hash"; |
| uint8_t info_hash[EVP_MAX_MD_SIZE]; |
| size_t info_hash_len; |
| if (!hpke_labeled_extract(hpke->hkdf_md, info_hash, &info_hash_len, NULL, 0, |
| suite_id, sizeof(suite_id), kInfoHashLabel, info, |
| info_len)) { |
| return 0; |
| } |
| |
| // key_schedule_context = concat(mode, psk_id_hash, info_hash) |
| uint8_t context[sizeof(uint8_t) + 2 * EVP_MAX_MD_SIZE]; |
| size_t context_len; |
| CBB context_cbb; |
| if (!CBB_init_fixed(&context_cbb, context, sizeof(context)) || |
| !CBB_add_u8(&context_cbb, mode) || |
| !CBB_add_bytes(&context_cbb, psk_id_hash, psk_id_hash_len) || |
| !CBB_add_bytes(&context_cbb, info_hash, info_hash_len) || |
| !CBB_finish(&context_cbb, NULL, &context_len)) { |
| return 0; |
| } |
| |
| // psk_hash = LabeledExtract("", "psk_hash", psk) |
| static const char kPskHashLabel[] = "psk_hash"; |
| uint8_t psk_hash[EVP_MAX_MD_SIZE]; |
| size_t psk_hash_len; |
| if (!hpke_labeled_extract(hpke->hkdf_md, psk_hash, &psk_hash_len, NULL, 0, |
| suite_id, sizeof(suite_id), kPskHashLabel, psk, |
| psk_len)) { |
| return 0; |
| } |
| |
| // secret = LabeledExtract(psk_hash, "secret", shared_secret) |
| static const char kSecretExtractLabel[] = "secret"; |
| uint8_t secret[EVP_MAX_MD_SIZE]; |
| size_t secret_len; |
| if (!hpke_labeled_extract(hpke->hkdf_md, secret, &secret_len, psk_hash, |
| psk_hash_len, suite_id, sizeof(suite_id), |
| kSecretExtractLabel, shared_secret, |
| shared_secret_len)) { |
| return 0; |
| } |
| |
| // key = LabeledExpand(secret, "key", key_schedule_context, Nk) |
| static const char kKeyExpandLabel[] = "key"; |
| uint8_t key[EVP_AEAD_MAX_KEY_LENGTH]; |
| const size_t kKeyLen = EVP_AEAD_key_length(aead); |
| if (!hpke_labeled_expand(hpke->hkdf_md, key, kKeyLen, secret, secret_len, |
| suite_id, sizeof(suite_id), kKeyExpandLabel, context, |
| context_len)) { |
| return 0; |
| } |
| |
| // Initialize the HPKE context's AEAD context, storing a copy of |key|. |
| if (!EVP_AEAD_CTX_init(&hpke->aead_ctx, aead, key, kKeyLen, 0, NULL)) { |
| return 0; |
| } |
| |
| // nonce = LabeledExpand(secret, "nonce", key_schedule_context, Nn) |
| static const char kNonceExpandLabel[] = "nonce"; |
| if (!hpke_labeled_expand(hpke->hkdf_md, hpke->nonce, |
| EVP_AEAD_nonce_length(aead), secret, secret_len, |
| suite_id, sizeof(suite_id), kNonceExpandLabel, |
| context, context_len)) { |
| return 0; |
| } |
| |
| // exporter_secret = LabeledExpand(secret, "exp", key_schedule_context, Nh) |
| static const char kExporterSecretExpandLabel[] = "exp"; |
| if (!hpke_labeled_expand(hpke->hkdf_md, hpke->exporter_secret, |
| EVP_MD_size(hpke->hkdf_md), secret, secret_len, |
| suite_id, sizeof(suite_id), |
| kExporterSecretExpandLabel, context, context_len)) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| // The number of bytes written to |out_shared_secret| is the size of the KEM's |
| // KDF (currently we only support SHA256). |
| static int hpke_encap(EVP_HPKE_CTX *hpke, |
| uint8_t out_shared_secret[SHA256_DIGEST_LENGTH], |
| const uint8_t public_key_r[X25519_PUBLIC_VALUE_LEN], |
| const uint8_t ephemeral_private[X25519_PRIVATE_KEY_LEN], |
