| // Copyright 2018 The BoringSSL Authors |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include <openssl/bn.h> |
| |
| #include <assert.h> |
| |
| #include "internal.h" |
| |
| |
| // The following functions use a Barrett reduction variant to avoid leaking the |
| // numerator. See http://ridiculousfish.com/blog/posts/labor-of-division-episode-i.html |
| // |
| // We use 32-bit numerator and 16-bit divisor for simplicity. This allows |
| // computing |m| and |q| without architecture-specific code. |
| |
| // mod_u16 returns |n| mod |d|. |p| and |m| are the "magic numbers" for |d| (see |
| // reference). For proof of correctness in Coq, see |
| // https://github.com/davidben/fiat-crypto/blob/barrett/src/Arithmetic/BarrettReduction/RidiculousFish.v |
| // Note the Coq version of |mod_u16| additionally includes the computation of |
| // |p| and |m| from |bn_mod_u16_consttime| below. |
| static uint16_t mod_u16(uint32_t n, uint16_t d, uint32_t p, uint32_t m) { |
| // Compute floor(n/d) per steps 3 through 5. |
| uint32_t q = ((uint64_t)m * n) >> 32; |
| // Note there is a typo in the reference. We right-shift by one, not two. |
| uint32_t t = ((n - q) >> 1) + q; |
| t = t >> (p - 1); |
| |
| // Multiply and subtract to get the remainder. |
| n -= d * t; |
| declassify_assert(n < d); |
| return n; |
| } |
| |
| // shift_and_add_mod_u16 returns |r| * 2^32 + |a| mod |d|. |p| and |m| are the |
| // "magic numbers" for |d| (see reference). |
| static uint16_t shift_and_add_mod_u16(uint16_t r, uint32_t a, uint16_t d, |
| uint32_t p, uint32_t m) { |
| // Incorporate |a| in two 16-bit chunks. |
| uint32_t t = r; |
| t <<= 16; |
| t |= a >> 16; |
| t = mod_u16(t, d, p, m); |
| |
| t <<= 16; |
| t |= a & 0xffff; |
| t = mod_u16(t, d, p, m); |
| return t; |
| } |
| |
| uint16_t bn_mod_u16_consttime(const BIGNUM *bn, uint16_t d) { |
| if (d <= 1) { |
| return 0; |
| } |
| |
| // Compute the "magic numbers" for |d|. See steps 1 and 2. |
| // This computes p = ceil(log_2(d)). |
| uint32_t p = BN_num_bits_word(d - 1); |
| // This operation is not constant-time, but |p| and |d| are public values. |
| // Note that |p| is at most 16, so the computation fits in |uint64_t|. |
| assert(p <= 16); |
| uint32_t m = (uint32_t)(((UINT64_C(1) << (32 + p)) + d - 1) / d); |
| |
| uint16_t ret = 0; |
| for (int i = bn->width - 1; i >= 0; i--) { |
| #if BN_BITS2 == 32 |
| ret = shift_and_add_mod_u16(ret, bn->d[i], d, p, m); |
| #elif BN_BITS2 == 64 |
| ret = shift_and_add_mod_u16(ret, bn->d[i] >> 32, d, p, m); |
| ret = shift_and_add_mod_u16(ret, bn->d[i] & 0xffffffff, d, p, m); |
| #else |
| #error "Unknown BN_ULONG size" |
| #endif |
| } |
| return ret; |
| } |