blob: 7b455b55f089eead149912c7e3d3a35f1ddfcbc9 [file] [log] [blame]
/*
* Copyright 2013-2016 The OpenSSL Project Authors. All Rights Reserved.
* Copyright (c) 2012, Intel Corporation. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*
* Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1)
* (1) Intel Corporation, Israel Development Center, Haifa, Israel
* (2) University of Haifa, Israel
*/
#include "rsaz_exp.h"
#if defined(RSAZ_ENABLED)
#include <openssl/mem.h>
#include <assert.h>
#include "internal.h"
#include "../../internal.h"
// one is 1 in RSAZ's representation.
alignas(64) static const BN_ULONG one[40] = {
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
// two80 is 2^80 in RSAZ's representation. Note RSAZ uses base 2^29, so this is
// 2^(29*2 + 22) = 2^80, not 2^(64*2 + 22).
alignas(64) static const BN_ULONG two80[40] = {
0, 0, 1 << 22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
void RSAZ_1024_mod_exp_avx2(BN_ULONG result_norm[16],
const BN_ULONG base_norm[16],
const BN_ULONG exponent[16],
const BN_ULONG m_norm[16], const BN_ULONG RR[16],
BN_ULONG k0,
BN_ULONG storage[MOD_EXP_CTIME_STORAGE_LEN]) {
static_assert(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH % 64 == 0,
"MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH is too small");
assert((uintptr_t)storage % 64 == 0);
BN_ULONG *a_inv, *m, *result, *table_s = storage + 40 * 3, *R2 = table_s;
// Note |R2| aliases |table_s|.
if (((((uintptr_t)storage & 4095) + 320) >> 12) != 0) {
result = storage;
a_inv = storage + 40;
m = storage + 40 * 2; // should not cross page
} else {
m = storage; // should not cross page
result = storage + 40;
a_inv = storage + 40 * 2;
}
rsaz_1024_norm2red_avx2(m, m_norm);
rsaz_1024_norm2red_avx2(a_inv, base_norm);
rsaz_1024_norm2red_avx2(R2, RR);
// Convert |R2| from the usual radix, giving R = 2^1024, to RSAZ's radix,
// giving R = 2^(36*29) = 2^1044.
rsaz_1024_mul_avx2(R2, R2, R2, m, k0);
// R2 = 2^2048 * 2^2048 / 2^1044 = 2^3052
rsaz_1024_mul_avx2(R2, R2, two80, m, k0);
// R2 = 2^3052 * 2^80 / 2^1044 = 2^2088 = (2^1044)^2
// table[0] = 1
// table[1] = a_inv^1
rsaz_1024_mul_avx2(result, R2, one, m, k0);
rsaz_1024_mul_avx2(a_inv, a_inv, R2, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 0);
rsaz_1024_scatter5_avx2(table_s, a_inv, 1);
// table[2] = a_inv^2
rsaz_1024_sqr_avx2(result, a_inv, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 2);
// table[4] = a_inv^4
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 4);
// table[8] = a_inv^8
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 8);
// table[16] = a_inv^16
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 16);
for (int i = 3; i < 32; i += 2) {
// table[i] = table[i-1] * a_inv = a_inv^i
rsaz_1024_gather5_avx2(result, table_s, i - 1);
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, i);
for (int j = 2 * i; j < 32; j *= 2) {
// table[j] = table[j/2]^2 = a_inv^j
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, j);
}
}
// Load the first window.
const uint8_t *p_str = (const uint8_t *)exponent;
int wvalue = p_str[127] >> 3;
rsaz_1024_gather5_avx2(result, table_s, wvalue);
int index = 1014;
while (index > -1) { // Loop for the remaining 127 windows.
rsaz_1024_sqr_avx2(result, result, m, k0, 5);
uint16_t wvalue_16;
memcpy(&wvalue_16, &p_str[index / 8], sizeof(wvalue_16));
wvalue = wvalue_16;
wvalue = (wvalue >> (index % 8)) & 31;
index -= 5;
rsaz_1024_gather5_avx2(a_inv, table_s, wvalue); // Borrow |a_inv|.
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
}
// Square four times.
rsaz_1024_sqr_avx2(result, result, m, k0, 4);
wvalue = p_str[0] & 15;
rsaz_1024_gather5_avx2(a_inv, table_s, wvalue); // Borrow |a_inv|.
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
// Convert from Montgomery.
rsaz_1024_mul_avx2(result, result, one, m, k0);
rsaz_1024_red2norm_avx2(result_norm, result);
BN_ULONG scratch[16];
bn_reduce_once_in_place(result_norm, /*carry=*/0, m_norm, scratch, 16);
OPENSSL_cleanse(storage, MOD_EXP_CTIME_STORAGE_LEN * sizeof(BN_ULONG));
}
#endif // RSAZ_ENABLED