| const uint8_t ephemeral_public[X25519_PUBLIC_VALUE_LEN]) { |
| uint8_t dh[X25519_PUBLIC_VALUE_LEN]; |
| if (!X25519(dh, ephemeral_private, public_key_r)) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY); |
| return 0; |
| } |
| |
| uint8_t kem_context[KEM_CONTEXT_LEN]; |
| OPENSSL_memcpy(kem_context, ephemeral_public, X25519_PUBLIC_VALUE_LEN); |
| OPENSSL_memcpy(kem_context + X25519_PUBLIC_VALUE_LEN, public_key_r, |
| X25519_PUBLIC_VALUE_LEN); |
| if (!hpke_extract_and_expand(EVP_sha256(), out_shared_secret, |
| SHA256_DIGEST_LENGTH, dh, kem_context)) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int hpke_decap(const EVP_HPKE_CTX *hpke, |
| uint8_t out_shared_secret[SHA256_DIGEST_LENGTH], |
| const uint8_t enc[X25519_PUBLIC_VALUE_LEN], |
| const uint8_t public_key_r[X25519_PUBLIC_VALUE_LEN], |
| const uint8_t secret_key_r[X25519_PRIVATE_KEY_LEN]) { |
| uint8_t dh[X25519_PUBLIC_VALUE_LEN]; |
| if (!X25519(dh, secret_key_r, enc)) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY); |
| return 0; |
| } |
| uint8_t kem_context[KEM_CONTEXT_LEN]; |
| OPENSSL_memcpy(kem_context, enc, X25519_PUBLIC_VALUE_LEN); |
| OPENSSL_memcpy(kem_context + X25519_PUBLIC_VALUE_LEN, public_key_r, |
| X25519_PUBLIC_VALUE_LEN); |
| if (!hpke_extract_and_expand(EVP_sha256(), out_shared_secret, |
| SHA256_DIGEST_LENGTH, dh, kem_context)) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| void EVP_HPKE_CTX_init(EVP_HPKE_CTX *ctx) { |
| OPENSSL_memset(ctx, 0, sizeof(EVP_HPKE_CTX)); |
| EVP_AEAD_CTX_zero(&ctx->aead_ctx); |
| } |
| |
| void EVP_HPKE_CTX_cleanup(EVP_HPKE_CTX *ctx) { |
| EVP_AEAD_CTX_cleanup(&ctx->aead_ctx); |
| } |
| |
| int EVP_HPKE_CTX_setup_base_s_x25519( |
| EVP_HPKE_CTX *hpke, uint8_t out_enc[X25519_PUBLIC_VALUE_LEN], |
| uint16_t kdf_id, uint16_t aead_id, |
| const uint8_t peer_public_value[X25519_PUBLIC_VALUE_LEN], |
| const uint8_t *info, size_t info_len) { |
| // The GenerateKeyPair() step technically belongs in the KEM's Encap() |
| // function, but we've moved it up a layer to make it easier for tests to |
| // inject an ephemeral keypair. |
| uint8_t ephemeral_private[X25519_PRIVATE_KEY_LEN]; |
| X25519_keypair(out_enc, ephemeral_private); |
| return EVP_HPKE_CTX_setup_base_s_x25519_for_test( |
| hpke, kdf_id, aead_id, peer_public_value, info, info_len, |
| ephemeral_private, out_enc); |
| } |
| |
| int EVP_HPKE_CTX_setup_base_s_x25519_for_test( |
| EVP_HPKE_CTX *hpke, uint16_t kdf_id, uint16_t aead_id, |
| const uint8_t peer_public_value[X25519_PUBLIC_VALUE_LEN], |
| const uint8_t *info, size_t info_len, |
| const uint8_t ephemeral_private[X25519_PRIVATE_KEY_LEN], |
| const uint8_t ephemeral_public[X25519_PUBLIC_VALUE_LEN]) { |
| hpke->is_sender = 1; |
| hpke->kdf_id = kdf_id; |
| hpke->aead_id = aead_id; |
| hpke->hkdf_md = hpke_get_kdf(kdf_id); |
| if (hpke->hkdf_md == NULL) { |
| return 0; |
| } |
| uint8_t shared_secret[SHA256_DIGEST_LENGTH]; |
| if (!hpke_encap(hpke, shared_secret, peer_public_value, ephemeral_private, |
| ephemeral_public) || |
| !hpke_key_schedule(hpke, HPKE_MODE_BASE, shared_secret, |
| sizeof(shared_secret), info, info_len, NULL, 0, NULL, |
| 0)) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| int EVP_HPKE_CTX_setup_base_r_x25519( |
| EVP_HPKE_CTX *hpke, uint16_t kdf_id, uint16_t aead_id, |
| const uint8_t enc[X25519_PUBLIC_VALUE_LEN], |
| const uint8_t public_key[X25519_PUBLIC_VALUE_LEN], |
| const uint8_t private_key[X25519_PRIVATE_KEY_LEN], const uint8_t *info, |
| size_t info_len) { |
| hpke->is_sender = 0; |
| hpke->kdf_id = kdf_id; |
| hpke->aead_id = aead_id; |
| hpke->hkdf_md = hpke_get_kdf(kdf_id); |
| if (hpke->hkdf_md == NULL) { |
| return 0; |
| } |
| uint8_t shared_secret[SHA256_DIGEST_LENGTH]; |
| if (!hpke_decap(hpke, shared_secret, enc, public_key, private_key) || |
| !hpke_key_schedule(hpke, HPKE_MODE_BASE, shared_secret, |
| sizeof(shared_secret), info, info_len, NULL, 0, NULL, |
| 0)) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| int EVP_HPKE_CTX_setup_psk_s_x25519( |
| EVP_HPKE_CTX *hpke, uint8_t out_enc[X25519_PUBLIC_VALUE_LEN], |
| uint16_t kdf_id, uint16_t aead_id, |
| const uint8_t peer_public_value[X25519_PUBLIC_VALUE_LEN], |
| const uint8_t *info, size_t info_len, const uint8_t *psk, size_t psk_len, |
| const uint8_t *psk_id, size_t psk_id_len) { |
| // The GenerateKeyPair() step technically belongs in the KEM's Encap() |
| // function, but we've moved it up a layer to make it easier for tests to |
| // inject an ephemeral keypair. |
| uint8_t ephemeral_private[X25519_PRIVATE_KEY_LEN]; |
| X25519_keypair(out_enc, ephemeral_private); |
| return EVP_HPKE_CTX_setup_psk_s_x25519_for_test( |
| hpke, kdf_id, aead_id, peer_public_value, info, info_len, psk, psk_len, |
| psk_id, psk_id_len, ephemeral_private, out_enc); |
| } |
| |
| int EVP_HPKE_CTX_setup_psk_s_x25519_for_test( |
| EVP_HPKE_CTX *hpke, uint16_t kdf_id, uint16_t aead_id, |
| const uint8_t peer_public_value[X25519_PUBLIC_VALUE_LEN], |
| const uint8_t *info, size_t info_len, const uint8_t *psk, size_t psk_len, |
| const uint8_t *psk_id, size_t psk_id_len, |
| const uint8_t ephemeral_private[X25519_PRIVATE_KEY_LEN], |
| const uint8_t ephemeral_public[X25519_PUBLIC_VALUE_LEN]) { |
| hpke->is_sender = 1; |
| hpke->kdf_id = kdf_id; |
| hpke->aead_id = aead_id; |
| hpke->hkdf_md = hpke_get_kdf(kdf_id); |
| if (hpke->hkdf_md == NULL) { |
| return 0; |
| } |
| uint8_t shared_secret[SHA256_DIGEST_LENGTH]; |
| if (!hpke_encap(hpke, shared_secret, peer_public_value, ephemeral_private, |
| ephemeral_public) || |
| !hpke_key_schedule(hpke, HPKE_MODE_PSK, shared_secret, |
| sizeof(shared_secret), info, info_len, psk, psk_len, |
| psk_id, psk_id_len)) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| int EVP_HPKE_CTX_setup_psk_r_x25519( |
| EVP_HPKE_CTX *hpke, uint16_t kdf_id, uint16_t aead_id, |
| const uint8_t enc[X25519_PUBLIC_VALUE_LEN], |
| const uint8_t public_key[X25519_PUBLIC_VALUE_LEN], |
| const uint8_t private_key[X25519_PRIVATE_KEY_LEN], const uint8_t *info, |
| size_t info_len, const uint8_t *psk, size_t psk_len, const uint8_t *psk_id, |
| size_t psk_id_len) { |
| hpke->is_sender = 0; |
| hpke->kdf_id = kdf_id; |
| hpke->aead_id = aead_id; |
| hpke->hkdf_md = hpke_get_kdf(kdf_id); |
| if (hpke->hkdf_md == NULL) { |
| return 0; |
| } |
| uint8_t shared_secret[SHA256_DIGEST_LENGTH]; |
| if (!hpke_decap(hpke, shared_secret, enc, public_key, private_key) || |
| !hpke_key_schedule(hpke, HPKE_MODE_PSK, shared_secret, |
| sizeof(shared_secret), info, info_len, psk, psk_len, |
| psk_id, psk_id_len)) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| static void hpke_nonce(const EVP_HPKE_CTX *hpke, uint8_t *out_nonce, |
| size_t nonce_len) { |
| assert(nonce_len >= 8); |
| |
| // Write padded big-endian bytes of |hpke->seq| to |out_nonce|. |
| OPENSSL_memset(out_nonce, 0, nonce_len); |
| uint64_t seq_copy = hpke->seq; |
| for (size_t i = 0; i < 8; i++) { |
| out_nonce[nonce_len - i - 1] = seq_copy & 0xff; |
| seq_copy >>= 8; |
| } |
| |
| // XOR the encoded sequence with the |hpke->nonce|. |
| for (size_t i = 0; i < nonce_len; i++) { |
| out_nonce[i] ^= hpke->nonce[i]; |
| } |
| } |
| |
| size_t EVP_HPKE_CTX_max_overhead(const EVP_HPKE_CTX *hpke) { |
| assert(hpke->is_sender); |
| return EVP_AEAD_max_overhead(hpke->aead_ctx.aead); |
| } |
| |
| int EVP_HPKE_CTX_open(EVP_HPKE_CTX *hpke, uint8_t *out, size_t *out_len, |
| size_t max_out_len, const uint8_t *in, size_t in_len, |
| const uint8_t *ad, size_t ad_len) { |
| if (hpke->is_sender) { |
| OPENSSL_PUT_ERROR(EVP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| if (hpke->seq == UINT64_MAX) { |
| OPENSSL_PUT_ERROR(EVP, ERR_R_OVERFLOW); |
| return 0; |
| } |
| |
| uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH]; |
| const size_t nonce_len = EVP_AEAD_nonce_length(hpke->aead_ctx.aead); |
| hpke_nonce(hpke, nonce, nonce_len); |
| |
| if (!EVP_AEAD_CTX_open(&hpke->aead_ctx, out, out_len, max_out_len, nonce, |
| nonce_len, in, in_len, ad, ad_len)) { |
| return 0; |
| } |
| hpke->seq++; |
| return 1; |
| } |
| |
| int EVP_HPKE_CTX_seal(EVP_HPKE_CTX *hpke, uint8_t *out, size_t *out_len, |
| size_t max_out_len, const uint8_t *in, size_t in_len, |
| const uint8_t *ad, size_t ad_len) { |
| if (!hpke->is_sender) { |
| OPENSSL_PUT_ERROR(EVP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| if (hpke->seq == UINT64_MAX) { |
| OPENSSL_PUT_ERROR(EVP, ERR_R_OVERFLOW); |
| return 0; |
| } |
| |
| uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH]; |
| const size_t nonce_len = EVP_AEAD_nonce_length(hpke->aead_ctx.aead); |
| hpke_nonce(hpke, nonce, nonce_len); |
| |
| if (!EVP_AEAD_CTX_seal(&hpke->aead_ctx, out, out_len, max_out_len, nonce, |
| nonce_len, in, in_len, ad, ad_len)) { |
| return 0; |
| } |
| hpke->seq++; |
| return 1; |
| } |
| |
| int EVP_HPKE_CTX_export(const EVP_HPKE_CTX *hpke, uint8_t *out, |
| size_t secret_len, const uint8_t *context, |
| size_t context_len) { |
| uint8_t suite_id[HPKE_SUITE_ID_LEN]; |
| if (!hpke_build_suite_id(suite_id, hpke->kdf_id, hpke->aead_id)) { |
| return 0; |
| } |
| static const char kExportExpandLabel[] = "sec"; |
| if (!hpke_labeled_expand(hpke->hkdf_md, out, secret_len, |
| hpke->exporter_secret, EVP_MD_size(hpke->hkdf_md), |
| suite_id, sizeof(suite_id), kExportExpandLabel, |
| context, context_len)) { |
| return 0; |
| } |
| return 1; |
| } |